Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = screw thread

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2926 KB  
Article
A Dual-Thread Lag–Locking Screw Enhances Single Lateral Plate Fixation in Bicondylar Tibial Plateau Fractures: A Biomechanical Study
by Ya-Han Chan, Hsuan-Wen Wang, Wei-Che Tsai and Chun-Li Lin
Bioengineering 2025, 12(10), 1023; https://doi.org/10.3390/bioengineering12101023 - 25 Sep 2025
Abstract
Schatzker type V bicondylar tibial plateau fractures present a major challenge due to the difficulty of achieving stable fixation with minimally invasive strategies. This study introduces a dual-thread lag and locking plate (DLLP) design that integrates lag screw compression with unilateral locking plate [...] Read more.
Schatzker type V bicondylar tibial plateau fractures present a major challenge due to the difficulty of achieving stable fixation with minimally invasive strategies. This study introduces a dual-thread lag and locking plate (DLLP) design that integrates lag screw compression with unilateral locking plate fixation. A custom-built compression evaluation platform and standardized 3D-printed fracture models were employed to assess biomechanical performance. DLLP produced measurable interfragmentary compression during screw insertion, with a mean displacement of 1.22 ± 0.11 mm compared with 0.02 ± 0.04 mm for conventional single lateral locking plates (SLLPs) (p < 0.05). In static testing, DLLP demonstrated a significantly greater maximum failure force (7801.51 ± 358.95 N) than SLLP (6224.84 ± 411.20 N, p < 0.05) and improved resistance to lateral displacement at 2 mm (3394.85 ± 392.81 N vs. 2766.36 ± 64.51 N, p = 0.03). Under dynamic fatigue loading simulating one year of functional use, all DLLP constructs survived 1 million cycles with <2 mm displacement, while all SLLP constructs failed prematurely (mean fatigue life: 408,679 ± 128,286 cycles). These findings highlight the critical role of lag screw compression in maintaining fracture stability and demonstrate that DLLP provides superior biomechanical performance compared with SLLP, supporting its potential as a less invasive alternative to dual plating in the treatment of complex tibial plateau fractures. Full article
(This article belongs to the Special Issue Orthopedic and Trauma Biomechanics)
Show Figures

Figure 1

20 pages, 4662 KB  
Article
Experimental Study on the Shear Performance of Epoxy Resin-Bolted Steel-Cross Laminated Timber (CLT) Connections
by Qing Lyu, Jinxun Ye, Huake Wang, Jiale Xu, Yunfeng Xiao, Bo Fu, Xianlei Li and Zhaoyang Zhang
Buildings 2025, 15(18), 3400; https://doi.org/10.3390/buildings15183400 - 19 Sep 2025
Viewed by 166
Abstract
Steel–timber composite (STC) structures offer a sustainable and low-carbon structural solution. Steel–timber interface behavior is critical for the mechanical performance of STC structures. This paper introduces a novel connection for steel–timber composites (STC) that combines mechanical interlocking with adhesive bonding through an epoxy-bonded [...] Read more.
Steel–timber composite (STC) structures offer a sustainable and low-carbon structural solution. Steel–timber interface behavior is critical for the mechanical performance of STC structures. This paper introduces a novel connection for steel–timber composites (STC) that combines mechanical interlocking with adhesive bonding through an epoxy-bonded bolted design. Epoxy resin is injected into the timber dowel slots, followed by pre-tightening of the bolts, forming a composite dowel system where the ‘bolt–epoxy resin–timber’ components work in synergy. The load–displacement characteristics and failure modes of nine specimen groups were investigated through a series of double-shear push-out tests. The influence of a wide range of connector parameters on the stiffness, shear bearing capacity, and ductility of STC joints was systematically investigated. The parameters included fastener strength grade, thread configuration, diameter, number, and the use of epoxy resin reinforcement. The experimental results demonstrated that high-strength partially threaded bolts were crucial for achieving a synergy of high load-bearing capacity and commendable ductility, while full-threaded bolts exhibited vulnerability to brittle shear failure, a consequence of stress concentration at the root of the threads. Although screw connections provided enhanced initial stiffness through timber anchorage, ordinary bolt connections exhibited superior ultimate load-bearing capacity. In comparison with conventional bolt connections, epoxy resin–bolt connections exhibited enhanced mechanical properties, with an augmentation in ultimate load and initial stiffness of 12% and 11.8%, respectively, without sacrificing ductility. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

