Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = savannah grass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 884 KiB  
Article
Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula
by Mercedes Ibañez, Salvador Aljazairi, María José Leiva, Cristina Chocarro, Roland A. Werner, Jaleh Ghashghaie and Maria-Teresa Sebastià
Land 2025, 14(6), 1135; https://doi.org/10.3390/land14061135 - 22 May 2025
Viewed by 453
Abstract
Mediterranean wood pastures are the result of traditional silvo-pastoral uses that shaped these ecosystems into a mosaic of trees and open grassland. This ecosystem structure is generally associated with increased soil fertility under tree canopies. However, the response of herbaceous plant functional types [...] Read more.
Mediterranean wood pastures are the result of traditional silvo-pastoral uses that shaped these ecosystems into a mosaic of trees and open grassland. This ecosystem structure is generally associated with increased soil fertility under tree canopies. However, the response of herbaceous plant functional types (PFTs)—grasses, legumes, and non-legume forbs—to these heterogeneous microenvironments (under the canopy vs. open grassland) remains largely unknown, particularly regarding carbon (C) and nitrogen (N) acquisition and use. Even less is known about how different tree species and environmental conditions influence these responses. In this study, we aim to assess how tree canopies influence carbon and nitrogen cycling by comparing the effects of traditional oak stands and pine plantations on herbaceous PFTs and soil dynamics. For that we use C and N content and natural isotopic abundances (δ13C and δ15N) as proxies for biogeochemical cycling. Our results show that ecosystem C and N patterns depend not only on herbaceous PFTs and the presence or absence of tree canopies but also on tree species identity and environmental conditions, including climate. In particular, pine-dominated plantations exhibited lower nitrogen availability compared to those dominated by oak, suggesting that oak stands may contribute more effectively to enhance soil fertility in Mediterranean wood pastures. Furthermore, the canopy effect was more pronounced under harsher environmental conditions, highlighting the role of trees in buffering environmental stress, particularly in arid regions. This suggests that changes in tree cover and tree species may drive complex changes in ecosystem C and N storage and cycling. Full article
(This article belongs to the Special Issue Observation, Monitoring and Analysis of Savannah Ecosystems)
Show Figures

Figure 1

26 pages, 7376 KiB  
Review
Memory-Based Navigation in Elephants: Implications for Survival Strategies and Conservation
by Margot Morel, Robert Guldemond, Melissa A. de la Garza and Jaco Bakker
Vet. Sci. 2025, 12(4), 312; https://doi.org/10.3390/vetsci12040312 - 30 Mar 2025
Viewed by 1733
Abstract
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human–wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, [...] Read more.
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human–wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, locate essential resources, and mitigate risks. While older elephants, particularly matriarchs, are often regarded as repositories of ecological knowledge, the mechanisms by which younger individuals acquire this information remain uncertain. Existing research suggests that elephants follow established movement patterns, yet direct evidence of intergenerational knowledge transfer is limited. This review synthesises current literature on elephant navigation and decision-making, exploring how their behavioural strategies contribute to resilience amid increasing anthropogenic pressures. Empirical studies indicate that elephants integrate environmental and social cues when selecting routes, accessing water, and avoiding human-dominated areas. However, the extent to which these behaviours arise from individual memory, social learning, or passive exposure to experienced individuals requires further investigation. Additionally, elephants function as ecosystem engineers, shaping landscapes, maintaining biodiversity, and contributing to climate resilience. Recent research highlights that elephants’ ecological functions can indeed contribute to climate resilience, though the mechanisms are complex and context-dependent. In tropical forests, forest elephants (Loxodonta cyclotis) disproportionately disperse large-seeded, high-carbon-density tree species, which contribute significantly to above-ground carbon storage. Forest elephants can improve tropical forest carbon storage by 7%, as these elephants enhance the relative abundance of slow-growing, high-biomass trees through selective browsing and seed dispersal. In savannah ecosystems, elephants facilitate the turnover of woody vegetation and maintain grassland structure, which can increase albedo and promote carbon sequestration in soil through enhanced grass productivity and fire dynamics. However, the ecological benefits of such behaviours depend on population density and landscape context. While bulldozing vegetation may appear destructive, these behaviours often mimic natural disturbance regimes, promoting biodiversity and landscape heterogeneity, key components of climate-resilient ecosystems. Unlike anthropogenic clearing, elephant-led habitat modification is part of a long-evolved ecological process that supports nutrient cycling and seedling recruitment. Therefore, promoting connectivity through wildlife corridors supports not only elephant movement but also ecosystem functions that enhance resilience to climate variability. Future research should prioritise quantifying the net carbon impact of elephant movement and browsing in different biomes to further clarify their role in mitigating climate change. Conservation strategies informed by their movement patterns, such as wildlife corridors, conflict-reducing infrastructure, and habitat restoration, may enhance human–elephant coexistence while preserving their ecological roles. Protecting older individuals, who may retain critical environmental knowledge, is essential for sustaining elephant populations and the ecosystems they influence. Advancing research on elephant navigation and decision-making can provide valuable insights for biodiversity conservation and conflict mitigation efforts. Full article
Show Figures

