Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (880)

Search Parameters:
Keywords = scatter radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6689 KiB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 342
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 2243 KiB  
Article
Theoretical Calculation of Ground and Electronically Excited States of MgRb+ and SrRb+ Molecular Ions: Electronic Structure and Prospects of Photo-Association
by Mohamed Farjallah, Hela Ladjimi, Wissem Zrafi and Hamid Berriche
Atoms 2025, 13(8), 69; https://doi.org/10.3390/atoms13080069 - 25 Jul 2025
Viewed by 299
Abstract
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis [...] Read more.
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis sets and full valence configuration interaction (FCI), we accurately determine adiabatic potential energy curves, spectroscopic constants, transition dipole moments (TDMs), and permanent electric dipole moments (PDMs). To deepen our understanding of these systems, we calculate radiative lifetimes for vibrational levels in both ground and low-lying excited electronic states. This includes evaluating spontaneous and stimulated emission rates, as well as the effects of blackbody radiation. We also compute Franck–Condon factors and analyze photoassociation processes for both ions. Furthermore, to explore low-energy collisional dynamics, we investigate elastic scattering in the first excited states (21Σ+) describing the collision between the Ra atom and Mg+ or Sr+ ions. Our findings provide detailed insights into the theoretical electronic structure of these molecular ions, paving the way for future experimental studies in the field of cold and ultracold molecular ion physics. Full article
Show Figures

Figure 1

38 pages, 2401 KiB  
Review
Mie Coefficients
by Henk F. Arnoldus
Photonics 2025, 12(7), 731; https://doi.org/10.3390/photonics12070731 - 18 Jul 2025
Viewed by 229
Abstract
We consider the scattering of electromagnetic radiation by a spherical particle, known as Mie scattering. The electric and magnetic fields are represented by multipole fields, and the amplitudes are the Mie scattering coefficients. Properties of the particle are mainly contained in these coefficients. [...] Read more.
We consider the scattering of electromagnetic radiation by a spherical particle, known as Mie scattering. The electric and magnetic fields are represented by multipole fields, and the amplitudes are the Mie scattering coefficients. Properties of the particle are mainly contained in these coefficients. We have studied the dependence of these coefficients on the various parameters, with an emphasis on the dependence on the particle radius. Central to this discussion is what is known as the ‘Mie circle’. Without absorption in the particle or the embedding medium, the Mie scattering coefficients lie on this universal circle in the complex plane. We have studied the location of the Mie scattering coefficients on this circle as a function of the particle radius. The Mie circle also serves as a reference for the case when there is absorption in the particle or the medium. In the limit of a small particle, a peculiar divergence appears in the expression for the Mie coefficients, known as the Fröhlich resonance. We show that this apparent singularity is a consequence of the fact that the limit of a small particle fails in the neighborhood of this resonance, and we derive an expression for the correct small-particle limit in the neighborhood of this resonance. Full article
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Scattering of Radiation by a Periodic Structure of Circular and Elliptical Microcavities in a Multimode Optical Waveguide
by Alexandra Yu. Petukhova, Anatolii V. Perminov, Mikhail A. Naparin and Victor V. Krishtop
Photonics 2025, 12(7), 727; https://doi.org/10.3390/photonics12070727 - 17 Jul 2025
Viewed by 263
Abstract
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the [...] Read more.
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the intensity distribution of scattered light with a wavelength of 1310 nm along the periodic structure, i.e., along the side surface of the waveguide, as a function of the microcavity dimensions and their spatial arrangement within the waveguide core. The optimal geometrical parameters of the microstructure, ensuring the most uniform light scattering, were identified. The model is valid for multimode optical fibres containing strictly periodic structures of microcavities with spherical or elliptical cross-sections that scatter laser radiation in all directions. One potential application of such fibres is as light sources in medical probes for surgical procedures requiring additional illumination and uniform irradiation of affected tissues. Furthermore, the findings of this study offer significant potential for the development of sensing elements for fibre-optic sensors. The findings of this study will facilitate the design of scattering structures with microcavities that ensure a highly uniform scattering pattern. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