29 pages, 4547 KB  
Article
Process Modeling and Micromolding Optimization of HA- and TiO2-Reinforced PLA/PCL Composites for Cannulated Bone Screws via AI Techniques
by Min-Wen Wang, Jui-Chia Liu and Ming-Lu Sung
Materials 2025, 18(17), 4192; https://doi.org/10.3390/ma18174192 - 6 Sep 2025
Viewed by 635
Abstract
A bioresorbable cannulated bone screw was developed using PLA/PCL-based composites reinforced with hydroxyapatite (HA) and titanium dioxide (TiO2), two additives previously reported to enhance mechanical compliance, biocompatibility, and molding feasibility in biodegradable polymer systems. The design incorporated a crest-trimmed thread and [...] Read more.
A bioresorbable cannulated bone screw was developed using PLA/PCL-based composites reinforced with hydroxyapatite (HA) and titanium dioxide (TiO2), two additives previously reported to enhance mechanical compliance, biocompatibility, and molding feasibility in biodegradable polymer systems. The design incorporated a crest-trimmed thread and a strategically positioned gate in the thin-wall zone opposite the hexagonal socket to preserve torque-transmitting geometry during micromolding. To investigate shrinkage behavior, a Taguchi orthogonal array was employed to systematically vary micromolding parameters, generating a structured dataset for training a back-propagation neural network (BPNN). Analysis of variance (ANOVA) identified melt temperature as the most influential factor affecting shrinkage quality, defined by a combination of shrinkage rate and dimensional variation. A hybrid AI framework integrating the BPNN with genetic algorithms and particle swarm optimization (GA–PSO) was applied to predict the optimal shrinkage conditions. This is the first use of BPNN–GA–PSO for cannulated bone screw molding, with the shrinkage rate as a targeted output. The AI-predicted solution, interpolated within the Taguchi design space, achieved improved shrinkage quality over all nine experimental groups. Beyond the specific PLA/PCL-based systems studied, the modeling framework—which combines geometry-specific gate design and normalized shrinkage prediction—offers broader applicability to other bioresorbable polymers and hollow implant geometries requiring high-dimensional fidelity. This study integrates composite formulation, geometric design, and data-driven modeling to advance the precision micromolding of biodegradable orthopedic devices. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Nanocomposites)
Show Figures

Figure 1

12 pages, 786 KB  
Article
Frictional Cohesive Force and Multifunctional Simple Machine for Advanced Engineering and Biomedical Applications
by Carlos Aurelio Andreucci, Ahmed Yaseen and Elza M. M. Fonseca
Appl. Sci. 2025, 15(15), 8215; https://doi.org/10.3390/app15158215 - 23 Jul 2025
Viewed by 574
Abstract
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often [...] Read more.
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often rely solely on external threading for fixation, leading to limited cohesion, poor integration, or early loosening under cyclic loading. In response to this problem, we designed and built a novel device that leverages a unique mechanical principle to simultaneously perforate, collect, and compact the substrate material during insertion. This mechanism results in an internal material interlock, enhancing cohesion and stability. Drawing upon principles from physics, chemistry, engineering, and biology, we evaluated its biomechanical behavior in synthetic bone analogs. The maximum insertion (MIT) and removal torques (MRT) were measured on synthetic osteoporotic bones using a digital torquemeter, and the values were compared directly. Experimental results demonstrated that removal torque (mean of 21.2 Ncm) consistently exceeded insertion torque (mean of 20.2 Ncm), indicating effective material interlocking and cohesive stabilization. This paper reviews the relevant literature, presents new data, and discusses potential applications in civil infrastructure, aerospace, and energy systems where substrate cohesion is critical. The findings suggest that this new simple machine offers a transformative approach to improving fixation and integration across multiple domains. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