Figure 1

15 pages, 2041 KiB  
Article
Assessment of the Response to Fertilization for the Sustainable Management of Native Grasses from Flooded Savannah Ecosystem Arauca, Colombian Orinoquia
by Arcesio Salamanca-Carreño, Otoniel Pérez-López, Mauricio Vélez-Terranova, Oscar Mauricio Vargas-Corzo, Pere M. Parés-Casanova and Andrés F. Castillo-Pérez
Sustainability 2024, 16(20), 8915; https://doi.org/10.3390/su16208915 - 15 Oct 2024
Viewed by 1460
Abstract
The native grasses of the flooded savannah ecosystem are produced under natural conditions and there is little information on the productive and nutritional response to the application of fertilizers. They are proposed as a strategy for adaptation to climate change and for the [...] Read more.
The native grasses of the flooded savannah ecosystem are produced under natural conditions and there is little information on the productive and nutritional response to the application of fertilizers. They are proposed as a strategy for adaptation to climate change and for the sustainable development of livestock farming. The aim of the study was to evaluate the response to low doses of fertilization of native grasses (“bank” grasses: Paspalum plicatulum, Panicum versicolor, and Paspalum sp. “Low” grasses: Leersia hexandra and Hymenachne amplexicaulis) in flooded savannah conditions. The green forage samples were taken in a 1 m2 frame at 28-, 35-, and 42-day cutting intervals and biomass production was estimated with and without fertilization. After 35 days, the nutritional composition was analyzed by near-infrared reflectance spectroscopy (NIRS). The effect of fertilization and the grasses × cutting interval interaction influenced (p < 0.05) green forage (GF, t/ha) and dry matter (DM, t/ha). The effect of fertilization and the grasses × fertilization interaction on the nutritional composition only influenced the content of calcium (Ca2+) and magnesium (Mg2+) in the “low” grasses, while in the “bank” grasses, it influenced the sodium (Na) content (p < 0.05). The application of fertilizers generated significant differences in forage yield, but not in the general nutritional composition of grasses. However, some numerical variations were observed in favor of fertilized grasses. According to these results, the application of fertilizers will not be required to increase the value of the nutritional composition. Native grasses constitute an important sustainable food resource for livestock in flooded savannah ecosystems. This study constitutes the first approximation to understanding the behavior of native grasses for sustainable management in the flooded savannah ecosystem. Full article
Show Figures

