Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = schaftoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7160 KB  
Article
Integrative Physiological and Molecular Insights into Drought–Induced Accumulation of Bioactive Compounds in Clinacanthus nutans (Burm.f.) Lindau Leaves
by Phanuwit Khamwong, Jarunee Jungkang and Usawadee Chanasut
Plants 2026, 15(1), 100; https://doi.org/10.3390/plants15010100 - 29 Dec 2025
Viewed by 283
Abstract
Clinacanthus nutans (Burm.f.) Lindau is a medicinal plant known for its antioxidant, anti–inflammatory, and antiviral properties. Drought is a major abiotic stress affecting plant physiology and secondary metabolite biosynthesis. This study investigated the physiological and biochemical responses of C. nutans under drought stress. [...] Read more.
Clinacanthus nutans (Burm.f.) Lindau is a medicinal plant known for its antioxidant, anti–inflammatory, and antiviral properties. Drought is a major abiotic stress affecting plant physiology and secondary metabolite biosynthesis. This study investigated the physiological and biochemical responses of C. nutans under drought stress. Relative water content declined with prolonged drought, while hydrogen peroxide and proline levels increased, indicating oxidative and osmotic stress. Antioxidant activities (DPPH and ABTS) peaked at days 4–8 and showed positive correlations with phenolic and flavonoid contents and triterpenoids, particularly schaftoside and lupeol. Molecular docking supported the bioactivity of drought–induced metabolites, with schaftoside and lupeol showing favorable interactions with inflammation–related targets. Multivariate analysis revealed that short–term drought enhanced stress tolerance and secondary metabolite accumulation, whereas prolonged stress reduced biosynthetic capacity and survival. These findings suggest that controlled drought exposure can enhance bioactive compound levels in C. nutans, supporting its potential for drought–adaptive cultivation for medicinal use. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

26 pages, 4662 KB  
Article
Effect of Simulated Gastrointestinal Digestion on the Phenolic Composition and Bioactivity of Cymbopogon flexuosus Extracts
by Ana Alimpić Aradski, Danijel D. Milinčić, Mirjana B. Pešić, Milena Milutinović, Eisuke Kuraya, Akiko Touyama and Danka Bukvički
Foods 2025, 14(22), 3868; https://doi.org/10.3390/foods14223868 - 12 Nov 2025
Viewed by 602
Abstract
This study characterized leaf extracts of Cymbopogon flexuosus (Ryukyu Lemongrass Corporation, Okinawa, Japan) and evaluated the bioaccessibility and bioactivities of phenolic compounds following a simulated in vitro gastrointestinal model of digestion (in vitro GID) of plant material. Undigested (controls, AqC, EtC) and digested [...] Read more.
This study characterized leaf extracts of Cymbopogon flexuosus (Ryukyu Lemongrass Corporation, Okinawa, Japan) and evaluated the bioaccessibility and bioactivities of phenolic compounds following a simulated in vitro gastrointestinal model of digestion (in vitro GID) of plant material. Undigested (controls, AqC, EtC) and digested aqueous (AqD) and ethanolic (EtD) extracts were analyzed. Control extracts contained higher total phenolics and flavonoids than digested ones, with EtC showing the highest values. UHPLC-QToF-MS (ultra-high-performance liquid chromatography system coupled to a quadrupole time-of-flight mass spectrometer) identified 32 compounds, including phenolic acids, flavone aglycones, C-glycosides, and derivatives. Hydroxybenzoic acids, coumaric acid, caffeic esters, flavones, tricin derivatives, vitexin, and isoorientin exhibited reduced recovery, while coumaric acid hexoside, ferulic acid hexoside, and isoschaftoside/schaftoside exceeded 100% recovery, suggesting release from the matrix. Some compounds were absent from AqD, and many were found in the pellet, indicating potential colonic metabolism. Antioxidant activity (DPPH, reducing power, β-carotene/linoleic acid) was stronger in controls but always weaker than BHT/ascorbic acid. Extracts mildly inhibited α-amylase but more strongly inhibited α-glucosidase as shown with applied enzyme inhibition assays, especially EtD (76.93% at a concentration of 10 mg/mL), which showed stronger activity than controls but remained below acarbose (87.74% at 1 mg/mL). All extracts promoted HaCaT keratinocyte growth and reduced HCT-116 colon cancer cell viability at 250 µg/mL, with the strongest effects in AqC and AqD. Overall, GID decreased antioxidant activity but enhanced antidiabetic potential, confirming the safety and selective anticancer effects of C. flexuosus extracts. Full article
Show Figures

