Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Milestones of Remote Sensing-Based AGGB Retrieval
3.1.1. Sampling and Analysis Protocol for Training and Validation Purposes
3.1.2. Grassland Types Covered in the Reviewed Studies
3.1.3. Geographical and Temporal Gradients Covered
3.1.4. Platform and Sensor Configurations
3.1.5. Predictor Variables Commonly Used in AGGB Studies
3.2. Algorithms Commonly Used in Remote Sensing-Based AGGB Studies
4. Discussion
4.1. Milestones of Remote Sensing-Based AGGB Retrieval
4.1.1. Sampling and Analysis Protocol for Training and Validation Purposes
4.1.2. Geographical and Temporal Gradients Covered
4.1.3. Platform and Sensor Configurations
4.1.4. Predictor Variables
4.1.5. Algorithms Developed
4.1.6. Sampling and Analysis Protocols
4.2. Research Challenges and Outlook
4.2.1. Research Challenges
4.2.2. Limitations of the Study
4.2.3. Research Outlook
- Developed countries contributed more research on remote sensing-based AGGB compared to developing countries. As such, more research should be performed in the global south in order to promote an all-inclusive regional reporting.
- Few studies applied remote sensors operating outside the optical channel of the electromagnetic spectrum (i.e., microwave) for retrieving the AGGB. Specifically, radar-derived metrics could add tangible value to the performance of biomass estimation models. The freely available Sentinel-1 offers an opportunity to quantify the AGGB in savannah ecosystems.
- The integration of radar images shows promising results and a further exploration of the complimentary aspect of these sensors should improve the baseline models.
- Although costly, lidar datasets seem promising in terms of accuracy and further studies should explore their full potential in AGGB estimation.
- Despite their limitation, the vegetation indices remain the major predictor variables. Thus, improved accuracies of estimating the AGGB may be realised with the incorporation of supplementary variables such as sward height, FAPAR, agro-meteorological, and topographical variables.
- From a radar perspective, the soil moisture and soil roughness should be taken into consideration during modelling since they contaminate the backscattering processes.
- Many researchers have relied on the less transferable linear regression while machine learning approaches have not been fully explored. However, deep learning algorithms are emerging as the new dawn of algorithms and their utility in AGGB estimation is in its infancy, thereby leaving a gap for further research.
- The mismatch between the estimating and validation scale reduces the accuracy of estimating the AGGB. The lack of consistency between the in situ measurement and sampling protocol further hinders the comparability across the studies. This signals the need to benchmark the sampling process.
- It is also of interest to explore the use of the newly launched Sentinel-3 and Landsat-9 OLI in quantifying the AGGB in savannah ecosystems.
- Future research on AGGB estimation should focus on the application of multi-source data and multi-temporal data available via cloud-based applications, including GEE, Microsoft Azure and Amazon Web Services (AWS).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scurlock, J.; Hall, D. The Global Carbon Sink: A Grassland Perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Osborne, C.P.; Charles-Dominique, T.; Stevens, N.; Bond, W.J.; Midgley, G.; Lehmann, C.E. Human Impacts in African Savannas Are Mediated by Plant Functional Traits. New Phytol. 2018, 220, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhou, G. Estimating Senesced Biomass of Desert Steppe in Inner Mongolia Using Field Spectrometric Data. Agric. For. Meteorol. 2012, 161, 66–71. [Google Scholar] [CrossRef]
- Parr, C.L.; Lehmann, C.E.; Bond, W.J.; Hoffmann, W.A.; Andersen, A.N. Tropical Grassy Biomes: Misunderstood, Neglected, and Under Threat. Trends Ecol. Evol. 2014, 29, 205–213. [Google Scholar] [CrossRef]
- Ghosh, P.; Mahanta, S. Carbon Sequestration in Grassland Systems. Range Manag. Agrofor. 2014, 35, 173–181. [Google Scholar]
- Lan, X.; Tans, P.; Thoning, K.W. Trends in Globally-Averaged CO2 Determined from NOAA Global Monitoring Laboratory Measurements. Available online: https://gml.noaa.gov/ccgg/trends/gl_data.html (accessed on 7 August 2023).