Figure 1

15 pages, 1332 KiB  
Article
Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia
by Mauricio Vélez-Terranova, Arcesio Salamanca-Carreño, Oscar Mauricio Vargas-Corzo, Pere M. Parés-Casanova and Otoniel Pérez-López
Sustainability 2023, 15(23), 16301; https://doi.org/10.3390/su152316301 - 25 Nov 2023
Viewed by 1582
Abstract
The floodplain savannah is a tropical ecosystem that sustains grazing livestock, mainly by its grass’s diversity, of which scarce knowledge regarding the chemical composition and influencing factors. The aim was to evaluate the chemical composition variability of some native and introduced grasses grown [...] Read more.
The floodplain savannah is a tropical ecosystem that sustains grazing livestock, mainly by its grass’s diversity, of which scarce knowledge regarding the chemical composition and influencing factors. The aim was to evaluate the chemical composition variability of some native and introduced grasses grown in different physiographic positions of the floodplain savannah at transition periods and different cutting intervals. Five grasses from the “bank” (native species: Paspalum plicatulum, Axonopus compressus, Panicum versicolor, and Paspalum sp.; introduced species: Mulato I) and four from the “low” (native species: Leersia hexandra, Acroceras zizanioides, and Hymenachne amplexicaulis; introduced species: Urochloa humidicola) were sampled at 30, 40, and 50 cutting interval days during the “dry–rainy” and “rainy–dry” transition periods. The cuts were made with a 1 m2 frame to estimate forage biomass. The chemical compositions were analyzed by near-infrared spectroscopy. The influences of the cutting intervals and transition periods on chemical composition variables were evaluated through principal component analysis (PCA). Grass chemical variability was explained by eleven variables, including a digestible fraction, namely crude protein (CP), ash, ether extract (EE), total digestible nutrients (TDN), dry matter digestibility (DMD), metabolic energy (ME), phosphorus (P), and sulfur (S); and a partial digestible or undigestible fraction, namely neutral detergent fiber (NDF), lignin, and hemicellulose (HC). Grasses from the “low” position or with 30 cutting interval days in the rainy–dry transition period presented the highest proportion of the digestible fraction. Introduced grasses showed reduced nutritional value from 40 days onwards, whereas the L. hexandra, H. amplexicaulis, A. zizanioides, and P. versicolor native grasses were the least affected by the studied cutting intervals and transition periods. These native grasses constitute an important sustainable food resource for livestock in the flooded savanna ecosystem. Full article
Show Figures

Figure 1

23 pages, 4937 KiB  
Review
Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review
by Reneilwe Maake, Onisimo Mutanga, George Chirima and Mbulisi Sibanda
Geomatics 2023, 3(4), 478-500; https://doi.org/10.3390/geomatics3040026 - 18 Oct 2023
Cited by 4 | Viewed by 2636
Abstract
Recently, the move from cost-tied to open-access data has led to the mushrooming of research in pursuit of algorithms for estimating the aboveground grass biomass (AGGB). Nevertheless, a comprehensive synthesis or direction on the milestones achieved or an overview of how these models [...] Read more.
Recently, the move from cost-tied to open-access data has led to the mushrooming of research in pursuit of algorithms for estimating the aboveground grass biomass (AGGB). Nevertheless, a comprehensive synthesis or direction on the milestones achieved or an overview of how these models perform is lacking. This study synthesises the research from decades of experiments in order to point researchers in the direction of what was achieved, the challenges faced, as well as how the models perform. A pool of findings from 108 remote sensing-based AGGB studies published from 1972 to 2020 show that about 19% of the remote sensing-based algorithms were tested in the savannah grasslands. An uneven annual publication yield was observed with approximately 36% of the research output from Asia, whereas countries in the global south yielded few publications (<10%). Optical sensors, particularly MODIS, remain a major source of satellite data for AGGB studies, whilst studies in the global south rarely use active sensors such as Sentinel-1. Optical data tend to produce low regression accuracies that are highly inconsistent across the studies compared to radar. The vegetation indices, particularly the Normalised Difference Vegetation Index (NDVI), remain as the most frequently used predictor variable. The predictor variables such as the sward height, red edge position and backscatter coefficients produced consistent accuracies. Deciding on the optimal algorithm for estimating the AGGB is daunting due to the lack of overlap in the grassland type, location, sensor types, and predictor variables, signalling the need for standardised remote sensing techniques, including data collection methods to ensure the transferability of remote sensing-based AGGB models across multiple locations. Full article
Show Figures