28 pages, 12965 KB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme? Part I: A Review on the Provenance, Evolution and Properties of the System
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 32; https://doi.org/10.3390/cmtr18030032 - 12 Jul 2025
Cited by 1 | Viewed by 1656
Abstract
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its [...] Read more.
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its technical and functional features. Results: The Matrix WaveTM System (MWS) is characterized by a smoothed square-shaped Titanium rod profile with a flexible undulating geometry distinct from the flat plate framework in Erich arch bars. Single MWS segments are Omega-shaped and carry a tie-up cleat for interarch linkage to the opposite jaw. The ends at the throughs of each MWS segment are equipped with threaded screw holes to receive locking screws for attachment to underlying mandibular or maxillary bone. An MWS can be partitioned into segments of various length from single Omega-shaped elements over incremental chains of interconnected units up to a horseshoe-shaped bracing of the dental arches. The sinus wave design of each segment allows for stretch, compression and torque movements. So, the entire MWS device can conform to distinctive spatial anatomic relationships. Displaced fragments can be reduced by in-situ-bending of the screw-fixated MWS/Omega segments to obtain accurate realignment of the jaw fragments for the best possible occlusion. Conclusion: The Matrix WaveTM MMF System is an easy-to-apply modular MMF system that can be assembled according to individual demands. Its versatility allows to address most facial fracture scenarios in adults. The option of “omnidirectional” in-situ-bending provides a distinctive feature not found in alternate MMF solutions. Full article
Show Figures

Figure 1

17 pages, 2952 KB  
Article
Accuracy Testing of Torque Limit Determination Algorithm Intended for Smart Bone Screwdrivers
by Jack A. Wilkie, Alberto Battistel, Paul D. Docherty, Niklaus F. Friederich, Georg Rauter and Knut Möller
Sensors 2025, 25(13), 3863; https://doi.org/10.3390/s25133863 - 21 Jun 2025
Viewed by 650
Abstract
Bone screws are used in orthopaedic surgery for fracture fixation. Correctly torquing the screws is important for fixation quality. Over-tightening may strip the threads, while under-tightening may result in loosening over time. This paper focuses on testing an approach where strength is estimated [...] Read more.
Bone screws are used in orthopaedic surgery for fracture fixation. Correctly torquing the screws is important for fixation quality. Over-tightening may strip the threads, while under-tightening may result in loosening over time. This paper focuses on testing an approach where strength is estimated using screw insertion data from torque and rotation sensors, and stripping torque is predicted based on this strength. A common type of bone screw was inserted until stripping 10 times each into 8 types of polyurethane surrogate for bone. The torque–rotation data from the insertion was used to identify the material strength and estimate the stripping torque and compared with the experimental maximum torque. A good relationship was found between the estimated/predicted and true stripping torques (r = 0.926, 95% confidence interval (C.I.) [0.886, 0.952]), with a mean error of 18%. Additionally, the intermediate identified strength values were found to be highly correlated with the data-sheet values for the materials (r = 0.977, 95% C.I. [0.964, 0.985]). These outcomes demonstrate the viability and significance of this concept in general, although more development and testing is required for broad clinical applicability; such tests would be extended for more types of bone screws and use a large set of human bone samples to better reflect the natural variability. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

11 pages, 2562 KB  
Article
Biocompatibility of Titanium Oxide Nanotubes Layer Formed on a Ti-6Al-4V Dental Implant Screw in hFOB Cells In Vitro
by José Luis Castrejón Flores, Ángel Daniel Campos Juarez, Alexis Chino Ulloa, Fernando Nava Palafox, David Cruz Ortiz and Itzel Pamela Torres Avila
Coatings 2025, 15(6), 715; https://doi.org/10.3390/coatings15060715 - 13 Jun 2025
Viewed by 735
Abstract
The surface modification of dental implants with nanostructured films enables the development of the next generation of biomaterials that promote osseointegration. In this study, a uniform layer of titanium oxide nanotubes (TNTs) was successfully formed on a Ti-6Al-4V dental implant screw through anodic [...] Read more.
The surface modification of dental implants with nanostructured films enables the development of the next generation of biomaterials that promote osseointegration. In this study, a uniform layer of titanium oxide nanotubes (TNTs) was successfully formed on a Ti-6Al-4V dental implant screw through anodic oxidation. TNTs were morphologically characterized by Scanning Electron Microscopy (SEM), obtaining dimensions of 64.88 ± 10 nm in diameter and 5.34 ± 5 µm in length. Additionally, a crystal size of 23.45 nm was determined by X-ray diffraction (XRD) analysis. The TNT layer on the dental implant screw was evaluated in an in vitro system in direct contact with human osteoblast cells (hFOB) for 24 h and 48 h, finding cell growth near to the screw threads. Further, the biocompatibility of the dental screw coated with TNTs was evaluated using a flow cytometric assay with 7-AAD, demonstrating that cell viability was not affected at 24 h and 48 h. This study opens the perspective of the study of inflammation and osseointegration induced by implants coated with TNTs. Full article
Show Figures

Figure 1

23 pages, 6671 KB  
Article
A Fast Analytical Method for Elastic–Plastic Analysis of Threaded Connections
by Carlo Brutti, Corrado Groth and Marco Evangelos Biancolini
Appl. Mech. 2025, 6(2), 42; https://doi.org/10.3390/applmech6020042 - 6 Jun 2025
Viewed by 805
Abstract
Threaded connections are fundamental in engineering structures, yet their elastic–plastic behavior under load remains challenging to model analytically. The yield limit can be reached under relatively small external loads, and elastic–plastic behavior has predominantly been studied using finite element models. While these models [...] Read more.
Threaded connections are fundamental in engineering structures, yet their elastic–plastic behavior under load remains challenging to model analytically. The yield limit can be reached under relatively small external loads, and elastic–plastic behavior has predominantly been studied using finite element models. While these models are highly valuable, they are often restricted to specific cases. This paper presents a novel extension of Maduschka’s classical method, offering a fast and efficient analytical approach to evaluate the behavior of screw–nut–washer assemblies. The method tracks plastic strain progression from initial yielding to full yield conditions and is validated against high-fidelity axisymmetric and 3D finite element analyses (FEAs) across a range of thread dimensions (M16–M36). Results demonstrate strong agreement with FEA benchmarks while achieving significant computational speedups, making the method suitable for iterative and large-scale analyses. In addition, the comparison with results available in the literature further supports the reliability of the proposed method. Its robustness to variations in geometry, friction, and thread count positions it as a foundation for reduced-order models, ready for integration into complex finite element frameworks commonly used in structural health monitoring and digital twin technologies. Full article
Show Figures

Graphical abstract

18 pages, 7058 KB  
Article
In-Depth Thermal Analysis of Different Pin Configurations in Friction Stir Spot Welding of Similar and Dissimilar Alloys
by Sajad N. Alasdi and Raheem Al-Sabur
J. Manuf. Mater. Process. 2025, 9(6), 184; https://doi.org/10.3390/jmmp9060184 - 1 Jun 2025
Viewed by 874
Abstract
Over the past decade, friction stir spot welding (FSSW) has gained increasing attention, making it a competitor to conventional welding methods such as resistance welding, rivets, and screws. This type of welding is environmentally friendly because it does not require welding tools and [...] Read more.
Over the past decade, friction stir spot welding (FSSW) has gained increasing attention, making it a competitor to conventional welding methods such as resistance welding, rivets, and screws. This type of welding is environmentally friendly because it does not require welding tools and is solid-state welding. This study attempts to demonstrate the importance of pin geometry on temperature distribution and joint quality by using threaded and non-threaded pins for similar and dissimilar alloys. To this end, thermal analysis of the welded joints was conducted using real-time monitoring from a thermal camera and an infrared thermometer, in addition to finite element method (FEM) simulations. The thermal analysis showed that the generated temperatures were higher in dissimilar alloys (Al-Cu) than in similar ones (Al-Al), reaching about 350 °C. In addition, dissimilar alloys show more pronounced FSSW stages through extended periods for each plunging, dwelling, and drawing-out time. The FEM simulation results are consistent with those obtained from thermal imaging cameras and infrared thermometers. The dwelling time was influential, as the higher it was, the more heat was generated, which could be close to the melting point, especially in aluminum alloys. This study provides an in-depth experimental and numerical investigation of temperature distribution throughout the welding cycle, utilizing different pin geometries for both similar and dissimilar non-ferrous alloy joints, offering valuable insights for advanced industrial welding applications. Full article
Show Figures