Figure 1

17 pages, 3798 KB  
Article
Integrative Wound-Healing Effects of Clinacanthus nutans Extract and Schaftoside Through Anti-Inflammatory, Endothelial-Protective, and Antiviral Mechanisms
by Nipitpawn Limpanich, Pattarasuda Chayapakdee, Kullanun Mekawan, Saruda Thongyim, Rujipas Yongsawas, Phanuwit Khamwong, Yingmanee Tragoolpua, Thida Kaewkod, Siriphorn Jangsutthivorawat, Jarunee Jungklang, Usawadee Chanasut, Angkhana Inta, Phatchawan Arjinajarn, Aussara Panya and Hataichanok Pandith
Int. J. Mol. Sci. 2025, 26(13), 6029; https://doi.org/10.3390/ijms26136029 - 23 Jun 2025
Cited by 2 | Viewed by 2853
Abstract
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf [...] Read more.
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf extract. In the lipopolysaccharide (LPS)-stimulated murine macrophage cell line (RAW 264.7), both C. nutans extract (5 and 50 μg/mL) and its flavonoid schaftoside (5 and 20 μg/mL) significantly downregulated the expression of pro-inflammatory genes, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), under both pre-treatment and post-treatment conditions. ELISA confirmed dose-dependent inhibition of human COX-2 enzymatic activity, reaching up to 99.3% with the extract and 86.9% with schaftoside. In the endothelial cell models (CCL-209), the extract exhibited low cytotoxicity and effectively protected cells from LPS-induced apoptosis, preserving vascular integrity critical to tissue regeneration. Antiviral assays demonstrated suppression of HSV-2 replication, particularly during early infection, which may help prevent infection-related delays in wound healing. Collectively, these findings suggest that C. nutans and schaftoside promote wound repair by attenuating inflammatory responses, supporting endothelial survival, and controlling viral reactivation. These multifunctional properties highlight their potential as natural therapeutic agents for enhancing wound-healing outcomes. Full article
(This article belongs to the Special Issue Molecular Advances in Burn and Wound Healing)
Show Figures

Graphical abstract

13 pages, 1690 KB  
Article
Schaftoside Reduces Depression- and Anxiogenic-like Behaviors in Mice Depression Models
by Yue Hu, Yaoxue Gan, Jia Lei, Jinhui Cai, Yecheng Zhou, Hao Chen, Qian Zhang and Yan Shi
Brain Sci. 2025, 15(3), 238; https://doi.org/10.3390/brainsci15030238 - 24 Feb 2025
Cited by 1 | Viewed by 1862
Abstract
Background: Major depressive disorder is a common mental health issue characterized by persistently low mood and high morbidity and mortality. The major pathophysiology is neuroinflammation, as evidenced by elevated cytokine levels. Patients often fail to achieve full remission with the use of currently [...] Read more.
Background: Major depressive disorder is a common mental health issue characterized by persistently low mood and high morbidity and mortality. The major pathophysiology is neuroinflammation, as evidenced by elevated cytokine levels. Patients often fail to achieve full remission with the use of currently available antidepressants, prompting the search for new treatment options. Schaftoside (SS), a flavonoid found in traditional Chinese herbs, has both antioxidant and anti-inflammatory properties. However, its antidepressant effects are poorly understood. Methods: Male C57BL/6 mice underwent chronic unpredictable mild stress (CUMS) and lipopolysaccharide (LPS) treatment to induce depression- and anxiety-like behaviors. SS was administered at 40, 80, and 160 mg/kg for 28 days. The effect on depression-like behaviors was assessed using behavioral assays, and ELISA was used to measure pro-inflammatory cytokines in the serum and hippocampus. Results: SS significantly decreased immobility in the forced swim and tail suspension tests, increased sucrose preference in the sucrose preference test, and reduced feeding latency in the novelty-suppressed feeding test. These findings indicate improved depression and anxiety-like behaviors. ELISA showed that SS lowered interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha levels in the serum and hippocampus of CUMS mice. Conclusions: Our study indicates that SS has antidepressant and anxiolytic effects, possibly through neuroinflammatory processes, making it a promising therapeutic candidate for depression, and thus deserves further investigation into its mechanisms and clinical efficacy. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