Figure 1

16 pages, 1170 KiB  
Article
Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
by Mauricio Vélez-Terranova, Arcesio Salamanca-Carreño, Oscar M. Vargas-Corzo, Pere M. Parés-Casanova and José N. Arias-Landazábal
Animals 2023, 13(17), 2760; https://doi.org/10.3390/ani13172760 - 30 Aug 2023
Cited by 2 | Viewed by 2092
Abstract
Grasses from lowland ecosystems in flooded savannahs are useful to feed extensive grazing animals; however, scarce information about its agronomic and fermentation characteristics exists. This study aims to determine the chemical composition and fermentation parameters of native grasses from the floodplain lowlands ecosystem [...] Read more.
Grasses from lowland ecosystems in flooded savannahs are useful to feed extensive grazing animals; however, scarce information about its agronomic and fermentation characteristics exists. This study aims to determine the chemical composition and fermentation parameters of native grasses from the floodplain lowlands ecosystem in the Colombian Orinoquia. Three native grasses (Leersia hexandra, Acroceras zizanioides and Hymenachne amplexicaulis) and a “control” grass (introduced Urochloa arrecta—Tanner grass) were sown and sampled at 30, 40 and 50 days of age. On each sampling date, biomass production in a 1 m2 frame was estimated, and the chemical composition and fermentation parameters were analyzed using near-infrared spectroscopy and the in vitro gas production technique, respectively. Data were analyzed using a mixed model for repeated measures and the least significant difference (LSD) was used for mean differentiation (p < 0.05). The grasses’ nutritional characteristics varied as follows: dry matter (DM, 0.7–2.0 ton/ha), crude protein (CP, 6.1–12.2%), neutral detergent fiber (NDF, 56.6–69.6%), ash (5.8–15.8%) and dry matter digestibility (DMD) between 20.8 and 60.6% from 12 to 48 h of fermentation. Native plants such as L. hexandra and A. zizanioides presented higher biomass production, CP, ash, cellulose, and Ca levels than the control plant. During the experimental period (30 to 50 days), the grasses did not present significant nutrient availability changes. In terms of fermentation characteristics, L. hexandra increased ammonia concentrations and total volatile fatty acids (TVFA) and butyric acid. This latter effect was also observed in A. zizanioides grass. L. hexandra and A. zizanioides grasses constitute a valuable alternative forage resource during the flooding times of the studied ecosystem. Full article
Show Figures

Figure 1

17 pages, 2403 KiB  
Article
Ecosystem-Based Adaptation Practices of Smallholder Farmers in the Oti Basin, Togo: Probing Their Effectiveness and Co-Benefits
by Abravi Essenam Kissi, Grace B. Villamor and Georges Abbevi Abbey
Ecologies 2023, 4(3), 535-551; https://doi.org/10.3390/ecologies4030035 - 8 Aug 2023
Cited by 2 | Viewed by 3269
Abstract
The ecosystem-based adaptation (EbA) strategy is considered an effective approach to address the impact of climate change while ensuring the continued provision of ecosystem services on which farming depends. However, understanding the EbA’s effectiveness for smallholder farmers in the Savannah region remains limited. [...] Read more.
The ecosystem-based adaptation (EbA) strategy is considered an effective approach to address the impact of climate change while ensuring the continued provision of ecosystem services on which farming depends. However, understanding the EbA’s effectiveness for smallholder farmers in the Savannah region remains limited. The focus of this study is to explore the EbA practices that have been implemented by farming communities in the Savannah region of Togo. The study aims to evaluate the effectiveness of these practices and the perceived co-benefits reported by 425 smallholder farmers who participated in the survey. Our findings show that five practices, namely agroforestry, crop rotation, grass hedge/stone bunds, in-field water drainage channel, and intercropping, were practiced mainly by smallholder farmers and perceived as effective in reducing their vulnerability to climate risks. In addition, the benefits observed were linked to all five EbA practices. As a result, we can determine the suitable combination of EbA practices that fulfil the requirements of smallholder farmers, including co-benefits such as food security, adaptation advantages, and ecosystem service provisions. Such findings provide insights for developing integrated agriculture and climate change policies suitable for weather-induced disaster-prone areas such as the Savannah region. Full article
Show Figures