26 pages, 2868 KiB  
Article
Resonant Oscillations of Ion-Stabilized Nanobubbles in Water as a Possible Source of Electromagnetic Radiation in the Gigahertz Range
by Nikolai F. Bunkin, Yulia V. Novakovskaya, Rostislav Y. Gerasimov, Barry W. Ninham, Sergey A. Tarasov, Natalia N. Rodionova and German O. Stepanov
Int. J. Mol. Sci. 2025, 26(14), 6811; https://doi.org/10.3390/ijms26146811 - 16 Jul 2025
Viewed by 216
Abstract
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is [...] Read more.
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is considered. We develop a theoretical model based on the concept of gas bubbles stabilized by ions, or “bubstons”. The role of bicarbonate and hydronium ions in the formation and stabilization of bubstons is explained through the use of quantum chemical simulations. A new model of oscillating bubstons, which takes into account the double electric layer formed around their gas core, is proposed. Theoretical estimates of the frequencies and intensities of oscillations of such compound species are obtained. It was determined that oscillations of negatively charged bubstons can occur in the GHz frequency range, and should be accompanied by the emission of electromagnetic waves. To validate the theoretical assumptions, we used dynamic light scattering (DLS) and showed that, after subjecting aqueous solutions to vigorous shaking with a force of 4 or 8 N (kg·m/s2) and a frequency of 4–5 Hz, the volume number density of bubstons increased by about two orders of magnitude. Radiometric measurements in the frequency range of 50 MHz to 3.5 GHz revealed an increase in the intensity of radiation emitted by water samples upon the vibrational treatment. It is argued that, according to our new theoretical model, this radiation can be caused by oscillating bubstons. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

25 pages, 5935 KiB  
Article
Point-Kernel Code Development for Gamma-Ray Shielding Applications
by Mario Matijević, Krešimir Trontl, Siniša Šadek and Paulina Družijanić
Appl. Sci. 2025, 15(14), 7795; https://doi.org/10.3390/app15147795 - 11 Jul 2025
Viewed by 225
Abstract
The point-kernel (PK) technique has a long history in applied radiation shielding, originating from the early days of digital computers. The PK technique applied to gamma-ray attenuation is one of many successful applications, based on the linear superposition principle applied to distributed radiation [...] Read more.
The point-kernel (PK) technique has a long history in applied radiation shielding, originating from the early days of digital computers. The PK technique applied to gamma-ray attenuation is one of many successful applications, based on the linear superposition principle applied to distributed radiation sources. Mathematically speaking, the distributed source will produce a detector response equivalent to the numerical integration of the radiation received from an equivalent number of point sources. In this treatment, there is no interference between individual point sources, while inherent limitations of the PK method are its inability to simulate gamma scattering in shields and the usage of simple boundary conditions. The PK method generally works for gamma-ray shielding with corrective B-factor for scattering and only specifically for fast neutron attenuation in a hydrogenous medium with the definition of cross section removal. This paper presents theoretical and programming aspects of the PK program developed for a distributed source of photons (line, disc, plane, sphere, slab volume, etc.) and slab shields. The derived flux solutions go beyond classical textbooks as they include the analytical integration of Taylor B-factor, obtaining a closed form readily suitable for programming. The specific computational modules are unified with a graphical user interface (GUI), assisting users with input/output data and visualization, developed for the fast radiological characterization of simple shielding problems. Numerical results of the selected PK test cases are presented and verified with the CADIS hybrid shielding methodology of the MAVRIC/SCALE6.1.3 code package from the ORNL. Full article
Show Figures