18 pages, 2581 KB  
Article
Relationship Between the Structure of the Flavone C-Glycosides of Linseed (Linum usitatissimum L.) and Their Antioxidant Activity
by Imen Ghozzi, Jean-Xavier Fontaine, Roland Molinié, Redouan Elboutachfaiti, Lylia Akkouche, Khaled Sebei, David Mathiron, Christophe Hano, Laurine Garros, Elodie Choque, Romain Roulard, Laurent Petit, Cédric Delattre, Emmanuel Petit and Anthony Quéro
Molecules 2024, 29(24), 5829; https://doi.org/10.3390/molecules29245829 - 10 Dec 2024
Cited by 6 | Viewed by 3633
Abstract
Flavonoids have been documented to have good antioxidant activities in vitro. In recent years, reports on the antioxidant activities of flavone C-glycosides, a subclass of flavonoids, have attracted great attention. Despite the wealth of information on this subject, the correlation between structure [...] Read more.
Flavonoids have been documented to have good antioxidant activities in vitro. In recent years, reports on the antioxidant activities of flavone C-glycosides, a subclass of flavonoids, have attracted great attention. Despite the wealth of information on this subject, the correlation between structure and function is not well understood. In this work, the relationship between the structure and the antioxidant activity of 12 flavone C-glycosides extracted from the aerial part of winter linseed (Linum usitatissimum L.) was studied to fill the current gaps. Orientin, isoorientin, vitexin, isovitexin, swertisin, swertiajaponin, carlinoside, schaftoside, lucenin-1, lucenin-2, vicenin-1, and vicenin-2 were purified by preparative HPLC and by the drowning-out crystallization method. Then, the control of the purity and the confirmation of the chemical structures were assessed by LC-MS and NMR analyses. The antioxidant activity was evaluated using ABTS, CUPRAC, FRAP, and iron chelating activity in vitro assays. Luteolin and its flavone C-glycoside derivatives exhibited higher antioxidant activity than apigenin and its flavone C-glycosides derivatives. This could be attributed to the ortho-dihydroxyl groups at C-3′ and C-4′ of the B ring in the flavonoid skeleton, which seemed to play an important role in antioxidant behavior. These results indicate that the antioxidant activity of these compounds, derived from apigenin and luteolin, can be closely related to their structural characteristics, including the position and nature of the sugars, the number of hydroxyl groups, and the presence of methyl group. Full article
Show Figures

Graphical abstract

25 pages, 3321 KB  
Article
Improved Skin Barrier Function Along with Hydration Benefits of Viola yedoensis Extract, Aesculin, and Schaftoside and LC-HRMS/MS Dereplication of Its Bio-Active Components
by Sreelatha Thonthula, Sandra De Sousa, Alexis Dubuis, Samia Boudah, Richa Mehta, Akanksha Singh, Joan Eilstein, Jean-Claude Tabet, Sherluck John, Dhimoy Roy and Steve Thomas Pannakal
Int. J. Mol. Sci. 2024, 25(23), 12770; https://doi.org/10.3390/ijms252312770 - 27 Nov 2024
Cited by 5 | Viewed by 5144
Abstract
The skin hydration level is a key factor that influences the physical and mechanical properties of the skin. The stratum corneum (SC), the outermost layer of the epidermis, is responsible for the skin’s barrier function. In this study, we investigated the role of [...] Read more.
The skin hydration level is a key factor that influences the physical and mechanical properties of the skin. The stratum corneum (SC), the outermost layer of the epidermis, is responsible for the skin’s barrier function. In this study, we investigated the role of a unique composition of Viola yedoensis extract for its ability to activate CD44, a cell-surface receptor of hyaluronic acid, and aquaporin-3, a water-transporting protein, in human keratinocytes (HaCaT). An ELISA assay evaluating the protein expression levels of CD44, aquaporin-3 (AQP3), filaggrin, and keratin-10 revealed that V. yedoensis extract upregulated the levels of CD44 and AQP3 by 15% and 78%, respectively. Additionally, V. yedoensis extract demonstrated a comparative effect on water vapor flux in TEWL and lipid perturbation in DSC versus the reference, glycerin. In light of this new biological efficacy, a detailed phytochemical characterization was undertaken using an integrated LC-HRMS/MS-based metabolomics approach, which provided further insights on the chemistry of V. yedoensis. This led to the identification of 29 secondary metabolites, 14 of which are reported here for the first time, including esculetin, aesculin, apigenin and kaempferol C-glycosides, megastigmane glycosides, roseoside, platanionoside B, and an eriojaposide B isomer, along with the rare, calenduloside F and esculetin diglucoside, which are reported for the first time from the genus, Viola. Notably, two active components identified in the V. yedoensis extract, namely, aesculin and schaftoside, showed an upregulation of the protein expression of CD44 in HaCaT cells by 123% and 193% within 24 h of treatment, respectively, while aesculin increased AQP3 levels by 46%. Aesculin and schaftoside also significantly upregulated the expression of K-10 levels by 299% and 116%, which was considerably higher than sodium hyaluronate, the positive control. The rationale used to characterize the new structures is outlined along with the related biosynthetic pathways envisioned to generate roseoside and Eriojaposide B. These findings provide new molecular insights to deepen the understanding of how V. yedoensis extract, along with the biomarkers aesculin and schaftoside, restores the skin barrier and skin hydration benefits. Full article
(This article belongs to the Special Issue Recent Advances in Medicinal Plants and Natural Products)
Show Figures