Figure 1

25 pages, 1018 KiB  
Article
Long-Term Integrated Systems of Green Manure and Pasture Significantly Recover the Macrofauna of Degraded Soil in the Brazilian Savannah
by Carolina dos Santos Batista Bonini, Thais Monique de Souza Maciel, Bruno Rafael de Almeida Moreira, José Guilherme Marques Chitero, Rodney Lúcio Pinheiro Henrique and Marlene Cristina Alves
Soil Syst. 2023, 7(2), 56; https://doi.org/10.3390/soilsystems7020056 - 30 May 2023
Cited by 2 | Viewed by 2027
Abstract
Healthy soil biota is the key to meeting the world population’s growing demand for food, energy, fiber and raw materials. Our aim is to investigate the effect of green manure as a strategy to recover the macrofauna and the chemical properties of soils [...] Read more.
Healthy soil biota is the key to meeting the world population’s growing demand for food, energy, fiber and raw materials. Our aim is to investigate the effect of green manure as a strategy to recover the macrofauna and the chemical properties of soils which have been anthropogenically degraded. The experiment was a completely randomized block design with four replicates. Green manure, Urochloa decumbens, with or without application of limestone and gypsum, composed the integrated systems. The macroorganisms as well as the soil fertility were analyzed after 17 years of a process of soil restoration with the aforementioned systems. The succession of Stizolobium sp. with Urochloa decumbens, with limestone and gypsum, was teeming with termites, beetles and ants. This integrated system presented the most technically adequate indexes of diversity and uniformity. Multivariate models showed a substantial increase in the total number of individuals due to the neutralization of harmful elements and the gradual release of nutrients by limestone and plaster. These conditioners have undergone multiple chemical reactions with the substrate in order to balance it chemically, thus allowing the macroinvertebrates to grow, develop, reproduce and compose their food web in milder microclimates. It was concluded that the integration of green manure together with grass is an economical and environmentally correct strategy to restore the macrofauna properties of degraded soil in the Brazilian savannah. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation)
Show Figures

Figure 1

11 pages, 8289 KiB  
Communication
Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia
by Arcesio Salamanca-Carreño, Mauricio Vélez-Terranova, Oscar Mauricio Vargas-Corzo, Otoniel Pérez-López, Andrés Fernando Castillo-Pérez and Pere M. Parés-Casanova
Agriculture 2023, 13(1), 220; https://doi.org/10.3390/agriculture13010220 - 16 Jan 2023
Cited by 6 | Viewed by 2981
Abstract
Savannah floodplains are a natural agroecosystem located in the eastern plains of Colombia, with soils considered to be of low fertility. This assumption has not been rigorously validated by direct experimental studies. The aim of the study was to analyze the soils’ physicochemical [...] Read more.
Savannah floodplains are a natural agroecosystem located in the eastern plains of Colombia, with soils considered to be of low fertility. This assumption has not been rigorously validated by direct experimental studies. The aim of the study was to analyze the soils’ physicochemical characteristics of the “banks” and “lows”, which are physiographic positions, from the floodplain savannah in Arauca, Colombia. Soil samples were collected in “low” (n = 14) and “bank” (n = 15) physiographic positions. For each soil sample, the following chemical variables were determined: pH, organic carbon (OC), total nitrogen (TN), P, K, Ca, Mg, Na, exchange acidity, cation-exchange capacity (CEC), Fe, Cu, Mn, Zn and B, and physical variable (texture). The Wilcoxon non-parametric test (Mann–Whitney) was applied for the comparison of the soil’s physicochemical variables in each physiographic position (p < 0.05). The highest values for each variable analyzed correspond to the physiographic position of “low” (p < 0.05). The pH, T.N., Na, K and B were not statistically significant (p > 0.05). The physiographic positions of “bank” and “low” of floodplain savannah presented low levels of most nutrients, with slightly higher values in the “low” physiographic position. Corrective measures must be applied to improve the nutritional values of savannah soils and, consequently, the productivity of native forages. Despite these deficiencies, the vegetation cover is given by very well-adapted native grasses, reflecting the conditions of said agroecosystem. Full article
(This article belongs to the Special Issue Soil Quality and Crop Nutrition)
Show Figures

