Anticipated Compound Flooding in Miami-Dade Under Extreme Hydrometeorological Events
Abstract
1. Introduction
- How can a compound flood model including storm surge, precipitation, and river flooding events of various return periods be developed for the downtown Miami metropolitan area?
- How much of downtown Miami would be affected by extreme hydrometeorological events such as a 100-year return period compound flood?
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methodology
2.3.1. Software Selection
2.3.2. Terrain
2.3.3. Geometry Construction
One-Dimensional Geometry of the Miami River
Two-Dimensional Flow Area Geometry
2.3.4. Boundary Conditions
2.3.5. Unsteady Flow Data and Analysis
2.3.6. Validation and Calibration
Validation at Selected Stations
2.3.7. Reproduction of a 50-Year and 100-Year Design Event in Miami
2.3.8. Layer Development
3. Results
3.1. Socioeconomic Impacts
3.2. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BC | Boundary Condition |
| CV | Cross-Validation |
| DEM | Digital Elevation Map |
| FEMA | Federal Emergency Management Agency |
| FIU | Florida International University |
| GB | Gradient Booster |
| HEC-RAS | Hydrologic Engineering Center-River Analysis System |
| IPCC | Intergovernmental Panel on Climate Change |
| MDC | Miami-Dade County |
| NGVD29 | National Geodetic Vertical Datum of 1929 |
| OAT | One At a Time |
| R2 | Coefficient of Determination |
| RF | Random Forest |
| RMSE | Root Mean Square Error |
| SFWMD | South Florida Water Management District |
References
- Green, J.; Wong, T.; van der Velde, Y.; Kumbier, K. Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions. Nat. Hazards Earth Syst. Sci. 2025, 25, 747–816. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; van den Hurk, B.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith, M. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 113–128. [Google Scholar] [CrossRef]
- Nyatuame, M.; Agodzo, S. Analysis of Extreme Rainfall Events (Drought and Flood) over Tordzie Watershed in the Volta Region of Ghana. J. Geosci. Environ. Prot. 2017, 5, 275–295. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Understanding compound, interconnected, interacting, and cascading risks: A holistic framework. Risk Anal. 2018, 38, 2245–2257. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Collazo, F.L.; Bilskie, M.V.; Hagen, S.C. A comprehensive review of compound inundation models in low-gradient coastal watersheds. Environ. Model Softw. 2019, 119, 166–181. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C. Defining flood zone transitions in low-gradient coastal regions. Geophys. Res. Lett. 2018, 45, 2761–2770. [Google Scholar] [CrossRef]
- Sampurno, J.; Vallaeys, V.; Ardianto, R.; Hanert, E. Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. Nonlinear Process. Geophys. Discuss. 2022, 2022, 301–315. [Google Scholar] [CrossRef]
- Hanson, S.; Nicholls, R.J.; Terribile, F.; Hallegatte, S.; Corfee-Morlot, J. A global ranking of port cities with high exposure to climate extremes. Clim. Change 2011, 104, 89–111. [Google Scholar] [CrossRef]
- Peña, F.; Obeysekera, J.; Jane, R.; Nardi, F.; Maran, C.; Cadogan, A.; de Groen, F.; Melesse, A. Investigating compound flooding in a low elevation coastal karst environment using multivariate statistical and 2D hydrodynamic modeling. Weather. Clim. Extrem. 2023, 39, 100534. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.; Dutta, D.; Kim, S. Flood inundation modeling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Arduino, G.; Reggiani, P.; Todini, E. Recent advances in flood forecasting and flood risk assessment. Hydrol. Earth Syst. Sci. 2005, 9, 280–284. [Google Scholar] [CrossRef]