- Chen, X.; Hutley, L.B.; Eamus, D. Carbon Balance of a Tropical Savanna of Northern Australia. Oecologia 2003, 137, 405–416. [Google Scholar] [CrossRef]
- Fiala, K. Belowground Plant Biomass of Grassland Ecosystems and Its Variation According to Ecological Factors. Ekológia 2010, 29, 182–206. [Google Scholar] [CrossRef]
- Adjorlolo, C.; Mutanga, O.; Cho, M.; Ismail, R. Challenges and Opportunities in the Use of Remote Sensing for C3 and C4 Grass Species Discrimination and Mapping. Afr. J. Range Forage Sci. 2012, 29, 47–61. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices. GIScience Remote Sens. 2016, 53, 614–633. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O.; Dube, T. Progress in the Remote Sensing of C3 and C4 Grass Species Aboveground Biomass over Time and Space. ISPRS J. Photogramm. Remote Sens. 2016, 120, 13–24. [Google Scholar] [CrossRef]
- Meng, B.; Liang, T.; Yi, S.; Yin, J.; Cui, X.; Ge, J.; Hou, M.; Lv, Y.; Sun, Y. Modeling Alpine Grassland above Ground Biomass Based on Remote Sensing Data and Machine Learning Algorithm: A Case Study in East of the Tibetan Plateau, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2986–2995. [Google Scholar] [CrossRef]
- Lu, D. The Potential and Challenge of Remote Sensing-Based Biomass Estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of Biomass Information for Semi-Arid Areas Using Remote-Sensing Data. Int. J. Remote Sens. 2012, 33, 2937–2984. [Google Scholar] [CrossRef]
- Svoray, T.; Shoshany, M. SAR-Based Estimation of Areal Aboveground Biomass (AAB) of Herbaceous Vegetation in the Semi-arid Zone: A Modification of the Water-Cloud Model. Int. J. Remote Sens. 2002, 23, 4089–4100. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O.; Dube, T. Determining Optimal New Generation Satellite Derived Metrics for Accurate C3 and C4 Grass Species Aboveground Biomass Estimation in South Africa. Remote Sens. 2018, 10, 564. [Google Scholar] [CrossRef]
- Debastiani, A.B.; Sanquetta, C.R.; Corte, A.P.D.; Rex, F.E.; Pinto, N.S. Evaluating SAR-Optical Sensor Fusion for Aboveground Biomass Estimation in a Brazilian Tropical Forest. Ann. For. Res. 2019, 62, 109–122. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef]
- Ghasemi, N.; Sahebi, M.R.; Mohammadzadeh, A. A Review on Biomass Estimation Methods Using Synthetic Aperture Radar Data. Int. J. Geomat. Geosci. 2011, 1, 776. [Google Scholar]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A Review of Radar Remote Sensing for Biomass Estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote Sensing of above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Kumar, L.; Sinha, P.; Taylor, S.; Alqurashi, A.F. Review of the Use of Remote Sensing for Biomass Estimation to Support Renewable Energy Generation. J. Appl. Remote Sens. 2015, 9, 097696. [Google Scholar] [CrossRef]
- Masenyama, A.; Mutanga, O.; Dube, T.; Bangira, T.; Sibanda, M.; Mabhaudhi, T. A Systematic Review on the Use of Remote Sensing Technologies in Quantifying Grasslands Ecosystem Services. GIScience Remote Sens. 2022, 59, 1000–1025. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Mutanga, O.; Dube, T.; Ahmed, F. Progress in Remote Sensing: Vegetation Monitoring in South Africa. S. Afr. Geogr. J. 2016, 98, 461–471. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data—A Machine Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3254–3264. [Google Scholar] [CrossRef]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Ma, W.H.; Fang, J.Y.; Yang, Y.H.; Mohammat, A. Biomass Carbon Stocks and Their Changes in Northern China’s Grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef] [PubMed]
- FAO. Challenges and Opportunities for Carbon Sequestration in Grassland Systems; A Technical Report on Grassland Management and Climate Change Mitigation; Food and Agriculture Organization: Rome, Italy, 2010; pp. 1–57. [Google Scholar]