Figure 1

14 pages, 2770 KiB  
Article
High-Energy Electron Emission Controlled by Initial Phase in Linearly Polarized Ultra-Intense Laser Fields
by Xinru Zhong, Yiwei Zhou and Youwei Tian
Appl. Sci. 2025, 15(13), 7453; https://doi.org/10.3390/app15137453 - 2 Jul 2025
Viewed by 303
Abstract
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our [...] Read more.
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our research, we have found that phase variation from 0 to 2π induces an angular bifurcation of peak radiation intensity, generating polarization-aligned symmetric lobes with azimuthal invariance. Furthermore, the bimodal polar angle decreases with the increase of the initial energy. This phase-controllable bimodal distribution provides a new solution for far-field beam shaping. Significantly, high-harmonic intensity demonstrates π-periodic phase-dependent modulation. Meanwhile, the time-domain pulse width also exhibits 2π-cycle modulation, which is synchronized with the laser electric field period. Notably, electron energy increase enhances laser pulse peak intensity while compressing its duration. The above findings demonstrate that the precise control of the driving laser’s initial phase enables effective manipulation of the radiation’s spatial characteristics. Full article
Show Figures

Figure 1

22 pages, 2804 KiB  
Article
Spectroscopic and Pulse Radiolysis Studies of Water–Ethanolic Solutions of Albumins: Insight into Serum Albumin Aggregation
by Karolina Radomska and Marian Wolszczak
Int. J. Mol. Sci. 2025, 26(13), 6283; https://doi.org/10.3390/ijms26136283 - 29 Jun 2025
Viewed by 406
Abstract
Albumin-based nanoparticles are promising drug delivery systems due to their biocompatibility, biodegradability, and ability to improve targeted drug release. Among various preparation methods, radiation-induced cross-linking in the presence of ethanol has been proposed in the literature as an effective method for producing protein [...] Read more.
Albumin-based nanoparticles are promising drug delivery systems due to their biocompatibility, biodegradability, and ability to improve targeted drug release. Among various preparation methods, radiation-induced cross-linking in the presence of ethanol has been proposed in the literature as an effective method for producing protein nanoparticles with preserved bioactivity and controlled size. However, the mechanisms by which ethanol radicals contribute to protein aggregation remain insufficiently understood. In this study, we investigate the role of ethanol in the aggregation of albumins to determine whether its presence is necessary or beneficial for nanoparticle formation. Using pulse radiolysis, spectroscopy methods, resonance light scattering (RLS), and near-infrared (NIR) spectroscopy, we examined aqueous ethanol solutions of albumins before and after irradiation. Our results show that ethanol concentrations above 40% (v/v) significantly promote both radiation-induced and spontaneous protein aggregation. Mechanistic analysis indicates that ethanol radicals react with albumin similarly to hydrated electrons, mainly targeting disulfide bridges. This reaction leads to the formation of sulfur-centered radicals and the formation of intermolecular disulfide bonds that stabilize protein nanostructures by excluding the formation of dityrosine bridges, as described in the literature. In contrast, ethanol concentration below 40% does not favor the radiation-induced aggregation compared to the solution containing t-BuOH. These results provide novel insights into the role of organic cosolvents in protein aggregation and contribute to a broader understanding of the mechanisms of formation of albumin-based nanoparticles using ionizing radiation. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

14 pages, 2552 KiB  
Communication
Microwave Foreign Object Detection in a Lossy Medium Using a Planar Array Antenna
by Longzheng Yu, Peng Xu, Wenbo Li and Xiao Cai
Sensors 2025, 25(13), 3965; https://doi.org/10.3390/s25133965 - 26 Jun 2025
Viewed by 270
Abstract
The non-contact detection of foreign objects embedded in lossy dielectric media such as soil, vegetation, or ice remains a critical challenge in applications including environmental monitoring and agricultural safety. This communication presents the design and experimental validation of an array antenna system capable [...] Read more.
The non-contact detection of foreign objects embedded in lossy dielectric media such as soil, vegetation, or ice remains a critical challenge in applications including environmental monitoring and agricultural safety. This communication presents the design and experimental validation of an array antenna system capable of accurately localizing foreign objects in such lossy mediums. The proposed array antenna is capable of focusing electromagnetic energy at the location of the foreign object, thereby enabling precise positioning. The main idea of the foreign object detection is to set some of the antenna elements as test receiving antennas and measure the scattering parameters between the transmitting antennas and the receiving antennas. The excitation distribution of the transmitting array is optimized by using the method of maximum power transmission efficiency based on the differential scattering parameter matrices with the absence and presence of the foreign object. To validate the proposed design, a 5 × 5 microstrip patch array antenna was fabricated and tested with colza oil as a lossy medium. A copper block immersed in the colza oil served as the foreign object for detection, demonstrating the feasibility of the non-contact detection scheme. Experimental results demonstrate that the radiated field can be effectively focused at the object location, confirming the feasibility and precision of the proposed non-contact detection approach. Full article
Show Figures