- Apel, H.; Thieken, A.H.; Merz, B.; Blöschl, G. A probabilistic modeling system for assessing flood risks. Nat. Hazards 2006, 38, 79–100. [Google Scholar] [CrossRef]
- Peña, F.; Nardi, F.; Obeysekera, J.; Melesse, A. Compound flood modeling framework for surface–subsurface water interactions. Nat. Hazards Earth Syst. Sci. 2022, 22, 775–793. [Google Scholar] [CrossRef]
- Bermúdez, M.; López, J.; Neal, J.; Bates, P.D.; Coxon, G.; Yamazaki, D. Assessing the effects of climate change on compound flooding in coastal river areas. Water Resour. Res. 2021, 57, e2020WR029321. [Google Scholar] [CrossRef]
- Bunya, S.; Dietrich, J.C.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model development and validation. Mon. Weather. Rev. 2010, 138, 345–377. [Google Scholar] [CrossRef]
- Bush, S.T.; Chu, A.; Avci, S.; Tullos, D.D. Use of 1D unsteady HEC-RAS in a coupled system for compound flood modeling: North Carolina case study. J. Mar. Sci. Eng. 2022, 10, 306. [Google Scholar] [CrossRef]
- Jane, R.; Cadavid, L.; Obeysekera, J.; Wahl, T. Multivariate statistical modeling of the drivers of compound flood events in South Florida. Nat. Hazards Earth Syst. Sci. 2020, 20, 2681–2699. [Google Scholar] [CrossRef]
- Gori, A.; Lin, N. Projecting compound flood hazard under climate change with physical models and joint probability methods. Earth’s Future 2022, 10, e2022EF003097. [Google Scholar] [CrossRef]
- Čepienė, E.; Kriaučiūnienė, J.; Meilutytė-Barauskienė, D.; Rimkus, E. Sea level rise impact on compound coastal river flood risk in Klaipėda City (Baltic Coast, Lithuania). Water 2022, 14, 414. [Google Scholar] [CrossRef]
- Gutenson, J.L.; Tarboton, D.G.; Castronova, A.M.M.; Maidment, D.R. Comparison of estimated flood exposure and consequences generated by different event-based inland flood inundation maps. Nat. Hazards Earth Syst. Sci. 2023, 23, 261–277. [Google Scholar] [CrossRef]
- Sea Level Solutions Center, Florida International University. Miami-Dade County Back Bay Coastal Storm Risk Management Feasibility Study: Hydrodynamic Modeling and Initial Water Quality Evaluations Supporting the Federal Feasibility Study. Available online: https://environment.fiu.edu/slsc/resources/ (accessed on 19 January 2025).
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: Columbus, OH, USA, 1959. [Google Scholar]
- Kalimisetty, S.; Singh, A.; Korada Hari Venkata, D.R.; Venkateshwar Rao, V.; Mahammood, V. 1D and 2D model coupling approach for the development of operational spatial flood early warning system. Geocarto Int. 2021, 37, 4390–4405. [Google Scholar] [CrossRef]
- Tang, Z.; Chu, J.; Zhou, Z.; Zhou, T.; Yuan, K. The sensitivity analysis of parameters in the 1D–2D coupled model for urban flooding. Appl. Sci. 2025, 15, 2157. [Google Scholar] [CrossRef]
- South Florida Water Management District. Draft Final Report Flood Protection Level of Service (LOS) Analysis for the C-4 Watershed; South Florida Water Management District: West Palm Beach, FL, USA, 2016.
- South Florida Water Management District. Draft Report Miami River Watershed RAS-MODFLOW OpenMI Integration of Groundwater/hydraulic Models; South Florida Water Management District: West Palm Beach, FL, USA, 2012.
- South Florida Water Management District. C2, C3W, C4, C5 & C6 Watersheds: FPLOS Assessment for Current and Future Sea Level Rise Conditions—Final Comprehensive Assessment Report; South Florida Water Management District: West Palm Beach, FL, USA, 2023.