- Chave, J.; Davies, S.J.; Phillips, O.L.; Lewis, S.L.; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T.R.; Coomes, D.; Disney, M. Ground Data Are Essential for Biomass Remote Sensing Missions. Surv. Geophys. 2019, 40, 863–880. [Google Scholar] [CrossRef]
- Butterfield, H.; Malmström, C. The Effects of Phenology on Indirect Measures of Aboveground Biomass in Annual Grasses. Int. J. Remote Sens. 2009, 30, 3133–3146. [Google Scholar] [CrossRef]
- Mavridou, A.; Pappa, O.; Papatzitze, O.; Dioli, C.; Kefala, A.M.; Drossos, P.; Beloukas, A. Exotic Tourist Destinations and Transmission of Infections by Swimming Pools and Hot Springs—A Literature Review. Int. J. Environ. Res. Public Health 2018, 15, 2730. [Google Scholar] [CrossRef] [PubMed]
- Sang, H.; Zhang, J.; Lin, H.; Zhai, L. Multi-Polarization ASAR Backscattering from Herbaceous Wetlands in Poyang Lake Region, China. Remote Sens. 2014, 6, 4621–4646. [Google Scholar] [CrossRef]
- Moreau, S.; Le Toan, T. Biomass Quantification of Andean Wetland Forages Using ERS Satellite SAR Data for Optimizing Livestock Management. Remote Sens. Environ. 2003, 84, 477–492. [Google Scholar] [CrossRef]
- Wang, C.; Price, K.P.; Van Der Merwe, D.; An, N.; Wang, H. Modeling above-Ground Biomass in Tallgrass Prairie Using Ultra-high Spatial Resolution sUAS imagery. Photogramm. Eng. Remote Sens. 2014, 80, 1151–1159. [Google Scholar] [CrossRef]
- Hajj, M.E.; Baghdadi, N.; Belaud, G.; Zribi, M.; Cheviron, B.; Courault, D.; Hagolle, O.; Charron, F. Irrigated Grassland Monitoring Using a Time Series of terraSAR-X and COSMO-skyMed X-Band SAR Data. Remote Sens. 2014, 6, 10002–10032. [Google Scholar] [CrossRef]
- Schmidt, M.; Pringle, M.; Devadas, R.; Denham, R.; Tindall, D. A Framework for Large-Area Mapping of Past and Present Cropping Activity Using Seasonal Landsat Images and Time Series Metrics. Remote Sens. 2016, 8, 312. [Google Scholar] [CrossRef]
- Bao, N.; Li, W.; Gu, X.; Liu, Y. Biomass Estimation for Semiarid Vegetation and Mine Rehabilitation Using Worldview-3 and Sentinel-1 SAR Imagery. Remote Sens. 2019, 11, 2855. [Google Scholar] [CrossRef]
- Naidoo, L.; Van Deventer, H.; Ramoelo, A.; Mathieu, R.; Nondlazi, B.; Gangat, R. Estimating above Ground Biomass as an Indicator of Carbon Storage in Vegetated Wetlands of the Grassland Biome of South Africa. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 118–129. [Google Scholar] [CrossRef]
- Braun, A.; Wagner, J.; Hochschild, V. Above-Ground Biomass Estimates Based on Active and Passive Microwave Sensor Imagery in Low-Biomass Savanna Ecosystems. J. Appl. Remote Sens. 2018, 12, 046027. [Google Scholar] [CrossRef]
- Frolking, S.; Fahnestock, M.; Milliman, T.; McDonald, K.; Kimball, J. Interannual Variability in North American Grassland Biomass/Productivity Detected by SeaWinds Scatterometer Backscatter. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Li, Z.; Guo, X. Can Polarimetric Radarsat-2 Images Provide a Solution to Quantify Non-Photosynthetic Vegetation Biomass in Semiarid Mixed Grassland? Can. J. Remote Sens. 2017, 43, 593–607. [Google Scholar] [CrossRef]
- Wijesingha, J.; Moeckel, T.; Hensgen, F.; Wachendorf, M. Evaluation of 3D Point Cloud-Based Models for the Prediction of Grassland Biomass. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 352–359. [Google Scholar] [CrossRef]
- Jiang, Y.; Tao, J.; Huang, Y.; Zhu, J.; Tian, L.; Zhang, Y. The Spatial Pattern of Grassland Aboveground Biomass on Xizang Plateau and Its Climatic Controls. J. Plant Ecol. 2015, 8, 30–40. [Google Scholar] [CrossRef]
- Ikeda, H.; Okamoto, K.; Fukuhara, M. Estimation of Aboveground Grassland Phytomass with a Growth Model Using Landsat TM and Climate Data. Int. J. Remote Sens. 1999, 20, 2283–2294. [Google Scholar] [CrossRef]
- Ullah, S.; Si, Y.; Schlerf, M.; Skidmore, A.K.; Shafique, M.; Iqbal, I.A. Estimation of Grassland Biomass and Nitrogen Using MERIS Data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 196–204. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.; Wang, X.; Yan, R.; Shen, B.; Chen, B.; Xin, X. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging. Sensors 2019, 19, 5374. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, X. Non-Photosynthetic Vegetation Biomass Estimation in Semiarid Canadian Mixed Grasslands Using Ground Hyperspectral Data, Landsat 8 OLI, and Sentinel-2 Images. Int. J. Remote Sens. 2018, 39, 6893–6913. [Google Scholar] [CrossRef]
- Ren, H.; Feng, G. Are Soil-Adjusted Vegetation Indices Better than Soil-Unadjusted Vegetation Indices for above-Ground Green Biomass Estimation in Arid and Semi-Arid Grasslands? Grass Forage Sci. 2015, 70, 611–619. [Google Scholar] [CrossRef]
- Su, J.; Bork, E. Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 1265–1274. [Google Scholar] [CrossRef]
- Mishra, N.B.; Young, K.R. Savannas and Grasslands. In Terrestrial Ecosystems and Biodiversity; CRC Press: Boca Raton, FL, USA, 2020; pp. 235–247. [Google Scholar]
- Ricard, M.F.; Berhongaray, G.; Viglizzo, E.F. The Argentine Pampas: A Novel Ecosystem at the Crossroad. Encycl. World’s Biomes 2020, 5, 117–127. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y.; Guang, J.; Zhang, X.; Guo, J. Small Satellite Remote Sensing and Applications–History, Current and Future. Int. J. Remote Sens. 2008, 29, 4339–4372. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.; Liu, Q.; Wu, S.; Shan, X.; Mu, X.; Hu, L.; Wu, J. Analysis Ready Data of the Chinese GaoFen Satellite Data. Remote Sens. 2021, 13, 1709. [Google Scholar] [CrossRef]
- Oyewole, S. Space Research and Development in Africa. Astropolitics 2017, 15, 185–208. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Castro-Esau, K.L.; Kurz, W.A.; Joyce, A. Monitoring Carbon Stocks in the Tropics and the Remote Sensing Operational Limitations: From Local to Regional Projects. Ecol. Appl. 2009, 19, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P.; Dean Kettle, W. Relations between NDVI, Grassland Production, and Crop Yield in the Central Great Plains. Geocarto Int. 2005, 20, 5–11. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, B.; Yang, X.; Jin, Y.; Li, J.; Xia, L.; Chen, S.; Ma, H. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China. Remote Sens. 2014, 6, 5368–5386. [Google Scholar] [CrossRef]
- Liang, T.; Yang, S.; Feng, Q.; Liu, B.; Zhang, R.; Huang, X.; Xie, H. Multi-Factor Modeling of above-Ground Biomass in Alpine Grassland: A Case Study in the Three-River Headwaters Region, China. Remote Sens. Environ. 2016, 186, 164–172. [Google Scholar] [CrossRef]
- Zeng, N.; Ren, X.; He, H.; Zhang, L.; Zhao, D.; Ge, R.; Li, P.; Niu, Z. Estimating Grassland Aboveground Biomass on the Tibetan Plateau Using a Random Forest Algorithm. Ecol. Indic. 2019, 102, 479–487. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; e Silva, N.R.D.F.; Adami, M.; Sanches, I.D.A. Limitations of Cloud Cover for Optical Remote Sensing of Agricultural Areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Maesano, M.; Khoury, S.; Nakhle, F.; Firrincieli, A.; Gay, A.; Tauro, F.; Harfouche, A. UAV-Based LiDAR for High-Throughput Determination of Plant Height and above-Ground Biomass of the Bioenergy Grass Arundo donax. Remote Sens. 2020, 12, 3464. [Google Scholar] [CrossRef]
- Sarrazin, M.; Van Aardt, J.; Asner, G.; McGlinchy, J.; Messinger, D.; Wu, J. Fusing small-Footprint Waveform LiDAR and Hyperspectral Data for Canopy-Level Species Classification and Herbaceous Biomass Modeling in Savanna Ecosystems. Can. J. Remote Sens. 2011, 37, 653–665. [Google Scholar] [CrossRef]