Figure 1

17 pages, 1457 KiB  
Article
Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass
by Raíssa Pereira Dinalli, Salatiér Buzetti, Rodolfo de Niro Gazola, Regina Maria Monteiro de Castilho, Arshad Jalal, Fernando Shintate Galindo and Marcelo Carvalho Minhoto Teixeira Filho
Agronomy 2022, 12(10), 2473; https://doi.org/10.3390/agronomy12102473 - 11 Oct 2022
Cited by 3 | Viewed by 2276
Abstract
Nitrogen (N) is one of the promising nutrients for lawn growth and is required for the lawn’s proper growth and development, but it also increases mowing frequency. Glyphosate herbicide application in sub-doses, as a growth regulator, can reduce the maintenance costs without any [...] Read more.
Nitrogen (N) is one of the promising nutrients for lawn growth and is required for the lawn’s proper growth and development, but it also increases mowing frequency. Glyphosate herbicide application in sub-doses, as a growth regulator, can reduce the maintenance costs without any adverse reduction in the density and nutritional status of grasses. The objective of this study was to evaluate the influences of nitrogen and glyphosate doses on the growth, aesthetic quality and nutritional status of emerald grass (Zoysia japonica Steud.). The experiment was conducted at the Research and Extension Education Farm of São Paulo State University (UNESP), Ilha Solteira, SP, Brazil, in an Ultisol. The experiment was designed as a randomized block with 12 treatments arranged in a 3 × 4 factorial scheme with 4 replications, comprised of a control (without N), 15 and 30 g N m−2 of urea, applied in five splits annually, and glyphosate doses (0, 200, 400 and 600 g ha−1 of the active ingredient, a.i.). The split N fertilization at the rate of 15 g m−2 and glyphosate at the dose of 400 g ha−1 maintained nutritional status of emerald grass. Nitrogen at the rate 15 g N m−2 (in five splits per year) was observed to produce lower growth traits, an adequate aesthetic quality and longer stability of the nutrients in emerald grasses through lower exportation, with removal of “clipping” after mowing. In addition, glyphosate, at the dose of 400 g a.i. ha−1, was efficient in reducing the leaf area, plant height, shoot dry matter and total dry matter by 18.3, 14.7, 6.8 and 8.1%, respectively, as compared to the control. However, this dose did not impair the coloration and resulted in a lower exportation of nutrients by reducing the need to replenish by fertilization. Therefore, fertilization with 15 g N m−2, associated with application of 400 g a.i. ha−1 of glyphosate, is recommended for emerald grass in the tropical savannah of Brazil. Full article
Show Figures

Figure 1

11 pages, 922 KiB  
Article
Trees Increase Ant Species Richness and Change Community Composition in Iberian Oak Savannahs
by Álvaro Gaytán, José L. Bautista, Raúl Bonal, Gerardo Moreno and Guillermo González-Bornay
Diversity 2021, 13(3), 115; https://doi.org/10.3390/d13030115 - 7 Mar 2021
Cited by 7 | Viewed by 3058
Abstract
Iberian man-made oak savannahs (so called dehesas) are traditional silvopastoral systems with a high natural value. Scattered trees provide shelter and additional food to livestock (cattle in our study sites), which also makes possible for animals depending on trees in a grass-dominated [...] Read more.
Iberian man-made oak savannahs (so called dehesas) are traditional silvopastoral systems with a high natural value. Scattered trees provide shelter and additional food to livestock (cattle in our study sites), which also makes possible for animals depending on trees in a grass-dominated landscape to be present. We compared dehesas with nearby treeless grasslands to assess the effects of oaks on ant communities. Formica subrufa, a species associated with decayed wood, was by far the most abundant species, especially in savannahs. Taxa specialized in warm habitats were the most common both in dehesas and grasslands, as expected in areas with a Mediterranean climate. Within dehesas, the number of species was higher below oak canopies than outside tree cover. Compared to treeless grasslands, the presence of oaks resulted in a higher species richness of aphid-herding and predator ants, probably because trees offer shelter and resources to predators. The presence of oaks changed also the species composition, which differed between grasslands and dehesas. In self-standing scattered oaks, ant communities did not differ between the trunks and soil below canopies. These results stress the conservation value of trees in dehesas; within grasslands, they offer an additional microhabitat for species that would otherwise be scarce or absent. Full article
(This article belongs to the Special Issue Interactions between Oaks and Insects)
Show Figures