Graphical abstract

13 pages, 1236 KB  
Article
Comparative Analysis of Chemical Composition and Radical-Scavenging Activities in Two Wheat Cultivars
by Nari Yoon, Sung-Hwan Jeong, Jong-Suk Park, Woo Jung Kim and Sanghyun Lee
Appl. Sci. 2024, 14(22), 10763; https://doi.org/10.3390/app142210763 - 20 Nov 2024
Cited by 4 | Viewed by 1891
Abstract
Triticum aestivum (wheat) is one of the most significant crops worldwide. This study compares the chemical composition and radical-scavenging activities of two cultivars of T. aestivum, Saekeumkang wheat (SW) and Baekkang wheat (BW). Sprouted wheatgrass extracts of SW and BW were analyzed [...] Read more.
Triticum aestivum (wheat) is one of the most significant crops worldwide. This study compares the chemical composition and radical-scavenging activities of two cultivars of T. aestivum, Saekeumkang wheat (SW) and Baekkang wheat (BW). Sprouted wheatgrass extracts of SW and BW were analyzed using assessments of total polyphenol and flavonoid contents, liquid chromatography–electrospray ionization/mass spectrometry (LC-ESI/MS), and high-performance liquid chromatography with a photodiode array (HPLC-PDA). Radical-scavenging activities were evaluated using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The results indicated that SW had a higher total polyphenol content than BW, while no significant differences were observed regarding total flavonoid content. HPLC-PDA analysis, guided by LC-ESI/MS, identified four compounds—saponarin, schaftoside, isoorientin, and isovitexin—with isoorientin (3.02 mg/g extract) and schaftoside (4.23 mg/g extract) present in higher concentrations in SW compared to BW. In the ABTS·+ assay, the two samples did not show noticeable differences, with SW displaying a scavenging ability with an IC50 of 3.36 mg/mL, and BW with an IC50 of 3.19 mg/mL. Contrarily, the DPPH assay results showed an inverse trend, suggesting that the radical-scavenging behavior may be influenced by the synergistic and antagonistic interactions of the compounds in SW and BW extracts. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds from Plants and Their Applications)
Show Figures