Figure 1

15 pages, 3222 KiB  
Article
Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization
by Fan Zhang, Heng Lei, Feng Guo, Jiangtao Hu, Haiming Liu, Qing Wang, Weihua Liu, Zhe Xing and Guozhong Wu
Polymers 2025, 17(13), 1751; https://doi.org/10.3390/polym17131751 - 24 Jun 2025
Viewed by 334
Abstract
Cyclic Olefin Copolymer (COC) is an amorphous thermoplastic polymer synthesized through the catalytic copolymerization of α-olefin and cyclic olefin. When used in pre-filled syringes and pharmaceutical packaging, COCs require radiation sterilization. The radiation sterilization alters the microstructure of COC, which ultimately affects its [...] Read more.
Cyclic Olefin Copolymer (COC) is an amorphous thermoplastic polymer synthesized through the catalytic copolymerization of α-olefin and cyclic olefin. When used in pre-filled syringes and pharmaceutical packaging, COCs require radiation sterilization. The radiation sterilization alters the microstructure of COC, which ultimately affects its performance and biosafety. In this study, to investigate the effects of γ-radiation on COC microstructures, ethylene-norbornene copolymers with various compositions, representative of COC, are studied by nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. During irradiation, the COC containing 35 mol% norbornene produced free radicals that triggered migration and reaction processes, leading to the formation of entanglements within flexible chain segments. This, in turn, affected nearby ring structures with high steric hindrance, resulting in a 9.2% decrease in internal particle size and an increase in particle spacing. Conversely, when the norbornene content in COC was increased to 57 mol%, the internal particle size increased by 17.9%, while the particle spacing decreased. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

44 pages, 18112 KiB  
Review
Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques
by Borja García García, María Gabriela Fernández-Manteca, Dimitrios C. Zografopoulos, Celia Gómez-Galdós, Alain A. Ocampo-Sosa, Luis Rodríguez-Cobo, José Francisco Algorri and Adolfo Cobo
Biosensors 2025, 15(7), 401; https://doi.org/10.3390/bios15070401 - 20 Jun 2025
Viewed by 1042
Abstract
Spectroscopic techniques such as Surface-Enhanced Raman Scattering (SERS), Surface-Enhanced Infrared Absorption (SEIRA), and Surface-Enhanced Fluorescence (SEF) are essential analytical techniques used to study the composition of materials by analyzing the way materials scatter light, absorb infrared radiation or emit fluorescence signals. This provides [...] Read more.
Spectroscopic techniques such as Surface-Enhanced Raman Scattering (SERS), Surface-Enhanced Infrared Absorption (SEIRA), and Surface-Enhanced Fluorescence (SEF) are essential analytical techniques used to study the composition of materials by analyzing the way materials scatter light, absorb infrared radiation or emit fluorescence signals. This provides information about their molecular structure and properties. However, traditional SERS, SEIRA, and SEF techniques can be limited in sensitivity, resolution, and reproducibility, hindering their ability to detect and analyze trace amounts of substances or complex molecular structures. Metasurfaces, a class of engineered two-dimensional metamaterials with unique optical properties, have emerged as a promising tool to overcome these limitations and enhance spectroscopic techniques. This article provides a state-of-the-art overview of metasurfaces for enhanced SERS, SEIRA and SEF, covering their theoretical background, different types, advantages, disadvantages, and potential applications. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