- Pheulpin, L.; Bertrand, N.; Bacchi, V. Uncertainty quantification and global sensitivity analysis with dependent input parameters: Application to a basic 2D-hydraulic model. LHB 2022, 108, 2015265. [Google Scholar] [CrossRef]
- Parkes, B.L.; Cloke, H.L.; Pappenberger, F.; Neal, J.; Demeritt, D. Reducing inconsistencies in point observations of maximum flood inundation level. Earth Interact. 2013, 17, 1–27. [Google Scholar] [CrossRef]
- Zotou, I.; Bellos, V.; Tsihrintzis, V.A. Calibration framework for complex 2D hydrodynamic models: Use of satellite-derived flood extent and water depth data, and evaluation with various performance metrics. Adv. Water Resour. 2025, 204, 105066. [Google Scholar] [CrossRef]
- Williams, G.P. Friends don’t let friends use Nash–Sutcliffe Efficiency (NSE) or KGE for hydrologic model accuracy evaluation: A rant with data and suggestions for better practice. Environ. Model. Softw. 2025, 194, 106665. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. J. Environ. Manag. 2021, 285, 112125. [Google Scholar] [CrossRef]
- FEMA. Guidance for Flood Risk Analysis and Mapping: Guidance Document 14; FEMA: Washington, DC, USA, 2020.
- Miami River Commission. City of Miami Seawall Ordinance: Draft Revisions. 2020. Available online: https://www.miamirivercommission.org/PDF/Agenda%2003.02.20/City%20of%20Miami%20Seawall%20Ordinance%20DRAFT%20REVISIONS.pdf (accessed on 5 December 2025).
- Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.-M. Random forests for global sensitivity analysis: A selective review. Reliab. Eng. Syst. Saf. 2021, 206, 107312. [Google Scholar] [CrossRef]
- Marchau, V.A.W.J.; Walker, W.E.; Bloemen, P.J.T.M.; Popper, S.W. (Eds.) Decision Making Under Deep Uncertainty: From Theory to Practice; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Xu, K.; Wang, C.Y.; Bin, L.L. Compound flood models in coastal areas: A review of methods and uncertainty analysis. Nat. Hazards 2022, 116, 469–496. [Google Scholar] [CrossRef]
- Peña Guerra, N. Integrating Compound Flood Conditions Through 2D Hydraulic Modeling for Simulating Flood Risk Processes in Coastal Cities. Doctoral Dissertation, Florida International University, Miami, FL, USA, 2021. Available online: https://www.researchgate.net/publication/347660500_Integrating_Compound_Flood_Conditions_Through_2D_Hydraulic_Modeling_for_Simulating_Flood_Risk_Processes_in_Coastal_Cities_AGU_2020 (accessed on 26 August 2025).
- Ali, J.; Wahl, T.; Enriquez, A.R.; Rashid, M.M.; Morim, J.; Gall, M.; Emrich, C.T. The role of compound climate and weather extreme events in creating socio-economic impacts in South Florida. Weather. Clim. Extrem. 2023, 42, 100625. [Google Scholar] [CrossRef]
- Ali, J.; Wahl, T.; Morim, J.; Enriquez, A.; Gall, M.; Emrich, C.T. Multivariate compound events drive historical floods and associated losses along the US East and Gulf coasts. npj Nat. Hazards 2025, 2, 19. [Google Scholar] [CrossRef]