Figure 1

16 pages, 1392 KB  
Article
The Antileishmanial, Antioxidant and Cytotoxic Potential of Cecropia concolor Willd (Urticaceae), an Amazonian Species
by Sthéfanny Caroline Mendes Azevedo, Bruno Sampaio Amorim, Rogéria Cristina Zauli, Leilane de Souza Mendonça, Lethicia do Nascimento Marinho, Marcela Martins Vieira, Keyla Maciel Carvalho, Geverson Façanha, Weison Lima da Silva, Lucas de Souza Falcão, Marne Carvalho de Vasconcellos, Patrícia Xander, Cecilia Veronica Nunez and Patrícia Melchionna Albuquerque
Processes 2024, 12(10), 2237; https://doi.org/10.3390/pr12102237 - 14 Oct 2024
Viewed by 1895
Abstract
Cecropia sp. (Urticaceae) are commonly used in traditional medicine in South American countries for the treatment of different diseases. To date, the species Cecropia concolor Willd, of Amazonian occurrence, has not been investigated for its pharmacological potential. In this study, we described the [...] Read more.
Cecropia sp. (Urticaceae) are commonly used in traditional medicine in South American countries for the treatment of different diseases. To date, the species Cecropia concolor Willd, of Amazonian occurrence, has not been investigated for its pharmacological potential. In this study, we described the chemical profile and the antileishmanial, antioxidant and cytotoxic activities of extracts of the leaves of C. concolor. The ethanolic extract and its partition phases (hexane, ethyl acetate and hydroethanolic) were analyzed for their chemical classes and phenolic content. Antileishmanial activity was assessed against Leishmania (L.) amazonensis. The antioxidant activity was evaluated using the DPPH method and in MRC-5 human fibroblast cells. Toxicity was tested against Artemia salina and in human cells (fibroblasts and cancer lines). The leaves of C. concolor have phenolic substances, such as flavonoids, as well as terpenes, steroids and alkaloids. Chlorogenic acid, caffeic acid, schaftoside and vicenin 2 were identified. The hydroethanolic phase showed a high concentration of phenolic compounds and pronounced antioxidant activity. The antileishmanial activity was observed in the ethanolic extract, with a promising effect of the hexane phase. The C. concolor ethanolic extract and its phases are non-toxic, which makes this species of interest in pharmaceutical and cosmetics applications. Full article
Show Figures

Graphical abstract

19 pages, 1205 KB  
Article
Chemical and Biological Characterization of Metabolites from Silene viridiflora Using Mass Spectrometric and Cell-Based Assays
by Nilufar Z. Mamadalieva, Alexey Koval, Maksud M. Dusmuratov, Hidayat Hussain and Vladimir L. Katanaev
Biomolecules 2024, 14(10), 1285; https://doi.org/10.3390/biom14101285 - 11 Oct 2024
Cited by 3 | Viewed by 1965
Abstract
A comprehensive metabolite profiling of the medicinal plant Silene viridiflora using an UHPLC-ESI-MS/MS method is described for the first time. A total of 71 compounds were identified and annotated, the most common of which were flavonoids, triterpene glycosides, and ecdysteroids. The three major [...] Read more.
A comprehensive metabolite profiling of the medicinal plant Silene viridiflora using an UHPLC-ESI-MS/MS method is described for the first time. A total of 71 compounds were identified and annotated, the most common of which were flavonoids, triterpene glycosides, and ecdysteroids. The three major compounds schaftoside, 26-hydroxyecdysone, and silviridoside can be chosen as the markers for the assessment of the quality of S. viridiflora preparations. The methanol extract and a variety of metabolites identified in S. viridiflora were screened for their cytotoxic and Wnt pathway-inhibiting activities against triple-negative breast cancer (TNBC), the deadliest form of cancer in women. 2-Deoxy-20-hydroxyecdysone with submicromolar IC50 was identified as a result. The structure–activity relationship derived from the data from the in vitro proliferation assay showed that the hydroxyl group present at position C-2 of steroid core reduces the ecdysteroids’ cytotoxicity against cancer cells. Full article
Show Figures