14 pages, 1912 KiB  
Article
Optical Properties of Near-Infrared Phosphor and Its Application in the Fabrication of Broadband Wavelength Emitters
by Thi-Hanh-Thu Vu, Trong-Nam Tran and Quang-Khoi Nguyen
Photonics 2025, 12(6), 606; https://doi.org/10.3390/photonics12060606 - 12 Jun 2025
Viewed by 684
Abstract
Herein, we study a method for developing a broad-emission emitter that can emit radiation from the visible light to NIR regions. Firstly, an NIR phosphor’s optical properties (e.g., scattering vs. weight concentration, conversion efficiency, and emission spectra under blue and red light excitation) [...] Read more.
Herein, we study a method for developing a broad-emission emitter that can emit radiation from the visible light to NIR regions. Firstly, an NIR phosphor’s optical properties (e.g., scattering vs. weight concentration, conversion efficiency, and emission spectra under blue and red light excitation) are investigated. Then, pcW-LEDs encapsulated with NIR down-conversion phosphor samples are prepared to test these optical properties. The results show that pcW-LEDs encapsulated with the NIR phosphor at different weight concentrations of 10.0%, 12.5%, and 15.5%, respectively, emit a broadband emission from 400 nm to 900 nm. The EQE values of the pcW-LEDs encapsulated with NIR phosphor at weight concentrations of 10%, 12.5%, and 15.0% are 26%, 23%, and 19%, respectively. The correlated color temperatures of these samples are 5767 K, 5940 K, and 6068 K, respectively. The obtained radiant fluxes of the samples are 26 mW, 22 mW, and 18 mW, respectively, at an injection current of 50 mA. Full article
(This article belongs to the Special Issue Innovative Optical Technologies in Advanced Manufacturing)
Show Figures

Figure 1

25 pages, 1184 KiB  
Article
Influence of Bragg Resonance on the Hydrodynamic Performance of a Fixed-Detached Asymmetric Oscillating Water Column Device
by Prakash Kar, Robert Mayon and Dezhi Ning
J. Mar. Sci. Eng. 2025, 13(6), 1115; https://doi.org/10.3390/jmse13061115 - 2 Jun 2025
Viewed by 481
Abstract
The present study analyzes the hydrodynamic performance of an asymmetric offshore Oscillating Water Column device positioned in close proximity to multiple bottom standing and fully submerged breakwaters and trenches. The breakwaters and trenches are located on the leeward side of the Oscillating Water [...] Read more.
The present study analyzes the hydrodynamic performance of an asymmetric offshore Oscillating Water Column device positioned in close proximity to multiple bottom standing and fully submerged breakwaters and trenches. The breakwaters and trenches are located on the leeward side of the Oscillating Water Column device. The structures are investigated in combination with a shore-fixed vertical wall. The analysis is carried out using the Boundary Element Method based on the linear potential flow theory. The results are compared with the existing analytical, numerical, and experiment results available in the literature. The effects of the various shape parameters of the submerged breakwaters/trenches and the shape parameters of the Oscillating Water Column device are investigated. The results show that the resonance effects on the efficiency performance increase as the number of breakwaters/trenches increases. The undulating bottom trench shape is effective in improving the efficiency of the Oscillating Water Column device compared to the breakwater. The efficiency bandwidth is greater in the case of a rectangular trench than in the case of a parabolic- or triangular-shaped trench. In addition, the first peak value in the efficiency curve for a lower frequency is higher in the case of a larger-draft Oscillating Water Column device front wall compared to that of the rear wall. This study demonstrates that in the long wave-length regime, a zero efficiency point is observed between two consecutive resonant peaks, whereas in the intermediate and short wave-length regimes, a trough and a zero efficiency point alternately occur between two consecutive resonance peaks. Various parameters relevant to the behavior of the Oscillating Water Column Wave Energy Converter, such as radiation susceptance, radiation conductance, hydrodynamic efficiency, and volume flux due to a scatter potential, are addressed. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