- Montgomery, M.C.; Chakraborty, J. Assessing the environmental justice consequences of flood risk: A case study in Miami, Florida. Environ. Res. Lett. 2015, 10, 095010. [Google Scholar] [CrossRef]
- Sealey, K.S.; Burch, R.K.; Binder, P.M. Will Miami Survive? The Dynamic Interplay Between Floods and Finance; Springer International Publishing: Basel, Switzerland, 2018; p. 65. [Google Scholar]
- Seifert-Dähnn, I. Insurance engagement in flood risk reduction: Examples from household and business insurance in developed countries. Nat. Hazards Earth Syst. Sci. 2018, 18, 2409–2429. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Nederhoff, K.; Leijnse, T.W.B.; Parker, K.; Thomas, J.; O’nEill, A.; van Ormondt, M.; McCall, R.; Erikson, L.; Barnard, P.L.; Foxgrover, A.; et al. Tropical or extratropical cyclones: What drives the compound flood hazard, impact, and risk for the United States Southeast Atlantic coast? Nat. Hazards 2024, 120, 8779–8825. [Google Scholar] [CrossRef]

















| Type | Station Name/Description | Time Interval | Units | Source |
|---|---|---|---|---|
| River Discharge (Time Series) | S26, S25B, S25, and MRMS4 | 15 min | Cubic feet | DBHYDRO |
| Precipitation (Time Series) | Miami Airport rain gauge | 15 min | Inches | DBHYDRO |
| Storm Surge (Time Series) | MRMS4 | 15 min | Stage (ft) | DBHYDRO |
| Derived Data (Model Output) | Surrogate Dataset | N/A | N/A | Based on 81 simulations varying datum correction, time step, and Manning’s values. |
| Point ID | Location | Coordinates | Depth (ft) | Model Values | Source |
|---|---|---|---|---|---|
| S01 | JW Marriott Miami | 25°45′44.2″ N 80°11′29.9″ W | 3 to 4 | 3.05 | |
| S02 | Brickell Bay Dr | 25°45′26.3″ N 80°11′22.7″ W | 2 to 3 | 2.43 | NBC 6 |
| S03 | Parque Jose Marti | 25°46′11.3″ N 80°11′57.5″ W | 2 to 3 | 2.69 | |
| S04 | Station MRMS1 | 25°47′32.2″ N 80°14′20.9″ W | 5.6 | 5.51 | DBHYDRO |
| S05 | Station S25H | 25°47′00.4″ N 80°14′23.4″ W | 5.14 | 5.15 | DBHYDRO |
| S06 | Station MRMS4 | 25°46′12.3″ N 80°11′32.1″ W | 5.5 | 5.44 | DBHYDRO |
| S07 | Station S26_T | 25°48′25.8″ N 80°15′35.9″ W | 5.7 | 5.25 | DBHYDRO |
| S08 | Station S25BM_T | 25°47′37.96″ N 80°15′40.68″ W | 5.7 | 5.51 | DBHYDRO |
| S09 | FLMIA03213 | 25°48′46.8″ N 80°11′09.6″ W | 3.5 | 3.5 | USGS |
| S10 | Biscayne Blvd | 25°48′00.8″ N 80°11′21.3″ W | 0.5 to 1 | 0.61 | |
| S11 | Kaseya center | 25°46′49.9″ N 80°11′13.0″ W | 1 to 2 | 1.79 | The Palm Beach Post |
| S12 | InterContinental Miami | 25°46′20.3″ N 80°11′14.0″ W | 1 to 2 | 1.28 | Miami Herald |
| S13 | Brickell Publix | 25°45′55.5″ N 80°11′42.9″ W | 2 to 3 | 2.97 | Miami-Curved |
| S14 | Fortune House Hotel | 25°45′33.9″ N 80°11′28.8″ W | 1 to 2 | 1.47 | Washington Post |
| S15 | Midtown Miami | 25°48′32.0″ N 80°11′44.2″ W | 0.5 to 1 | 0.77 | |
| S16 | Northwest 24th St and Biscayne Blvd | 25°47′58.6″ N 80°11′26.2″ W | 0.5 to 1 | 0.72 | WPLG Local 10 |
| Point ID | Location | Coordinates | Depth (ft) | Model Values | Source |
|---|---|---|---|---|---|
| S04 | Station MRMS1 | 25.79344, −80.239032 | 4.07 | 3.97 | DBHYDRO |