Figure 1

31 pages, 2164 KB  
Review
Insights for Future Pharmacology: Exploring Phytochemicals as Potential Inhibitors Targeting SARS-CoV-2 Papain-like Protease
by Jawaria Jabeen, Nabeel Ahmed, Zunaira Shahzad, Maida Shahid and Taseer Ahmad
Future Pharmacol. 2024, 4(3), 510-540; https://doi.org/10.3390/futurepharmacol4030029 - 17 Aug 2024
Cited by 2 | Viewed by 3520
Abstract
(1) Background: The SARS-CoV-2 papain-like protease (PLpro) remains an underexplored antiviral target so far. The reduced efficacy of approved treatments against novel variants highlights the importance of developing new agents. This review aims to provide a comprehensive understanding of phytochemicals as inhibitors of [...] Read more.
(1) Background: The SARS-CoV-2 papain-like protease (PLpro) remains an underexplored antiviral target so far. The reduced efficacy of approved treatments against novel variants highlights the importance of developing new agents. This review aims to provide a comprehensive understanding of phytochemicals as inhibitors of PLpro, identify gaps, and propose novel insights for future reference. (2) Methods: A thorough literature search was conducted using Google Scholar, ScienceDirect, and PubMed. Out of 150 articles reviewed, 57 met inclusion criteria, focusing on SARS-CoV-2 PLpro inhibitors, excluding studies on other coronaviruses or solely herbal extracts. Data were presented class-wise, and phytochemicals were grouped into virtual, weak, modest, and potential inhibitors. (3) Results: Approximately 100 phytochemicals are reported in the literature as PLpro inhibitors. We classified them as virtual inhibitors (70), weak inhibitors (13), modest inhibitors (11), and potential inhibitors (6). Flavonoids, terpenoids, and their glycosides predominated. Notably, six phytochemicals, including schaftoside, tanshinones, hypericin, and methyl 3,4-dihydroxybenzoate, emerged as potent PLpro inhibitors with favorable selectivity indices and disease-mitigation potential; (4) Conclusions: PLpro stands as a promising therapeutic target against SARS-CoV-2. The phytochemicals reported in the literature possess valuable drug potential; however, certain experimental and clinical gaps need to be filled to meet the therapeutic needs. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
Show Figures

Figure 1

16 pages, 3167 KB  
Article
Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells
by Ireneusz Sowa, Jarosław Mołdoch, Roman Paduch, Maciej Strzemski, Jacek Szkutnik, Katarzyna Tyszczuk-Rotko, Sławomir Dresler, Dariusz Szczepanek and Magdalena Wójciak
Molecules 2023, 28(16), 6148; https://doi.org/10.3390/molecules28166148 - 20 Aug 2023
Cited by 10 | Viewed by 2697
Abstract
Carlina acaulis is highly valued in the traditional medicine of many European countries for its diuretic, cholagogue, anthelmintic, laxative, and emetic properties. Moreover, practitioners of natural medicine indicate that it has anti-cancer potential. However, its phytochemistry is still little known. In the present [...] Read more.
Carlina acaulis is highly valued in the traditional medicine of many European countries for its diuretic, cholagogue, anthelmintic, laxative, and emetic properties. Moreover, practitioners of natural medicine indicate that it has anti-cancer potential. However, its phytochemistry is still little known. In the present study, the polyphenolic composition of the plant was investigated using ultra-high-performance liquid chromatography coupled with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC-HR/QTOF/MS-PDA). The fractionation of the extract was carried out using liquid-liquid extraction and preparative chromatography techniques. Cytotoxicity was assessed based on neutral red and MTT assays. The obtained data showed that the species is rich in chlorogenic acids and C-glycosides of luteolin and apigenin. The total amount of chlorogenic acids was 12.6 mg/g. Among flavonoids, kaempferol dihexosidipentose and schaftoside were the most abundant, reaching approximately 3 mg/g, followed by isoorientin, vitexin-2-O-rhamnoside, and vicenin II, each with a content of approximately 2 mg/g. Furthermore, the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and human cervical cancer (HeLa) cells was investigated using the normal epithelial colon cell line (CCD 841CoTr) as a reference. It has been demonstrated that the ethyl acetate fraction was the most abundant in polyphenolic compounds and had the most promising anticancer activity. Further fractionation allowed for the obtaining of some subfractions that differed in phytochemical composition. The subfractions containing polyphenolic acids and flavonoids were characterized by low cytotoxicity against cancer and normal cell lines. Meanwhile, the subfraction with fatty acids was active and decreased the viability of HeLa and HT29 with minimal negative effects on CCD 841CoTr. The effect was probably linked to traumatic acid, which was present in the fraction at a concentration of 147 mg/g of dried weight. The research demonstrated the significant potential of C. acaulis as a plant with promising attributes, thus justifying further exploration of its biological activity. Full article
(This article belongs to the Special Issue Plant Metabolites: Accumulation, Profiling and Bioactivity)
Show Figures

