Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Observation and Reanalysis Dataset
2.1.1. Typhoon Dataset
2.1.2. Sea Surface Temperature and Marine Heatwave Detection Method
2.1.3. Atmospheric and Oceanic Parameters
2.2. Analytical Methods
2.2.1. Net Heat Flux
2.2.2. Ocean Mixing Layer Depth
2.2.3. Ocean Heat Budget
3. Results
3.1. Oceanic Preconditions and Synoptic-Scale Forcing
3.2. Marine Heatwave Characteristics
3.2.1. Area of Marine Heatwaves
3.2.2. Duration of Marine Heatwaves
3.2.3. Mean Intensity of Marine Heatwaves
3.3. Atmospheric Environmental Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.-I.; Wu, C.-C.; Pun, I.-F.; Ko, D.-S. Upper-ocean thermal structure and the western North Pacific Category-5 typhoons. Part I: Ocean features and the Category-5 typhoons’ intensification. Mon. Weather Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Wu, Q.; Hong, J.; Ruan, Z. Diurnal variations in tropical cyclone intensification. Geophys. Res. Lett. 2020, 47, e2020GL090397. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, Z.; Chen, X. Multidecadal Variability of Tropical Cyclone Translation Speed over the Western North Pacific. J. Clim. 2023, 36, 5793–5807. [Google Scholar] [CrossRef]
- Shi, X.; Liu, Y.; Chen, J.; Chen, H.; Wang, Y.; Lu, Z.; Wang, R.-Q.; Fung, J.C.-H.; Ng, C.W.W. Escalating tropical cyclone precipitation extremes and landslide hazards in South China under global warming. npj Clim. Atmos. Sci. 2024, 7, 107. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air–sea interaction theory for tropical cyclones. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef]
- Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent increases in tropical cyclone intensification rates. Nat. Commun. 2019, 10, 635. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K.A. The dependence of hurricane intensity on climate. Nature 1987, 326, 483–485. [Google Scholar] [CrossRef]
- Lin, I.-I.; Black, P.; Price, J.F.; Yang, C.-Y.; Chen, S.S.; Lien, C.-C.; Harr, P.; Chi, N.; Wu, C.; D’ASaro, E.A. An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett. 2013, 40, 1878–1882. [Google Scholar] [CrossRef]
- Chih, C.H.; Wu, C.-C. Exploratory analysis of upper-ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific. J. Clim. 2020, 33, 1031–1050. [Google Scholar] [CrossRef]
- Pun, I.F.; Lin, I.I.; Lo, M.H. Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys. Res. Lett. 2013, 40, 4680–4684. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced stage response to a moving hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Cione, J.J.; Uhlhorn, E.W. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Weather Rev. 2003, 131, 1783–1796. [Google Scholar] [CrossRef]
- Dare, R.A.; McBride, J.L. Sea surface temperature response to tropical cyclones. Mon. Weather Rev. 2011, 139, 3798–3808. [Google Scholar] [CrossRef]
- Price, J.F. Metrics of hurricane–ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean. Sci. 2009, 5, 351–368. [Google Scholar] [CrossRef]
- de Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Ocean. 2004, 109, C12003. [Google Scholar] [CrossRef]
- Lin, I.-I.; Chen, C.-H.; Pun, I.-F.; Liu, W.T.; Wu, C.-C. Warm ocean anomaly, air–sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 2009, 36, L03817. [Google Scholar] [CrossRef]
- Sprintall, J.; Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Ocean. 1992, 97, 7305–7316. [Google Scholar] [CrossRef]
- Balaguru, K.; Chang, P.; Saravanan, R.; Leung, R.; Xu, Z.; Li, M.; Hsieh, J.-S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347. [Google Scholar] [CrossRef]
- Hlywiak, J.; Nolan, D.S. The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J. Phys. Oceanogr. 2019, 49, 1723–1745. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Clim. 2013, 26, 3745–3765. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Wu, R.; Liu, F.; Yu, L.; Shang, X.; Qi, Y.; Wang, Y.; Song, X.; Xie, X.; et al. Ocean response to successive typhoons Sarika and Haima (2016) based on data acquired via multiple satellites and moored array. Remote Sens. 2019, 11, 2360. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Gupta, A.S.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Burrows, M.T.; Donat, M.G.; Sen Gupta, A.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Benthuysen, J.A.; Hob-day, A.J.; Holbrook, N.J.; Moore, P.J.; et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 2019, 6, 734. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Scannell, H.A.; Sen Gupta, A.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.J.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J.; et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef] [PubMed]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Sen Gupta, A.; Thomsen, M.; Benthuysen, J.A.; Hobday, A.J.; Oliver, E.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Feng, M.; Holbrook, N.J.; et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 2020, 10, 19359. [Google Scholar] [CrossRef] [PubMed]