17 pages, 1244 KiB  
Article
Quantitative Evaluation of Image Quality and Radiation Dose Using Novel Intelligent Noise Reduction (INR) Software in Chest Radiography: A Phantom Study
by Ahmed Jibril Abdi, Helle Precht, Claus Bjørn Outzen and Janni Jensen
Diagnostics 2025, 15(11), 1391; https://doi.org/10.3390/diagnostics15111391 - 30 May 2025
Viewed by 929
Abstract
Background/Objectives: This study quantitatively evaluates the novel Intelligent Noise Reduction (INR) software NE 3.10.0.15 across three chest radiography protocols, namely, physical anti-scatter grid, non-grid, and virtual anti-scatter grid, to optimise the patient radiation dose while maintaining sufficient image quality. Methods: Quantitative image quality [...] Read more.
Background/Objectives: This study quantitatively evaluates the novel Intelligent Noise Reduction (INR) software NE 3.10.0.15 across three chest radiography protocols, namely, physical anti-scatter grid, non-grid, and virtual anti-scatter grid, to optimise the patient radiation dose while maintaining sufficient image quality. Methods: Quantitative image quality and radiation dose were evaluated using a CDRAD phantom with 20 cm PMMA to simulate the patient across three chest protocol settings at INR levels of 0, 5, and 8 for both PA and LAT projections. Effective doses were estimated using PCXMC Monte Carlo simulation software 2.0. Results: The findings revealed significant improvements in image quality with increasing INR levels, with INR8 consistently outperforming INR5 and non-INR settings. Protocols employing virtual or no grid achieved substantial radiation dose reductions of 77–82% compared to the physical grid. The virtual grid did enhance the quantitative image quality by 6–9% compared to non-grid configurations. Conclusions: INR software, particularly when combined with virtual anti-scatter grids, offers a promising solution for improving image quality while significantly reducing the patient radiation dose in chest radiography. Future clinical validation, incorporating subjective visual assessments by radiologists, is recommended to confirm these findings and facilitate the integration of INR closer to clinical practice. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

12 pages, 4302 KiB  
Article
Design of Ultra-Wideband Low RCS Antenna Based on Polarization Conversion Metasurface
by Haiqing Guo, Ye Zhao, Jiangwei Li, Rui Gao, Zhihui He and Zhimin Yang
Electronics 2025, 14(11), 2204; https://doi.org/10.3390/electronics14112204 - 29 May 2025
Viewed by 341
Abstract
An ultra-wideband and radar cross-section (RCS) antenna array based on polarization conversion metasurface (PCM) is proposed. Firstly, the PCM unit is proposed, and its performance is analyzed. In terms of radiation performance, the −10 dB impedance matching bandwidth of the PCM unit is [...] Read more.
An ultra-wideband and radar cross-section (RCS) antenna array based on polarization conversion metasurface (PCM) is proposed. Firstly, the PCM unit is proposed, and its performance is analyzed. In terms of radiation performance, the −10 dB impedance matching bandwidth of the PCM unit is 8.5–30.2 GHz (a relative bandwidth of 112.1%) and the polarization conversion ratio (PCR) is higher than 90%. In terms of scattering performance, the antenna achieves more than 10 dB RCS reduction in the band of 8.35–30.45 GHz (a relative bandwidth of 113.9%). Secondly, the PCM unit is combined with the microstrip antenna, and its performance is analyzed: the gain of the microstrip antenna is increased by 2.8 dB at 19.5 GHz compared to the antenna without the PCM, and the low-RCS antenna array achieves RCS reduction over 6 dB within the frequency range of 8.3–31.7 GHz (a relative bandwidth of 117%). The antenna array has the advantages of wide bandwidth, high gain, and low RCS. It can be used for radars, aircraft, and stealth platforms. Full article
Show Figures

Figure 1

Back to TopTop