Ecosystem-Based Adaptation Practices of Smallholder Farmers in the Oti Basin, Togo: Probing Their Effectiveness and Co-Benefits
Abstract
:1. Introduction
- (i)
- What are the main EbA practices in the agriculture sector to deal with climate-related risks in the Savannah region?
- (ii)
- How do smallholder farmers perceive the effectiveness and the co-benefits of EbA practices in dealing with climate-related risks in the Savannah region?
- (iii)
- How are the perceived effective EbA practices related to their perceived co-benefits of EbA practices and suitability for smallholder farmers in the Savannah region?
Conceptual Frameworks for Measuring EbAs Effectiveness
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Focus Group Discussion
2.2.2. Household Survey
2.3. Data Analysis
3. Results
3.1. EbA Practices
3.2. Perceived Effectiveness of EbA Practices
3.3. Perceived Benefits of Agricultural EbA Practices
3.4. Relationships between Perceived Effectiveness and Benefits of EbA Practices
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, C.S.; Gopinath, K.; Prasad, J.; Singh, A. Climate resilient villages for sustainable food security in tropical India: Concept, process, technologies, institutions, and impacts. Adv. Agron. 2016, 140, 101–214. [Google Scholar]
- Nagayets, O. Small farms: Current status and key trends. In Proceedings of the Future of Small Farms, Wye, UK, 26–29 June 2005; pp. 26–29. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Dossoumou, N.I.P.; Gnazou, M.D.T.; Villamor, G.B.; Agbossou, E.K.; Thiam, S.; Wagner, S.; Idrissou, M. Comparing households’ perception of flood hazard with historical climate and hydrological data in the Lower Mono River catchment (West Africa), Benin and Togo. PLoS Clim. 2023, 2, e0000123. [Google Scholar] [CrossRef]
- Yomo, M.; Villamor, G.B.; Aziadekey, M.; Olorunfemi, F.; Mourad, K.A. Climate change adaptation in Semi-Arid Ecosystems: A case study from Ghana. Clim. Risk Manag. 2020, 27, 100206. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [Green Version]
- Munang, R.; Andrews, J.; Alverson, K.; Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ. Sci. Policy Sustain. Dev. 2014, 56, 18–24. [Google Scholar] [CrossRef]
- IFAD; UNEP. Smallholders, Food Security and the Environment; International Fund for Agricultural Development: Rome, Italy, 2013. [Google Scholar]
- Sanogo, K.; Dayamba, D.S.; Villamor, G.B.; Bayala, J. Impacts of Climate Change on Ecosystem Services of Agroforestry Systems in the West African Sahel: A Review. In Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges; Dagar, J.C., Gupta, S.R., Teketay, D., Eds.; Springer: Singapore, 2020; Volume 1, pp. 213–224. [Google Scholar]
- IPCC. Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Komi, K.; Amisigo, B.A.; Diekkrüger, B. Integrated flood risk assessment of rural communities in the Oti River Basin, West Africa. Hydrology 2016, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Munang, R.; Thiaw, I.; Alverson, K.; Goumandakoye, M.; Mebratu, D.; Liu, J. Using ecosystem-based adaptation actions to tackle food insecurity. Environ. Sci. Policy Sustain. Dev. 2013, 55, 29–35. [Google Scholar] [CrossRef]
- Magamana, A.-E.; Gadedjisso-Tossou, A.; Didier, B.; Edmond, H.; Luc, C.J. Dégradation de la fertilité des sols et de l’environnement dans la Région des Savanes au Nord-Togo: Analyse des perceptions et stratégies d’adaptation indigènes. Eur. Sci. J. 2021, 17, 40–65. [Google Scholar]
- Kissi, A.E.; Abbey, G.A.; Villamor, G.B. Perceptions of Climate Change Risk on Agriculture Livelihood in Savanna Region, Northern Togo. Climate 2023, 11, 86. [Google Scholar] [CrossRef]
- Pilo, M.; Gerber, N.; Wünscher, T. Impacts of adaptation to climate change on farmers’ income in the savanna region of Togo. Rev. Econ. 2021, 72, 421–442. [Google Scholar] [CrossRef]
- Gadédjisso-Tossou, A. Understanding farmers’ perceptions of and adaptations to climate change and variability: The case of the Maritime, Plateau and Savannah Regions of Togo. Agric. Sci. 2015, 6, 1441. [Google Scholar] [CrossRef] [Green Version]
- Lare, L.; Lamboni, T. Variabilité pluviométrique et adaptations paysannes dans la région des savanes (nord-Togo). Lett. Sci. Soc. Hum. 2015, 31, 1–15. [Google Scholar]
- Pilo, M.; Gerber, N.; Wünscher, T. Climate Change and Land Degradation in the Savana Region of Togo: What are the Available Useful Adaptation Options? In Proceedings of the 2017 Conference on Land Policy in Africa, Addis Ababa, Ethiopia, 14–17 November 2017. [Google Scholar]
- van Noordwijk, M.; Hoang, M.H.; Neufeldt, H.; Öborn, I.; Yatich, T. How Trees and People Can Co-Adapt to Climate Change: Reducing Vulnerability in Multifunctional Landscapes; World Agroforestry Centre: Nairobi, Kenya, 2011. [Google Scholar]
- Vignola, R.; Harvey, C.A.; Bautista-Solis, P.; Avelino, J.; Rapidel, B.; Donatti, C.; Martinez, R. Ecosystem-based adaptation for smallholder farmers: Definitions, opportunities and constraints. Agric. Ecosyst. Environ. 2015, 211, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Parkoo, E.N.; Thiam, S.; Adjonou, K.; Kokou, K.; Verleysdonk, S.; Adounkpe, J.G.; Villamor, G.B. Comparing Expert and Local Community Perspectives on Flood Management in the Lower Mono River Catchment, Togo and Benin. Water 2022, 14, 1536. [Google Scholar] [CrossRef]
- Ghanbari, S.; Eastin, I.L.; Khalyani, J.H.; Ghanipour, D.; Ghani, M.C. Ecosystem-based Adaptation (EbA) strategies for reducing climate change risks and food security of forest-dependent communities in Iran. Austrian J. For. Sci. 2021, 138, 349–374. [Google Scholar]
- Shah, S.I.A.; Zhou, J.; Shah, A.A. Ecosystem-based Adaptation (EbA) practices in smallholder agriculture; emerging evidence from rural Pakistan. J. Clean. Prod. 2019, 218, 673–684. [Google Scholar] [CrossRef]
- Delbeke, J.; Runge-Metzger, A.; Slingenberg, Y.; Werksman, J. The Paris Agreement. In Towards a Climate-Neutral Europe: Curbing the Trend, 1st ed.; Delbeke, J., Vis, P., Eds.; Routledge: London, UK, 2019; p. 22. [Google Scholar]
- UNISDR. Sendai Framework for Disaster Risk Reductino 2015–2030; The United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015; p. 35. [Google Scholar]
- Colls, A.; Ash, N.; Ikkala, N. Ecosystem-Based Adaptation: A Natural Response to Climate Change; IUCN: Gland, Switzerland, 2009; Volume 21. [Google Scholar]
- SCBD. Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009; p. 126. [Google Scholar]
- UNEP. Ecosystem-Based Adaptation: Selected Case Studies from Africa; United Nations Environment Programme: Nairobi, Kenya, 2019; p. 48. [Google Scholar]
- Lin, B.B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 2007, 144, 85–94. [Google Scholar] [CrossRef]
- Munroe, R.; Roe, D.; Doswald, N.; Spencer, T.; Möller, I.; Vira, B.; Reid, H.; Kontoleon, A.; Giuliani, A.; Castelli, I.; et al. Review of the evidence base for ecosystem-based approaches for adaptation to climate change. Environ. Evid. 2012, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Doswald, N.; Munroe, R.; Roe, D.; Giuliani, A.; Castelli, I.; Stephens, J.; Möller, I.; Spencer, T.; Vira, B.; Reid, H. Effectiveness of ecosystem-based approaches for adaptation: Review of the evidence-base. Clim. Dev. 2014, 6, 185–201. [Google Scholar] [CrossRef]
- Reid, H.; Shafiqul Alam, S. Ecosystem-based approaches to adaptation: Evidence from two sites in Bangladesh. Clim. Dev. 2017, 9, 518–536. [Google Scholar] [CrossRef]
- Bertram, M.; Barrow, E.; Blackwood, K.; Rizvi, A.; Reid, H.; von Scheliha-Dawid, S. Making Ecosystem-Based Adaptation Effective: A Framework for Defining Qualification Criteria and Quality Standard; GIZ: Bonn, Germany; IIED: London, UK; IUCN: Gland, Switzerland, 2017; p. 14. [Google Scholar]
- Reid, H.; Bourne, A.; Muller, H.; Podvin, K.; Scorgie, S.; Orindi, V. Chapter 16-A Framework for Assessing the Effectiveness of Ecosystem-Based Approaches to Adaptation. In Resilience; Zommers, Z., Alverson, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 207–216. [Google Scholar]
- Nanfuka, S.; Mfitumukiza, D.; Egeru, A. Characterisation of ecosystem-based adaptations to drought in the central cattle corridor of Uganda. Afr. J. Range Forage Sci. 2020, 37, 257–267. [Google Scholar] [CrossRef]
- Abdelmagied, M.; Mpheshea, M. Ecosystem-Based Adaptation in the Agriculture Sector—A Naturebased Solution (NbS) for Building the Resilience of the Food and Agriculture Sector to Climate Change; FAO: Rome, Italy, 2020. [Google Scholar]
- Harvey, C.A.; Martínez-Rodríguez, M.R.; Cárdenas, J.M.; Avelino, J.; Rapidel, B.; Vignola, R.; Donatti, C.I.; Vilchez-Mendoza, S. The use of Ecosystem-based Adaptation practices by smallholder farmers in Central America. Agric. Ecosyst. Environ. 2017, 246, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Easton, Z.M.; Bock, E.; Collick, A.S. Factors When Considering an Agricultural Drainage System; Virginia Cooperative Extension, Virginia State University: St. Petersburg, Russia, 2017. [Google Scholar]
- Ghane, E. Agricultural Drainage; Michigan State University Extension: East Lansing, MI, USA, 2018. [Google Scholar]
- Sekaran, U.; Lai, L.; Ussiri, D.A.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security–A review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- IBM-SPSS. Statistics Base. Available online: https://www.ibm.com/support/knowledgecenter/en/SSLVMB_24.0.0/spss/tutorials/fac_telco_kmo_01.html (accessed on 3 August 2022).
- Ferdushi, K.F.; Ismail, M.T.; Kamil, A.A. Perceptions, knowledge and adaptation about climate change: A Study on farmers of Haor areas after a flash flood in Bangladesh. Climate 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Rooshdi, R.R.R.M.; Abd Majid, M.Z.; Sahamir, S.R.; Ismail, N.A.A. Relative importance index of sustainable design and construction activities criteria for green highway. Chem. Eng. Trans. 2018, 63, 151–156. [Google Scholar]
- Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr. 2013, 30, 113–125. [Google Scholar] [CrossRef]
- Scarano, F.R. Ecosystem-based adaptation to climate change: Concept, scalability and a role for conservation science. Perspect. Ecol. Conserv. 2017, 15, 65–73. [Google Scholar] [CrossRef]
- Seddon, N.; Reid, H.; Barrow, E.; Hicks, C.; Hou-Jones, X.; Kapos, V.; Rizvi, A.; Roe, D. Ecosystem-Based Approaches to Adaptation: Strengthening the Evidence and Informing Policy; IIED: London, UK, 2016. [Google Scholar]
- Ojea, E. Challenges for mainstreaming ecosystem-based adaptation into the international climate agenda. Curr. Opin. Environ. Sustain. 2015, 14, 41–48. [Google Scholar] [CrossRef]
- Reid, H.; Jones, H.; Porras, I.; Hicks, C.; Wicander, S.; Seddon, N. Is Ecosystem-Based Adaptation Effective? Perceptions and Lessons Learned from 13 Project Sites; IIED: London, UK, 2019. [Google Scholar]
- Pramova, E.; Locatelli, B.; Brockhaus, M.; Fohlmeister, S. Ecosystem services in the national adaptation programmes of action. Clim. Policy 2012, 12, 393–409. [Google Scholar] [CrossRef] [Green Version]
- Beery, T.; Stålhammar, S.; Jönsson, K.I.; Wamsler, C.; Bramryd, T.; Brink, E.; Ekelund, N.; Johansson, M.; Palo, T.; Schubert, P. Perceptions of the ecosystem services concept: Opportunities and challenges in the Swedish municipal context. Ecosyst. Serv. 2016, 17, 123–130. [Google Scholar] [CrossRef]
- Wolf, S.; Pham, M.; Matthews, N.; Bubeck, P. Understanding the implementation gap: Policy-makers’ perceptions of ecosystem-based adaptation in Central Vietnam. Clim. Dev. 2021, 13, 81–94. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Liere, H.; Jha, S.; Philpott, S.M. Intersection between biodiversity conservation, agroecology, and ecosystem services. Agroecol. Sustain. Food Syst. 2017, 41, 723–760. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Melece, L.; Shena, I. Adaptation to climate change in agriculture: Ecosystem based options. In Proceedings of the Engineering for Rural Development, International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 20–22 August 2020. [Google Scholar]
- Damene, S.; Bahir, A.; Villamor, G.B. The role of Chomo grass (Brachiaria humidicola) and exclosures in restoring soil organic matter, total nitrogen, and associated functions in degraded lands in Ethiopia. Reg. Environ. Chang. 2020, 20, 92. [Google Scholar] [CrossRef]
- Aleza, K.; Villamor, G.B.; Nyarko, B.K.; Wala, K.; Akpagana, K. Shea (Vitellaria paradoxa Gaertn CF) fruit yield assessment and management by farm households in the Atacora district of Benin. PLoS ONE 2018, 13, e0190234. [Google Scholar] [CrossRef] [PubMed]
- Aleza, K.; Villamor, G.B.; Wala, K.; Dourma, M.; Atakpama, W.; Batawila, K.; Akpagana, K. Woody species diversity of Vitellaria paradoxa CF Gaertn traditional agroforests under different land management regimes in Atacora district (Benin, West Africa). Int. J. Biodivers. Conserv. 2015, 7, 245–253. [Google Scholar]
- Kuyah, S.; Sileshi, G.; Luedeling, E.; Akinnifesi, F.; Whitney, C.W.; Bayala, J.; Kuntashula, E.; Dimobe, K.; Mafongoya, P. Potential of agroforestry to enhance livelihood security in Africa. In Agroforestry for Degraded Landscapes; Springer: Berlin/Heidelberg, Germany, 2020; pp. 135–167. [Google Scholar]
- Debaeke, P.; Pellerin, S.; Scopel, E. Climate-smart cropping systems for temperate and tropical agriculture: Mitigation, adaptation and trade-offs. Cah. Agric. 2017, 26, 34002. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Thierfelder, C.; Cheesman, S.; Rusinamhodzi, L. Benefits and challenges of crop rotations in maize-based conservation agriculture (CA) cropping systems of southern Africa. Int. J. Agric. Sustain. 2013, 11, 108–124. [Google Scholar] [CrossRef]
- Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M. Crop rotation modelling—A European model intercomparison. Eur. J. Agron. 2015, 70, 98–111. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, R.J.; Mandal, D.; Kumar, A.; Alam, N.; Keesstra, S. Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agric. Ecosyst. Environ. 2017, 247, 43–53. [Google Scholar] [CrossRef]
- Senyolo, M.P.; Long, T.B.; Blok, V.; Omta, O. How the characteristics of innovations impact their adoption: An exploration of climate-smart agricultural innovations in South Africa. J. Clean. Prod. 2018, 172, 3825–3840. [Google Scholar] [CrossRef]
- Amado, Z.; Assefa, E. Assessment and Documentation of Indigenous and Introduced Soil and Water Conservation Practices in Selected Districts of SNNPRS, Ethiopia. J. Environ. Earth Sci. 2020, 10, 23–36. [Google Scholar]
Dimension 1: Ecosystem Services Provision | Dimension 2: Adaptation Benefits | Dimension 3: Livelihood and Food Security |
---|---|---|
Criterion 1: Is based on the conservation, restoration, and sustainable management of biodiversity (e.g., genetic, species, and ecosystem diversity) Criterion 2: Is based on the conservation, restoration, and sustainable management of ecological functions and processes (e.g., nutrient cycling, soil formation, water infiltration, carbon sequestration) | Criterion 1: Maintains or improves crop, animal, or farm productivity in the face of climate variability and climate change Criterion 2: Enhances buffering capacities against extreme events (heavy rainfall, floods, drought, extremely high temperatures, strong winds, etc.) Criterion 3: Reduces crop pest and disease hazards due to climate change | Criterion 1: Increases livelihood and food security of smallholder households Criterion 2: Increases or diversifies income generation of smallholder households Criterion 3: Takes advantage of local or traditional knowledge of smallholder farmers Criterion 4: Uses locally available and renewable inputs (e.g., using local materials from within the farm or landscape Criterion 5: Requires implementation costs and labor affordable to smallholder farmers |
Agricultural EbA Practices | Brief Description and Sources |
---|---|
Agroforestry | Agroforestry systems are land management practices in which trees and shrubs are grown alongside crops or livestock on the same plot [20,28,29,36]. |
Conservation tillage | A tillage system entails planting, growing, and harvesting crops with as little disturbance to the soil surface [19,36]. |
Contour farming | Contour farming entails plowing the land along the field’s contours rather than straight lines [36,37]. |