- Capotondi, A.; Rodrigues, R.R.; Sen Gupta, A.; Benthuysen, J.A.; Deser, C.; Frölicher, T.L.; Lovenduski, N.S.; Amaya, D.J.; Le Grix, N.; Xu, T.; et al. A global overview of marine heatwaves in a changing climate. Commun. Earth Environ. 2024, 5, 701. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Feng, M.; Hobday, A.J. Vertical structures of marine heatwaves. Nat. Commun. 2023, 14, 6483. [Google Scholar] [CrossRef]
- He, Q.; Zhan, W.; Feng, M.; Gong, Y.; Cai, S.; Zhan, H. Common occurrences of subsurface heatwaves and cold spells. Nature 2024, 629, 83–89. [Google Scholar] [CrossRef]
- Choi, H.-Y.; Park, M.-S.; Kim, H.-S.; Lee, S. Marine heatwave events strengthen the intensity of tropical cyclones. Commun. Earth Environ. 2024, 5, 69. [Google Scholar] [CrossRef]
- Radfar, S.; Moftakhari, H.; Moradkhani, H. Rapid intensification of tropical cyclones in the Gulf of Mexico is more likely during marine heatwaves. Commun. Earth Environ. 2024, 5, 421. [Google Scholar] [CrossRef]
- Kang, S.K.; Kim, S.-H.; Lin, I.-I.; Park, Y.-H.; Choi, Y.; Ginis, I.; Cione, J.; Shin, J.Y.; Kim, E.J.; Kim, K.O.; et al. The North Equatorial Current and rapid intensification of super typhoons. Nat. Commun. 2024, 15, 1742. [Google Scholar] [CrossRef]
- Pun, I.F.; Hsu, H.H.; Moon, I.J.; Lin, I.I.; Jeong, J.Y. Marine heatwave as a supercharger for the strongest typhoon in the East China Sea. npj Clim. Atmos. Sci. 2023, 6, 128. [Google Scholar] [CrossRef]
- Wu, R.; Han, K.; Tong, C. Interaction between Super Typhoon Yagi (2024) and a marine heatwave in the northern South China Sea. Environ. Res. Lett. 2025, 20, 104054. [Google Scholar] [CrossRef]
- Ding, W.; Wu, Q.; Chen, Y. Trends of maximum annual sea surface temperature in the Eastern China Seas. Front. Mar. Sci. 2024, 11, 1452125. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, M.; Min, S.-K.; Park, D.-S.R.; Cha, D.-H.; Byun, Y.-H.; Heo, J. Global warming–induced warmer surface water over the East China Sea can intensify typhoons like Hinnamnor. Bull. Am. Meteorol. Soc. 2024, 105, E1416–E1421. [Google Scholar] [CrossRef]
- Nguyen, T.-K.-D.; Hsu, P.-C. Comprehensive analysis of marine heatwaves and ocean thermal structure impact on typhoon intensification in the East China Sea. J. Mar. Syst. 2025, 249, 104065. [Google Scholar] [CrossRef]
- McTaggart-Cowan, R.; Davies, E.L.; Fairman, J.G., Jr.; Galarneau, T.J., Jr.; Schultz, D.M. Revisiting the 26.5 °C sea surface temperature threshold for tropical cyclone development. Bull. Am. Meteorol. Soc. 2015, 96, 1929–1943. [Google Scholar] [CrossRef]
- Pun, I.F.; Lin, I.I.; Wu, C.C. Suppression of marine heatwave activity by tropical cyclone–induced upper ocean cooling. Sci. Adv. 2025, 11, eadw8070. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Chen, S.S.; Price, J.F.; Zhao, W.; Donelan, M.A.; Walsh, E.J. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Am. Meteorol. Soc. 2007, 88, 311–317. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- de Boyer Montégut, C.; Mignot, J.; Lazar, A.; Cravatte, S. Control of salinity on the mixed layer depth in the world ocean: Part 1: General description. J. Geophys. Res. Ocean. 2007, 112, C06011. [Google Scholar] [CrossRef]
- Dare, R.A.; McBride, J.L. The threshold sea surface temperature condition for tropical cyclogenesis. J. Clim. 2011, 24, 4570–4576. [Google Scholar] [CrossRef]
- Romps, D.M. Clausius–Clapeyron scaling of CAPE from analytical solutions to RCE. J. Atmos. Sci. 2016, 73, 3719–3737. [Google Scholar] [CrossRef]
- Mainelli, M.; DeMaria, M.; Shay, L.K.; Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic Category-5 hurricanes. Weather Forecast. 2008, 23, 3–16. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tian, C.; Yu, Y.; Ji, J.; Zhang, C.; Feng, J.; Li, G. Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation. J. Mar. Sci. Eng. 2026, 14, 191. https://doi.org/10.3390/jmse14020191
Tian C, Yu Y, Ji J, Zhang C, Feng J, Li G. Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation. Journal of Marine Science and Engineering. 2026; 14(2):191. https://doi.org/10.3390/jmse14020191
Chicago/Turabian StyleTian, Chengjie, Yang Yu, Jinlin Ji, Chenhui Zhang, Jiajun Feng, and Guang Li. 2026. "Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation" Journal of Marine Science and Engineering 14, no. 2: 191. https://doi.org/10.3390/jmse14020191
APA StyleTian, C., Yu, Y., Ji, J., Zhang, C., Feng, J., & Li, G. (2026). Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation. Journal of Marine Science and Engineering, 14(2), 191. https://doi.org/10.3390/jmse14020191