Figure 1

14 pages, 2615 KB  
Article
Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract
by Ireneusz Sowa, Jarosław Mołdoch, Sławomir Dresler, Tomasz Kubrak, Agata Soluch, Dariusz Szczepanek, Maciej Strzemski, Roman Paduch and Magdalena Wójciak
Molecules 2023, 28(14), 5422; https://doi.org/10.3390/molecules28145422 - 15 Jul 2023
Cited by 12 | Viewed by 2699
Abstract
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including [...] Read more.
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use. Full article
(This article belongs to the Special Issue Plant Metabolites: Accumulation, Profiling and Bioactivity)
Show Figures

Figure 1

13 pages, 987 KB  
Article
Identification and Quantification of Selected Benzoxazinoids and Phenolics in Germinated Spelt (Triticum spelta)
by Andrej Živković, Dejan Gođevac, Blaž Cigić, Tomaž Polak and Tomaž Požrl
Foods 2023, 12(9), 1769; https://doi.org/10.3390/foods12091769 - 24 Apr 2023
Cited by 5 | Viewed by 2309
Abstract
In this study, we investigated the effects of germination on the secondary metabolite composition in spelt grains. Germination significantly increased the content of various metabolites in free and bound forms. Benzoxazinoids were the most important compounds in the free fraction of the 96 [...] Read more.
In this study, we investigated the effects of germination on the secondary metabolite composition in spelt grains. Germination significantly increased the content of various metabolites in free and bound forms. Benzoxazinoids were the most important compounds in the free fraction of the 96 h germinated grains (MBOA content as the predominant compound was 277.61 ± 15.29 µg/g DW). The majority of phenolic acids were present in the bound fraction, with trans-ferulic acid as the main component, reaching 753.27 ± 95.87 µg/g DW. The often neglected cis-isomers of phenolic acids accounted for about 20% of the total phenolic acids. High levels of apigenin di-C-glycosides were found in spelt grains, and the schaftoside content was most affected by germination, increasing threefold. The accumulation of secondary metabolites significantly increased the antioxidant activity of germinated spelt. According to the results of this study, the content of most bioactive compounds was highest in spelt grains after 96 h of germination. These data suggest that germinated spelt could potentially be valuable for the production of functional foods. Full article
Show Figures

Graphical abstract

14 pages, 3734 KB  
Article
Prosopis alba Seed as a Functional Food Waste for Food Formulation Enrichment
by Florencia M. Correa Uriburu, Florencia Cattaneo, Luis M. Maldonado, Iris C. Zampini, María R. Alberto and María I. Isla
Foods 2022, 11(18), 2857; https://doi.org/10.3390/foods11182857 - 15 Sep 2022
Cited by 5 | Viewed by 3632
Abstract
The present study describes how flour and phenolic enriched extracts (PEE) are obtained from seed (food waste) of 10 different P. alba (algarrobo blanco) clones and their characterization to be used as non-conventional sources of potential functional ingredients. Seed flour and PEE obtained [...] Read more.
The present study describes how flour and phenolic enriched extracts (PEE) are obtained from seed (food waste) of 10 different P. alba (algarrobo blanco) clones and their characterization to be used as non-conventional sources of potential functional ingredients. Seed flour and PEE obtained from Argentinian P. alba cultivars were chemically characterized. The antioxidant capacity was also determined. The results showed variability in macronutrient composition of seed flour obtained from different clones. Among them, seed flour obtained from P4, P5, P6, P10, P12, and P13 clones showed a higher protein and fiber content than the other clones. On the other hand, PEE obtained from P6, P7, and P10 clones showed the highest content of phenolic component (7.32–8.58 mg GAE/g flour). The extracts obtained from them also showed high antioxidant activity (scavenging activity on ABTS•+, HO, and H2O2). C-glycosyl flavones, including vicenin II, isoschaftoside, schaftoside, vitexin, and isovitexin were the major components extracted in all clones. These compounds have remarkable properties for disease prevention linked to oxidative stress. Therefore, the P. alba seed could be considered as functional food waste with a great potential to be used as a novel renewable and sustainable material for the production of bioactive food formulations. Full article
Show Figures

Graphical abstract

16 pages, 978 KB  
Review
Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans
by Wei-Yi Ong, Deron R. Herr, Grace Y. Sun and Teng-Nan Lin
Molecules 2022, 27(11), 3607; https://doi.org/10.3390/molecules27113607 - 4 Jun 2022
Cited by 31 | Viewed by 10068
Abstract
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies [...] Read more.
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop