Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (896)

Search Parameters:
Keywords = scarce data region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 292 KiB  
Article
Molecular Detection of Multiple Antimicrobial Resistance Genes in Helicobacter pylori-Positive Gastric Samples from Patients Undergoing Upper Gastrointestinal Endoscopy with Gastric Biopsy in Algarve, Portugal
by Francisco Cortez Nunes, Catarina Aguieiras, Mauro Calhindro, Ricardo Louro, Bruno Peixe, Patrícia Queirós, Pedro Castelo-Branco and Teresa Letra Mateus
Antibiotics 2025, 14(8), 780; https://doi.org/10.3390/antibiotics14080780 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Helicobacter pylori (H. pylori) is a common gastric pathogen linked to gastritis, gastroduodenal ulcers, and gastric cancer. Rising antimicrobial resistance (AMR) poses challenges for effective treatment and has prompted the WHO to classify H. pylori as a high-priority pathogen. [...] Read more.
Background/Objectives: Helicobacter pylori (H. pylori) is a common gastric pathogen linked to gastritis, gastroduodenal ulcers, and gastric cancer. Rising antimicrobial resistance (AMR) poses challenges for effective treatment and has prompted the WHO to classify H. pylori as a high-priority pathogen. This study aimed to detect the prevalence of AMR genes in H. pylori-positive gastric samples from patients in Algarve, Portugal, where regional data is scarce. Methods: Eighteen H. pylori-positive gastric biopsy samples from patients undergoing upper gastrointestinal endoscopy were analyzed. PCR and sequencing were used to identify genes associated with resistance to amoxicillin (Pbp1A), metronidazole (rdxA, frxA), tetracycline (16S rRNA mutation) and clarithromycin (23S rRNA). Sequence identity and homologies were verified using tBLASTx and the Comprehensive Antibiotic Resistance Database (CARD). Results: Out of the 18 H. pylori-positive samples, 16 (88.9%) contained at least one AMR gene. The most frequent genes were rdxA (83.3%) and frxA (66.7%) for metronidazole resistance, and the 16S rRNA mutation (66.7%) for tetracycline. Resistance to amoxicillin and clarithromycin was detected in 27.8% and 16.7% of cases, respectively. Most samples (72.2%) had multiple resistance genes. A significantly strong association was found between female sex and the presence of the rdxA gene (p = 0.043). Conclusions: The study reveals a high prevalence of H. pylori resistance genes in Algarve, particularly against metronidazole and tetracycline. These findings highlight the need for local surveillance and tailored treatment strategies. Further research with larger populations is warranted to assess regional resistance patterns and improve eradication efforts. Full article
Show Figures

Graphical abstract

33 pages, 2962 KiB  
Review
Evolution of Data-Driven Flood Forecasting: Trends, Technologies, and Gaps—A Systematic Mapping Study
by Banujan Kuhaneswaran, Golam Sorwar, Ali Reza Alaei and Feifei Tong
Water 2025, 17(15), 2281; https://doi.org/10.3390/w17152281 - 31 Jul 2025
Abstract
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in [...] Read more.
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in this field, methodological approaches, evaluation practices and geographical distribution of studies. The study revealed that meteorological and hydrological factors constitute approximately 76% of input variables, with rainfall/precipitation and water level measurements forming the core predictive basis. Long Short-Term Memory (LSTM) networks emerged as the dominant algorithm (21% of implementations), whilst hybrid and ensemble approaches showed the most dramatic growth (from 2% in 2019 to 10% in 2024). The study also revealed a threefold increase in publications during this period, with significant geographical concentration in East and Southeast Asia (56% of studies), particularly China (36%). Several research gaps were identified, including limited exploration of graph-based approaches for modelling spatial relationships, underutilisation of transfer learning for data-scarce regions, and insufficient uncertainty quantification. This SMS provides researchers and practitioners with actionable insights into current trends, methodological practices, and future directions in data-driven flood forecasting, thereby advancing this critical field for disaster management. Full article
Show Figures