Figure 1

28 pages, 3197 KiB  
Article
A Novel Policy to Optimize Energy Consumption for Dairy Product Warehouses: A Case Study
by Khalid Almutairi, Elham Manoosi Esfahani, Ali Mostafaeipour, Alibek Issakhov, Chila Kaewpraek and Kuaanan Techato
Sustainability 2021, 13(5), 2445; https://doi.org/10.3390/su13052445 - 24 Feb 2021
Cited by 5 | Viewed by 3057
Abstract
Worldwide energy supply is mostly reliant on fossil fuels. Carbon dioxide emissions have caused many negative environmental issues like climate change, air pollution, and energy security. An important alternative to this hazard is substituting the fossil fuel-based carbon energy sources with renewable energy [...] Read more.
Worldwide energy supply is mostly reliant on fossil fuels. Carbon dioxide emissions have caused many negative environmental issues like climate change, air pollution, and energy security. An important alternative to this hazard is substituting the fossil fuel-based carbon energy sources with renewable energy sources. Passive strategies, which are devised to provide thermal comfort in buildings are examples of how to use renewable energies. For this study, a dairy product warehouse in the city of Yazd in Iran was thoroughly investigated. The main goal of this study is to introduce different scenarios, then identifying them based upon optimization of energy consumption. Another main purpose of the present study is to maximize the use of passive energy to meet the cooling needs of a dairy products warehouse in the studied area. Underground temperature is lower than the surface in summer, also it is higher in winter. Therefore, this property of soil is investigated by using nine different scenarios at different heights for constructing underground warehouse for storing dairy products. Clearly, different renewable tools like wind turbine, wind catcher, solar chiller, and different roof designs by Savanah grass, roof pond are also investigated. At first, the cooling load of the warehouse is calculated separately for each season. Then, according to the energy load values obtained, the nominated scenarios are investigated. The results of the comparisons show that the construction of a warehouse at a depth of 3 m from the ground with a green roof covered with Savannah grass helps achieve the best degree of reduction in the cooling power. Full article
Show Figures

Figure 1

16 pages, 1398 KiB  
Article
Tree—Open Grassland Structure and Composition Drive Greenhouse Gas Exchange in Holm Oak Meadows of the Iberian Peninsula
by Mercedes Ibañez, María José Leiva, Cristina Chocarro, Salvador Aljazairi, Àngela Ribas and Maria-Teresa Sebastià
Agronomy 2021, 11(1), 50; https://doi.org/10.3390/agronomy11010050 - 28 Dec 2020
Cited by 7 | Viewed by 4068
Abstract
Iberian holm oak meadows are savannah-like ecosystems that result from traditional silvo-pastoral practices. However, such traditional uses are declining, driving changes in the typical tree—open grassland structure of these systems. Yet, there are no studies integrating the whole ecosystem—including the arboreal and the [...] Read more.
Iberian holm oak meadows are savannah-like ecosystems that result from traditional silvo-pastoral practices. However, such traditional uses are declining, driving changes in the typical tree—open grassland structure of these systems. Yet, there are no studies integrating the whole ecosystem—including the arboreal and the herbaceous layer—as drivers of greenhouse gas (GHG: CO2, CH4 and N2O) dynamics. Here, we aimed at integrating the influence of tree canopies and interactions among plant functional types (PFT: grasses, forbs, and legumes) of the herbaceous layer as GHG exchange drivers. For that purpose, we performed chamber-based GHG surveys in plots dominated by representative canopy types of Iberian holm oak meadows, including Quercus species and Pinus pinea stands, the last a common tree plantation replacing traditional stands, and unraveled GHG drivers through a diversity-interaction model approach. Our results show the tree–open grassland structure, especially drove CO2 and N2O fluxes, with higher emissions under the canopy than in the open grassland. Emissions under P. pinea canopies are higher than those under Quercus species. In addition, the inclusion of diversity and compositional terms of the herbaceous layer improve the explained variability, with legumes enhancing CO2 uptake and N2O emissions. Changes in the tree cover and tree species composition, in combination with changes in the structure and composition of the herbaceous layer, will imply deep changes in the GHG exchange of Iberian holm oak meadows. These results may provide some guidelines to perform better management strategies of this vast but vulnerable ecosystem. Full article
Show Figures