Contour stone bunds | Contour stone bunds are constructed with quarry rock or stones along the land’s natural contour to a height of 20–30 cm from the ground and spaced 20 to 50 m apart, depending on the terrain’s inclination [35,36,37]. |
Crop rotation | The practice of growing various crops in the same area over several growing seasons [20,36]. |
Grass hedges | Planting lines of trees or shrubs along farm boundaries or the borders of home compounds, pastures, fields, or animal enclosures [35,36,37]. |
In-field water drainage channel | A structure that acts as a runoff collector and evacuator. The drainage channels are oriented towards streams, rivers, or retention basins. They are implemented at the start of each season so that they can perform the function of evacuating excess water [38,39]. |
Integrated crop-livestock | Agricultural management systems in which land is rotated between crop, pasture, and livestock use over time and space [20,36,40]. |
Intercropping | Intercropping is a practice that involves growing two or more crops on the same field at the same time [35,36,37]. |
Mulching | The process of covering the open surface of the ground with a layer of external material [19,20,21,36,37]. |
Terrace farming | Terrace farming is a sloped plane cut into successively receding flat surfaces or platforms that look like steps [36,37]. |
Locality | A Minimum of EbA Implemented | Maximum of EbA Implemented | Average EbA Implemented |
---|---|---|---|
Barkoissi | 1 | 6 | 4.18 |
Bologou | 2 | 7 | 4.65 |
Borgou | 2 | 6 | 4.59 |
Kantindi | 0 | 5 | 2.97 |
Kourientre | 2 | 7 | 5.54 |
Mandouri | 2 | 6 | 4.40 |
Mango | 1 | 5 | 3.72 |
Mogou | 3 | 8 | 5.70 |
Namoudjoga | 1 | 6 | 3.63 |
Ogaro | 3 | 7 | 4.87 |
Pligou | 2 | 7 | 4.60 |
Sadori-Nakpakou | 3 | 6 | 4.60 |
Sanfatoute | 1 | 6 | 3.77 |
Tambigou | 3 | 7 | 4.64 |
Timbou Overall | 1 0 | 8 8 | 3.81 4.40 |
EbA Practices | (1) Ecosystem Services Provision | (2) Adaptation Benefits | (3) Livelihood and Food Security Improvement | |||
---|---|---|---|---|---|---|
WAI (1) | Effectiveness Level | WAI (2) | Effectiveness Level | WAI (3) | Effectiveness Level | |
Agroforestry | 3.69 | HE | 3.84 | HE | 3.80 | HE |
Conservation tillage | 2.48 | ME | 1.88 | LE | 2.46 | ME |
Crop rotation | 3.36 | E | 3.34 | E | 3.16 | E |
In-field water drainage channel | 3.05 | E | 2.98 | E | 3.11 | E |
Integrated crop-livestock | 1.88 | LE | 2.42 | ME | 1.85 | LE |
Intercropping | 2.59 | ME | 2.16 | ME | 3.10 | E |
Grass hedge/stone bund | 3.50 | HE | 3.51 | HE | 3.22 | E |
Mulching | 1.87 | LE | 1.80 | LE | 1.84 | LE |
EbA Dimension | Perceived EbA Benefits | Relative Index | Ranking | Importance Level |
---|---|---|---|---|
|
| 0.91 | 1 | H |
| 0.89 | 2 | H | |
| 0.88 | 3 | H | |
| 0.85 | 4 | H | |
| 0.83 | 5 | H | |
| 0.36 | 6 | M–L | |
|
| 0.88 | 1 | H |
| 0.85 | 2 | H | |
| 0.64 | 3 | H–M | |
|
| 0.87 | 1 | H |
| 0.86 | 2 | H | |
| 0.83 | 3 | H | |
| 0.83 | 4 | H | |
| 0.82 | 5 | H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kissi, A.E.; Villamor, G.B.; Abbey, G.A. Ecosystem-Based Adaptation Practices of Smallholder Farmers in the Oti Basin, Togo: Probing Their Effectiveness and Co-Benefits. Ecologies 2023, 4, 535-551. https://doi.org/10.3390/ecologies4030035
Kissi AE, Villamor GB, Abbey GA. Ecosystem-Based Adaptation Practices of Smallholder Farmers in the Oti Basin, Togo: Probing Their Effectiveness and Co-Benefits. Ecologies. 2023; 4(3):535-551. https://doi.org/10.3390/ecologies4030035
Chicago/Turabian StyleKissi, Abravi Essenam, Grace B. Villamor, and Georges Abbevi Abbey. 2023. "Ecosystem-Based Adaptation Practices of Smallholder Farmers in the Oti Basin, Togo: Probing Their Effectiveness and Co-Benefits" Ecologies 4, no. 3: 535-551. https://doi.org/10.3390/ecologies4030035
APA StyleKissi, A. E., Villamor, G. B., & Abbey, G. A. (2023). Ecosystem-Based Adaptation Practices of Smallholder Farmers in the Oti Basin, Togo: Probing Their Effectiveness and Co-Benefits. Ecologies, 4(3), 535-551. https://doi.org/10.3390/ecologies4030035