Figure 1

11 pages, 736 KiB  
Article
Size Structure of Hawksbill Turtles (Eretmochelys imbricata) from Taxidermied Specimens in Private Collections Captured Along the Western Coast of the Gulf of California
by Francisco Omar López-Fuerte, Roberto Carmona, Sergio Flores-Ramírez and Melania C. López-Castro
J. Mar. Sci. Eng. 2025, 13(8), 1473; https://doi.org/10.3390/jmse13081473 - 31 Jul 2025
Viewed by 35
Abstract
Human exploitation has been a major driver of marine turtle population declines, particularly affecting naturally scarce species such as the pantropical hawksbill turtle. Although hawksbill sea turtles have been documented in the Gulf of California since the early 20th century, data on their [...] Read more.
Human exploitation has been a major driver of marine turtle population declines, particularly affecting naturally scarce species such as the pantropical hawksbill turtle. Although hawksbill sea turtles have been documented in the Gulf of California since the early 20th century, data on their historical demography during periods of high exploitation in this region are nonexistent. We investigated the size structure of hawksbill turtles from the Western Central Gulf of California by examining a unique sample of decorative taxidermies, corresponding to 31 specimens captured during fishing operations near Santa Rosalía, Baja California Sur, Mexico, between 1980 and 1990. An analysis of the curved carapace measures revealed a length range (nuchal notch to posterior of supracaudals) of 29.5–59.5 cm (mean = 38.75 ± 6.67 cm) and a width range of 25.0–51.5 cm (mean = 33.63 ± 5.66 cm), with 87% of specimens having lengths between 30 and 45 cm. Based on the carapace length measurements, we estimated the ages to be between 7 and 20 years, indicating that the population included juveniles. Our findings provide baseline data for an understudied period and region, suggesting that this area previously served as an important juvenile habitat. These results contribute essential historical demographic information for conservation planning. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

16 pages, 1833 KiB  
Article
Prediction of Waste Generation Using Machine Learning: A Regional Study in Korea
by Jae-Sang Lee and Dong-Chul Shin
Urban Sci. 2025, 9(8), 297; https://doi.org/10.3390/urbansci9080297 - 30 Jul 2025
Viewed by 149
Abstract
Accurate forecasting of household waste generation is essential for sustainable urban planning and the development of data-driven environmental policies. Conventional statistical models, while simple and interpretable, often fail to capture the nonlinear and multidimensional relationships inherent in waste production patterns. This study proposes [...] Read more.
Accurate forecasting of household waste generation is essential for sustainable urban planning and the development of data-driven environmental policies. Conventional statistical models, while simple and interpretable, often fail to capture the nonlinear and multidimensional relationships inherent in waste production patterns. This study proposes a machine learning-based regression framework utilizing Random Forest and XGBoost algorithms to predict annual household waste generation across four metropolitan regions in South Korea Seoul, Gyeonggi, Incheon, and Jeju over the period from 2000 to 2023. Independent variables include demographic indicators (total population, working-age population, elderly population), economic indicators (Gross Regional Domestic Product), and regional identifiers encoded using One-Hot Encoding. A derived feature, elderly ratio, was introduced to reflect population aging. Model performance was evaluated using R2, RMSE, and MAE, with artificial noise added to simulate uncertainty. Random Forest demonstrated superior generalization and robustness to data irregularities, especially in data-scarce regions like Jeju. SHAP-based interpretability analysis revealed total population and GRDP as the most influential features. The findings underscore the importance of incorporating economic indicators in waste forecasting models, as demographic variables alone were insufficient for explaining waste dynamics. This approach provides valuable insights for policymakers and supports the development of adaptive, region-specific strategies for waste reduction and infrastructure investment. Full article
Show Figures

Figure 1

17 pages, 11770 KiB  
Article
Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy and Naji Rikan
Sustainability 2025, 17(15), 6914; https://doi.org/10.3390/su17156914 - 30 Jul 2025
Viewed by 152
Abstract
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using [...] Read more.
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using high-resolution remote sensing data and expert-assigned weights. The output susceptibility map categorized the region into three zones: low (93.5 million m2), moderate (271.2 million m2), and high risk (33.1 million m2). Approximately 29% of the road corridor lies within the low-risk zone, 48% in the moderate zone, and 23% in the high-risk zone. Ten critical sites with potential landslide activity were detected along the road, correlating well with the high-risk zones on the map. Structural weaknesses in the area, such as faults, joints, foliation planes, and shear zones in both igneous and metamorphic rock units, were key contributors to slope instability. The findings offer practical guidance for infrastructure planning and geohazard mitigation in arid, mountainous environments and demonstrate the applicability of WOA in data-scarce regions. Full article
(This article belongs to the Special Issue Sustainable Assessment and Risk Analysis on Landslide Hazards)
Show Figures

Figure 1

27 pages, 6584 KiB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 214
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 255
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

27 pages, 4973 KiB  
Article
LSTM-Based River Discharge Forecasting Using Spatially Gridded Input Data
by Kamilla Rakhymbek, Balgaisha Mukanova, Andrey Bondarovich, Dmitry Chernykh, Almas Alzhanov, Dauren Nurekenov, Anatoliy Pavlenko and Aliya Nugumanova
Data 2025, 10(8), 122; https://doi.org/10.3390/data10080122 - 27 Jul 2025
Viewed by 448
Abstract
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using [...] Read more.
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using the ERA5-Land dataset, we developed an LSTM model that integrates grid-based meteorological inputs and assesses their relative importance. We conducted experiments on two snow-dominated basins with contrasting physiographic characteristics, the Uba River basin in Kazakhstan and the Flathead River basin in the USA, to answer three research questions: (1) whether full-grid input outperforms reduced configurations and models trained on Caravan, (2) the impact of spatial resolution on accuracy and efficiency, and (3) the effect of partial spatial coverage on prediction reliability. Specifically, we compared the full-grid LSTM with a single-cell LSTM, a basin-average LSTM, a Caravan-trained LSTM, and coarser cell aggregations. The results demonstrate that the full-grid LSTM consistently yields the highest forecasting performance, achieving a median Nash–Sutcliffe efficiency of 0.905 for Uba and 0.93 for Middle Fork Flathead, while using coarser grids and random subsets reduces performance. Our findings highlight the critical importance of spatial input richness and provide a reproducible framework for grid selection in flood-prone basins lacking dense observation networks. Full article
(This article belongs to the Special Issue New Progress in Big Earth Data)
Show Figures

Figure 1

13 pages, 413 KiB  
Article
A Retrospective Cohort Study of Leptospirosis in Crete, Greece
by Petros Ioannou, Maria Pendondgis, Eleni Kampanieri, Stergos Koukias, Maria Gorgomyti, Kyriaki Tryfinopoulou and Diamantis Kofteridis
Trop. Med. Infect. Dis. 2025, 10(8), 209; https://doi.org/10.3390/tropicalmed10080209 - 25 Jul 2025
Viewed by 389
Abstract
Introduction: Leptospirosis is an under-recognized zoonosis that affects both tropical and temperate regions. While it is often associated with exposure to contaminated water or infected animals, its presentation and epidemiology in Mediterranean countries remain incompletely understood. This retrospective cohort study investigates the clinical [...] Read more.
Introduction: Leptospirosis is an under-recognized zoonosis that affects both tropical and temperate regions. While it is often associated with exposure to contaminated water or infected animals, its presentation and epidemiology in Mediterranean countries remain incompletely understood. This retrospective cohort study investigates the clinical and epidemiological profile of leptospirosis in Crete, Greece, a region where data are scarce. Methods: All adult patients with laboratory-confirmed leptospirosis admitted to three major public hospitals in Crete, Greece, between January 2019 and December 2023 were included in the analysis. Diagnosis was made through serologic testing along with compatible clinical symptoms. Results: A total of 17 patients were included. Their median age was 48 years, with a predominance of males (70.6%). Notably, more than half of the patients had no documented exposure to classic risk factors such as rodents or standing water. Clinical presentations were varied but commonly included fever, fatigue, acute kidney injury, and jaundice. Of the patients who underwent imaging, most showed hepatomegaly. The median delay from symptom onset to diagnosis was 11 days, underscoring the diagnostic challenge in non-endemic areas. Ceftriaxone was the most frequently administered antibiotic (76.5%), often in combination with tetracyclines or quinolones. Despite treatment, three patients (17.6%) died, all presenting with severe manifestations such as ARDS, liver failure, or shock. A concerning increase in cases was noted in 2023. Conclusions: Leptospirosis can present with severe and potentially fatal outcomes even in previously healthy individuals and in regions not traditionally considered endemic. The relatively high mortality and disease frequency noted emphasize the importance of maintaining a high index of suspicion. Timely diagnosis and appropriate antimicrobial therapy are essential to improving patient outcomes. Additionally, the need for enhanced public health awareness, diagnostic capacity, and possibly environmental surveillance to control this neglected but impactful disease better, should be emphasized. Full article
(This article belongs to the Special Issue Leptospirosis and One Health)
Show Figures