Figure 1

24 pages, 4429 KiB  
Article
The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images
by Renaud Mathieu, Russell Main, David P. Roy, Laven Naidoo and Hannah Yang
Fire 2019, 2(3), 37; https://doi.org/10.3390/fire2030037 - 27 Jun 2019
Cited by 14 | Viewed by 7239
Abstract
Savannahs are mixed woody-grass communities where low-intensity surface fires are common, affecting mostly the grass layer and rarely damaging trees. We investigated the effect of surface fires in a savannah system in the Kruger National Park, South Africa, on the backscatter of synthetic [...] Read more.
Savannahs are mixed woody-grass communities where low-intensity surface fires are common, affecting mostly the grass layer and rarely damaging trees. We investigated the effect of surface fires in a savannah system in the Kruger National Park, South Africa, on the backscatter of synthetic aperture radar (SAR) C-band Sentinel-1A images. Pre-fire and post-fire dual polarized (VH, VV) C-band backscatter values were examined for 30 burn events. For all events, a systematic backscatter decrease from pre-fire to post-fire conditions was observed, with mean backscatter decreases of 1.61 dB and 0.99 dB for VH and VV, respectively. A total of 90% and 75% of the burn events showed a decrease in VH and VV backscatter greater than 0.43 dB, the overall absolute radiometric of Sentinel-1A products. The VH data were, overall, 1.7 times more sensitive to surface fire effects than the VV data. C-band data are likely sensitive to a reduction in grass biomass typical of surface fires, as well as in grass/soil moisture levels. Early season fires had higher backscatter decreases due to greater early season moisture conditions. For region with more than 30% woody cover, the effect of fire on the C-band backscatter was reduced. Denser woody communities tend to produce lower grass fuel load and less intense surface fires, and limit the penetration of C-band microwaves to the ground where most savannah fires and associated effects occur. This research provides evidence that C-band space-borne SAR is sensitive to the effects of surface-level fires in southern African savannahs. The unique availability of frequent and spatially detailed C-band data from the Sentinel-1 SAR constellation provide new opportunities for burned area mapping and systematic monitoring in savannahs systems, for instance, for fine-scale fire propagation studies. Full article
(This article belongs to the Special Issue Remote Sensing of Fire and Its Impact on Land and Atmosphere)
Show Figures

Figure 1

18 pages, 9535 KiB  
Article
Optimisation of Savannah Land Cover Characterisation with Optical and SAR Data
by Elias Symeonakis, Thomas P. Higginbottom, Kyriaki Petroulaki and Andreas Rabe
Remote Sens. 2018, 10(4), 499; https://doi.org/10.3390/rs10040499 - 22 Mar 2018
Cited by 36 | Viewed by 8085
Abstract
Accurately mapping savannah land cover at the regional scale can provide useful input to policy decision making efforts regarding, for example, bush control or overgrazing, as well as to global carbon emissions models. Recent attempts have employed Earth observation data, either from optical [...] Read more.
Accurately mapping savannah land cover at the regional scale can provide useful input to policy decision making efforts regarding, for example, bush control or overgrazing, as well as to global carbon emissions models. Recent attempts have employed Earth observation data, either from optical or radar sensors, and most commonly from the dry season when the spectral difference between woody vegetation, crops and grasses is maximised. By far the most common practice has been the use of Landsat optical bands, but some studies have also used vegetation indices or SAR data. However, conflicting reports with regards to the effectiveness of the different approaches have emerged, leaving the respective land cover mapping community with unclear methodological pathways to follow. We address this issue by employing Landsat and Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data to assess the accuracy of mapping the main savannah land cover types of woody vegetation, grassland, cropland and non-vegetated land. The study area is in southern Africa, covering approximately 44,000 km2. We test the performance of 15 different models comprised of combinations of optical and radar data from the dry and wet seasons. Our results show that a number of models perform well and very similarly. The highest overall accuracy is achieved by the model that incorporates both optical and synthetic-aperture radar (SAR) data from both dry and wet seasons with an overall accuracy of 91.1% (±1.7%): this is almost a 10% improvement from using only the dry season Landsat data (81.7 ± 2.3%). The SAR-only models were capable of mapping woody cover effectively, achieving similar or lower omission and commission errors than the optical models, but other classes were detected with lower accuracies. Our main conclusion is that the combination of metrics from different sensors and seasons improves results and should be the preferred methodological pathway for accurate savannah land cover mapping, especially now with the availability of Sentinel-1 and Sentinel-2 data. Our findings can provide much needed assistance to land cover monitoring efforts to savannahs in general, and in particular to southern African savannahs, where a number of land cover change processes have been related with the observed land degradation in the region. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Back to TopTop