Figure 1

22 pages, 6877 KB  
Article
Inspection of Bulk Crystals for Quality Control in Crystal Growth: Assessment of High-Energy X-Ray Transmission Topography and Back-Reflection Topography Pinpointed for Physical Vapor Transport-Grown Aluminum Nitride
by Roland Weingärtner, Boris Epelbaum, Andreas Lesnik, Gleb Lukin, Stephan Müller, Leon Schiller, Elke Meissner, Matthias Weisser and Sven Besendörfer
Crystals 2025, 15(5), 449; https://doi.org/10.3390/cryst15050449 - 9 May 2025
Viewed by 746
Abstract
A comprehensive X-ray topography analysis of two selected aluminum nitride (AlN) bulk crystals is presented. We compare surface inspection X-ray topography in back-reflection geometry with high-energy transmission topography in the Lang and Laue configuration using the monochromatic Kα1 excitation wavelength of copper, [...] Read more.
A comprehensive X-ray topography analysis of two selected aluminum nitride (AlN) bulk crystals is presented. We compare surface inspection X-ray topography in back-reflection geometry with high-energy transmission topography in the Lang and Laue configuration using the monochromatic Kα1 excitation wavelength of copper, silver, and tungsten, respectively. A detailed comparison of the results allows the assessment of both the high- and low-energy X-ray topography methods with respect to performance and structural information, giving essential feedback for crystal growth. This is demonstrated for two selected AlN freestanding faceted crystals up to 8 mm in thickness grown in all directions using the physical vapor transport (PVT) method. Structural defects of all facets of the crystals are determined using the X-ray topography in back-reflection geometry. The mean threading dislocation densities are 480 ± 30 cm−2 for both crystals of either the Al- or N-face. Clustering of dislocations could be observed. The m-facets show the presence of basal plane dislocations and their accumulation as clusters. The integral transmission topographs of the 101¯0 (m-plane) reflection family show that basal plane dislocations of the screw type in 131¯21¯0 directions decorate threading dislocation clusters. Three-dimensional section transmission topography reveals that the basal plane dislocation clusters mainly originate at the seed boundary and propagate in the 131¯21¯0 direction along the growth front. In newly laterally grown material, the Borrmann effect has been observed for the first time in PVT-grown bulk AlN, indicating very high structural perfection of the crystalline material in this region. This agrees with a low mean FWHM of 10.6 arcsec of the 101¯0 reflection determined through focused high-energy Laue transmission mappings. The latter method also opens the analysis of the 2θ-shift correlated to the residual stress distribution inside the bulk crystal, which is dominated by dislocation clusters. Contrary to Lang transmission topography, the de-focused high-energy Laue transmission penetrates the 8 mm-thick crystal enabling a defect analysis in the bulk. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

13 pages, 2271 KB  
Article
Potential of Sustainable Timber Modular Houses in Southern Highland, Tanzania: The Structural Response of Timber Modules Under Wind Load
by Daudi Salezi Augustino
Buildings 2025, 15(9), 1459; https://doi.org/10.3390/buildings15091459 - 25 Apr 2025
Viewed by 614
Abstract
Traditional construction of timber houses in Tanzania has been prevalent for years; however, inhabiting these structures has been a challenge due to the instability of the buildings under various loadings. This instability, despite its lightweight, is mainly controlled by mechanical joints within timber [...] Read more.
Traditional construction of timber houses in Tanzania has been prevalent for years; however, inhabiting these structures has been a challenge due to the instability of the buildings under various loadings. This instability, despite its lightweight, is mainly controlled by mechanical joints within timber members. Parametric Python scripts were developed in Abaqus (version 6.13) to have a reliable joint between timber volume modules and assess their response when subjected to wind forces. Two timber volume modules, each with a height of 3.0 m, were subjected to a horizontal displacement of 10 mm. Results show that the screwed fasteners between the modules result in high shear resistance due to the embedded fastener’s threads in timber members increasing the rope effect. Additionally, with weak fastener stiffness, the openings in the longitudinal wall had no effect on resisting shear compared to strong joints between modules. Longitudinal walls with doors and window openings showed a decrease in shear force to 21.95 kN, which is 44% less than the 39 kN of walls without openings. In addition, for a single door in the wall, the shear force decreased to 17.9%, indicating that major shear forces in the wall are affected by the window opening due to its large size and proximity to the point of load application. Furthermore, the stresses were concentrated in the corners of the openings, subjecting the structure to failure during its in-service life and demanding the use of cross-diagonal timber members between the corners to redistribute corner stresses. It is recommended that these types of houses be adopted due to less slip deformation (less than 10 mm) caused by wind speed of 24 km/h. Full article
(This article belongs to the Special Issue Performance Analysis of Timber Composite Structures)
Show Figures