Figure 1

26 pages, 453 KiB  
Article
Trend-Enabled Recommender System with Diversity Enhancer for Crop Recommendation
by Iulia Baraian, Rudolf Erdei, Rares Tamaian, Daniela Delinschi, Emil Marian Pasca and Oliviu Matei
Agriculture 2025, 15(15), 1614; https://doi.org/10.3390/agriculture15151614 - 25 Jul 2025
Viewed by 164
Abstract
Achieving optimal agricultural yields and promoting sustainable farming relies on accurate crop recommendations. However, the applicability of many current systems is limited by their considerable computational requirements and dependence on comprehensive datasets, especially in resource-limited contexts. This paper presents HOLISTIQ RS, a novel [...] Read more.
Achieving optimal agricultural yields and promoting sustainable farming relies on accurate crop recommendations. However, the applicability of many current systems is limited by their considerable computational requirements and dependence on comprehensive datasets, especially in resource-limited contexts. This paper presents HOLISTIQ RS, a novel crop recommendation system explicitly designed for operation on low-specification hardware and in data-scarce regions. HOLISTIQ RS combines collaborative filtering with a Markov model to predict appropriate crop choices, drawing upon user profiles, regional agricultural data, and past crop performance. Results indicate that HOLISTIQ RS provides a significant increase in recommendation accuracy, achieving a MAP@5 of 0.31 and nDCG@5 of 0.41, outperforming standard collaborative filtering methods (the KNN achieved MAP@5 of 0.28 and nDCG@5 of 0.38, and the ANN achieved MAP@5 of 0.25 and nDCG@5 of 0.35). Significantly, the system also demonstrates enhanced recommendation diversity, achieving an Item Variety (IV@5) of 23%, which is absent in deterministic baselines. Significantly, the system is engineered for reduced energy consumption and can be deployed on low-cost hardware. This provides a feasible and adaptable method for encouraging informed decision-making and promoting sustainable agricultural practices in areas where resources are constrained, with an emphasis on lower energy usage. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 246
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 413
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 219
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
19 pages, 551 KiB  
Article
Open Energy Data in Spain and Its Contribution to Sustainability: Content and Reuse Potential
by Ricardo Curto-Rodríguez, Rafael Marcos-Sánchez, Alicia Zaragoza-Benzal and Daniel Ferrández
Sustainability 2025, 17(15), 6731; https://doi.org/10.3390/su17156731 - 24 Jul 2025
Viewed by 337
Abstract
This paper presents a study on open energy data in Spain and its contribution to sustainability, analyzing its content and its reuse potential. Since energy plays an important role in the sustainability and economic development of a country or region, energy strategies must [...] Read more.
This paper presents a study on open energy data in Spain and its contribution to sustainability, analyzing its content and its reuse potential. Since energy plays an important role in the sustainability and economic development of a country or region, energy strategies must be managed through public policies that promote the development of this sector. In this sense, open data is relevant for decision-making in the energy sector, especially in areas such as energy consumption and renewable energy policies. Our research aims to analyze the work of Spain’s autonomous communities in the field of energy information by conducting a population analysis of all datasets tagged in the energy category. After compiling the information and eliminating irrelevant datasets (those that are mislabeled, obsolete, or have a scope less than the level of the autonomous community), it can be seen that the supply is very scarce and that this category is one of the least populated among all existing categories. The typological analysis indicates that information on consumption is the one offering the most datasets, followed, at a short distance, by heterogeneous and difficult-to-classify information and by the set related to energy certificates or audits (the most recurrent, as it is offered only once by the autonomous communities). One of the main findings of the research is the heterogeneity of the initiatives and the significant differences in scores on an indicator created for this purpose. The ranking has taken into account both the existence of information and the quality of reuse, with Catalonia, the Basque Country, and Cantabria being the leaders (with Castilla y León, the performance reaches 60%, so the three remaining communities do not reach 40%). The research concludes with recommendations based on the gaps detected: more data should be published that can drive economic development and environmental sustainability, reduce heterogeneity, and facilitate the use of these data for greater applicability, which will increase the chances that open energy data can contribute more to sustainability. Full article
(This article belongs to the Special Issue Energy Storage, Conversion and Sustainable Management)
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Viewed by 355
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Figure 1

Back to TopTop