| S05 | Station S25_H | 25°47′00.4″ N 80°14′23.4″ W | 4.19 | 3.46 | DBHYDRO |
| S06 | Station MRMS4 | 25°46′12.3″ N 80°11′32.1″ W | 3.8 | 3.8 | DBHYDRO |
| S07 | Station S26_T | 25°48′25.8″ N 80°15′35.9″ W | 4.2 | 3.74 | DBHYDRO |
| S08 | Station S25BM_T | 25.793878, −80.261300 | 4.11 | 3.98 | DBHYDRO |
| S18 | SW 13th Street and Brickell Avenue | 25°45′42.1″ N 80°11′31.1″ W | 1 to 2 | 2.08 | Miami Herald |
| S19 | Margaret Pace Park 01 | 25°47′39.1″ N 80°11′08.5″ W | 0.1 to 1 | 0.41 | Patch.com |
| S20 | Margaret Pace Park 02 | 25°47′32.7″ N 80°11′12.1″ W | 1 to 2 | 1.93 | Patch.com |
| S21 | NE 2nd Ave and NE 11th St | 25°47′05.5″ N 80°11′26.3″ W | 0.1 to 1 | 0.18 | NBC 6 |
| S22 | Biscayne Boulevard and NE 17th Street | 25°47′28.9″ N 80°11′20.6″ W | 1 to 2 | 2.12 | Patch.com |
| Neighborhood | Population | Housing Units | Median Household Income (USD) | Education Level (% Bachelor’s or Higher) | Flood Risk Level | Low-Lying Terrain | Close to River/Canals | Close to Biscayne Bay |
|---|---|---|---|---|---|---|---|---|
| Brickell | 27,776 | 14,919 | 137,800 | 54 | Extreme/Very High | Yes | No | Yes |
| Downtown | 13,762 | 6506 | 117,600 | 45 | Extreme/Very High | Yes | No | Yes |
| Wynwood–Edgewater | 19,796 | 8740 | 90,000 | 35 | High | Yes | Yes | Partial |
| Upper Eastside | 12,863 | 6295 | 80,800 | 49 | High | Yes | Yes | Yes |
| Overtown | 10,004 | 4228 | 30,300 | 15 | High | Yes | Yes | No |
| Little Haiti | 28,346 | 9289 | 36,300 | 17 | High | Yes | Yes | No |
| Allapattah | 41,571 | 14,310 | 32,600 | 11 | High | Yes | Yes | No |
| Little Havana | 53,431 | 20,349 | 36,500 | 18 | Medium | Moderate | Yes | No |
| Flagami | 52,238 | 18,106 | 30,000 | 16 | Medium | Moderate | Yes | No |
| Variable | Min | Max | Mean | Std | Range |
|---|---|---|---|---|---|
| Manning change | −0.01 | 0.10 | 0.0318 | 0.0342 | 0.11 |
| Datum Correction | −0.20 | 0.20 | −0.0080 | 0.0686 | 0.40 ft |
| Time step seconds | 1.00 | 300.00 | 125.8272 | 86.4452 | 300 s |
| Station MRMS4 | 5.27 | 5.73 | 5.4698 | 0.0795 | 0.46 ft |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gumbs, A.E.; Shanko, A.D.; Tosin-Orimolade, A.; Melesse, A.M. Anticipated Compound Flooding in Miami-Dade Under Extreme Hydrometeorological Events. Hydrology 2026, 13, 34. https://doi.org/10.3390/hydrology13010034
Gumbs AE, Shanko AD, Tosin-Orimolade A, Melesse AM. Anticipated Compound Flooding in Miami-Dade Under Extreme Hydrometeorological Events. Hydrology. 2026; 13(1):34. https://doi.org/10.3390/hydrology13010034
Chicago/Turabian StyleGumbs, Alan E., Alemayehu Dula Shanko, Abiodun Tosin-Orimolade, and Assefa M. Melesse. 2026. "Anticipated Compound Flooding in Miami-Dade Under Extreme Hydrometeorological Events" Hydrology 13, no. 1: 34. https://doi.org/10.3390/hydrology13010034
APA StyleGumbs, A. E., Shanko, A. D., Tosin-Orimolade, A., & Melesse, A. M. (2026). Anticipated Compound Flooding in Miami-Dade Under Extreme Hydrometeorological Events. Hydrology, 13(1), 34. https://doi.org/10.3390/hydrology13010034