Figure 1

13 pages, 3416 KB  
Article
Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength
by Chia-Hao Hsu, Nin-Chieh Hsu, Sung-Yen Lin, Cheng-Chang Lu, Yin-Chih Fu, Hsuan-Ti Huang, Chung-Hwan Chen and Pei-Hsi Chou
Bioengineering 2025, 12(5), 444; https://doi.org/10.3390/bioengineering12050444 - 23 Apr 2025
Viewed by 718
Abstract
Background/Objectives: The pullout failure of conventional locking screws (LSs, screws with a locking mechanism) may occur in patients with osteoporosis, particularly when inserted near joints or across periarticular fractures (e.g., proximal humerus). The two-part locking cancellous screw modification (TP-LCS, screws composed of two [...] Read more.
Background/Objectives: The pullout failure of conventional locking screws (LSs, screws with a locking mechanism) may occur in patients with osteoporosis, particularly when inserted near joints or across periarticular fractures (e.g., proximal humerus). The two-part locking cancellous screw modification (TP-LCS, screws composed of two parts) in metaphyseal cancellous bone is hypothesized to increase bone purchase and holding power. This study aimed to test the hypothesized advantages of TP-LCS over LSs. Methods: An MTS 370 series frame with an axial/torsional load cell was used to test driving torque and axial pullout strength, following ASTM F543-07 standards. The TP-LCS group featured a newly modified screw design made from titanium alloy (Ti6Al4V), while conventional LSs (Synthes) were used for the control group. Statistical significance was assessed for selected comparisons relevant to the research objectives, including driving torque and axial pullout strength. Results: The driving torque test showed that TP-LCS had a significantly higher maximum insertion torque (4.9 ± 0.4 N·cm) compared to LSs (4.2 ± 0.4 N·cm) (p = 0.0269), although no significant difference was found in maximum removal torque (p = 0.1046). The axial pullout test revealed that TP-LCS had significantly higher pullout strength (223.5 ± 12.2 N) compared to LSs (203.5 ± 11.5 N) (p = 0.0284). Failure during the axial pullout test often involved cracking of the test block material around the screw threads, causing the screw to pull out. Conclusions: These results support the hypothesis that TP-LCS may offer improved axial pullout resistance compared to LSs, making it a potentially beneficial modification for LSs in osteoporotic metaphyseal regions or near joints. This study provides biomechanical insights into the advantages of the modified screw design over conventional LSs. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 9360 KB  
Article
Inspection of Defective Glass Bottle Mouths Using Machine Learning
by Daiki Tomita and Yue Bao
J. Imaging 2025, 11(4), 105; https://doi.org/10.3390/jimaging11040105 - 29 Mar 2025
Viewed by 1060
Abstract
In this study, we proposed a method for detecting chips in the mouth of glass bottles using machine learning. In recent years, Japanese cosmetic glass bottles have gained attention for their advancements in manufacturing technology and eco-friendliness through the use of recycled glass, [...] Read more.
In this study, we proposed a method for detecting chips in the mouth of glass bottles using machine learning. In recent years, Japanese cosmetic glass bottles have gained attention for their advancements in manufacturing technology and eco-friendliness through the use of recycled glass, leading to an increase in the volume of glass bottle exports overseas. Although cosmetic bottles are subject to strict quality inspections from the standpoint of safety, the complicated shape of the glass bottle mouths makes automated inspections difficult, and visual inspections have been the norm. Visual inspections conducted by workers have become problematic because it has become clear that the standard of judgment differs from worker to worker and that inspection accuracy deteriorates after long hours of work. To address these issues, the development of inspection systems for glass bottles using image processing and machine learning has been actively pursued. While conventional image processing methods can detect chips in glass bottles, the target glass bottles are those without screw threads, and the light from the light source is diffusely reflected by the screw threads in the glass bottles in this study, resulting in a loss of accuracy. Additionally, machine learning-based inspection methods are generally limited to the body and bottom of the bottle, excluding the mouth from analysis. To overcome these challenges, this study proposed a method to extract only the screw thread regions from the bottle image, using a dedicated machine learning model, and perform defect detection. To evaluate the effectiveness of the proposed approach, accuracy was assessed by training models using images of both the entire mouth and just the screw threads. Experimental results showed that the accuracy of the model trained using the image of the entire mouth was 98.0%, while the accuracy of the model trained using the image of the screw threads was 99.7%, indicating that the proposed method improves the accuracy by 1.7%. In a demonstration experiment using data obtained at a factory, the accuracy of the model trained using images of the entire mouth was 99.7%, whereas the accuracy of the model trained using images of screw threads was 100%, indicating that the proposed system can be used to detect chips in factories. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

15 pages, 9352 KB  
Article
Detection of Chips on the Threaded Part of Cosmetic Glass Bottles
by Daiki Tomita and Yue Bao
J. Imaging 2025, 11(3), 77; https://doi.org/10.3390/jimaging11030077 - 4 Mar 2025
Cited by 1 | Viewed by 882
Abstract
Recycled glass has been the focus of attention owing to its role in reducing plastic waste and further increasing the demand for glass containers. Cosmetics glass bottles require strict quality inspections because of the frequent handling, safety concerns, and other factors. During manufacturing, [...] Read more.
Recycled glass has been the focus of attention owing to its role in reducing plastic waste and further increasing the demand for glass containers. Cosmetics glass bottles require strict quality inspections because of the frequent handling, safety concerns, and other factors. During manufacturing, glass bottles sometimes develop chips on the top surface, rim, or screw threads of the bottle mouth. Conventionally, these chips are visually inspected by inspectors; however, this process is time consuming and prone to inaccuracies. To address these issues, automatic inspection using image processing has been explored. Existing methods, such as dynamic luminance value correction and ring-shaped inspection gates, have limitations: the former relies on visible light, which is strongly affected by natural light, and the latter acquires images directly from above, resulting in low accuracy in detecting chips on the lower part of screw threads. To overcome these challenges, this study proposes a method that combines infrared backlighting and image processing to determine the range of screw threads and detect chips accurately. Experiments were conducted in an experimental environment replicating an actual factory production line. The results confirmed that the detection accuracy of chipping was 99.6% for both good and defective bottles. This approach reduces equipment complexity compared to conventional methods while maintaining high inspection accuracy, contributing to the productivity and quality control of glass bottle manufacturing. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

16 pages, 8593 KB  
Article
Smart Machine Vision System to Improve Decision-Making on the Assembly Line
by Carlos Americo de Souza Silva and Edson Pacheco Paladini
Machines 2025, 13(2), 98; https://doi.org/10.3390/machines13020098 - 27 Jan 2025
Cited by 2 | Viewed by 2034
Abstract
Technological advances in the production of printed circuit boards (PCBs) are increasing the number of components inserted on the surface. This has led the electronics industry to seek improvements in their inspection processes, often making it necessary to increase the level of automation [...] Read more.
Technological advances in the production of printed circuit boards (PCBs) are increasing the number of components inserted on the surface. This has led the electronics industry to seek improvements in their inspection processes, often making it necessary to increase the level of automation on the production line. The use of machine vision for quality inspection within manufacturing processes has increasingly supported decision making in the approval or rejection of products outside of the established quality standards. This study proposes a hybrid smart-vision inspection system with a machine vision concept and vision sensor equipment to verify 24 components and eight screw threads. The goal of this study is to increase automated inspection reliability and reduce non-conformity rates in the manufacturing process on the assembly line of automotive products using machine vision. The system uses a camera to collect real-time images of the assembly fixtures, which are connected to a CMOS color vision sensor. The method is highly accurate in complex industry environments and exhibits specific feasibility and effectiveness. The results indicate high performance in the failure mode defined during this study, obtaining the best inspection performance through a strategy using Vision Builder for automated inspection. This approach reduced the action priority by improving the failure mode and effect analysis (FMEA) method. Full article
(This article belongs to the Topic Smart Production in Terms of Industry 4.0 and 5.0)
Show Figures

Figure 1

Back to TopTop