- Wang, D.; Xin, X.; Shao, Q.; Brolly, M.; Zhu, Z.; Chen, J. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors 2017, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Man, A.; Fredrickson, M.; Hou, Z.; Pitkänen, J.; Wing, B.; Ramirez, C.; Li, B.; Greenberg, J.A. Quantification of Uncertainty in Aboveground Biomass Estimates Derived from Small-Footprint Airborne LiDAR. Remote Sens. Environ. 2018, 216, 514–528. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Calleja, J.F.; Pagés, O.R.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Relea, A.C.; Melendi, D.R.; Álvarez, P.F. Detection of Buried Archaeological remains with the Combined Use of Satellite Multispectral Data and UAV Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Wang, G.; Liu, S.; Liu, T.; Fu, Z.; Yu, J.; Xue, B. Modelling above-Ground Biomass Based on Vegetation Indexes: A Modified Approach for Biomass Estimation in Semi-Arid Grasslands. Int. J. Remote Sens. 2019, 40, 3835–3854. [Google Scholar] [CrossRef]
- Tompkins, S.; Mustard, J.F.; Pieters, C.M.; Forsyth, D.W. Optimization of Endmembers for Spectral Mixture Analysis. Remote Sens. Environ. 1997, 59, 472–489. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Riyad, I. Quantifying Aboveground Biomass in African Environments: A Review of the Trade-Offs between Sensor Estimation Accuracy and Costs. Trop. Ecol. 2016, 57, 393–405. [Google Scholar]
- Shoko, C.; Mutanga, O.; Dube, T.; Slotow, R. Characterizing the Spatio-Temporal Variations of C3 and C4 Dominated Grasslands Aboveground Biomass in the Drakensberg, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 51–60. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, L.; Li, J.; Qi, J. A Comparative Analysis of Broadband and Narrowband Derived Vegetation Indices in Predicting Lai and Ccd of a Cotton Canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Keith, A.; Marill, M.D. Advanced Statistics: Linear Regression, Part I: Simple Linear Regression. Acad. Emerg. Med. 2004, 11, 87–93. [Google Scholar]
- Barrett, B.; Nitze, I.; Green, S. Assessment of Multi-Temporal, Multi-Sensor Radar and Ancillary Spatial Data for Grasslands Monitoring in Ireland Using Machine Learning Approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef]
- Wadoux, A.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Sharifi, A.; Mahdipour, H.; Moradi, E.; Tariq, A. Agricultural Field Extraction with Deep Learning Algorithm and Satellite Imagery. J. Indian Soc. Remote Sens. 2022, 50, 417–423. [Google Scholar] [CrossRef]
- Pritt, M.; Chern, G. Satellite Image Classification with Deep Learning. In Proceedings of the 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 10–12 October 2017. [Google Scholar] [CrossRef]
- Odebiri, O.; Odindi, J.; Mutanga, O. Basic and Deep Learning Models in Remote Sensing of Soil Organic Carbon Estimation: A Brief Review. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102389. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of Forest Aboveground Biomass and Uncertainties by Integration of Field Measurements, Airborne LiDAR, and SAR and Optical Satellite Data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Svoray, T.; Shoshany, M.; Curran, P.J.; Foody, G.M.; Perevolotsky, A. Relationship between Green Leaf Biomass Volumetric Density and ERS-2 SAR Backscatter of Four Vegetation Formations in the Semi-Arid Zone of Israel. Int. J. Remote Sens. 2001, 22, 1601–1607. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-Contextual Information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Hamdan, O.; Hasmadi, I.M.; Aziz, H.K.; Norizah, K.; Zulhaidi, M.H. L-Band Saturation Level for Aboveground Biomass of Dipterocarp Forests in Peninsular Malaysia. J. Trop. For. Sci. 2015, 27, 388–399. [Google Scholar]
Sensor | Number of Studies |
---|---|
MODIS | 23 |
Spectroradiometer | 23 |
Landsat 8 | 18 |
Sentinel-2 | 13 |
AVHRR | 4 |
Landsat-5 | 4 |
Landsat-7 ETM+ | 4 |
SPOT-5 | 4 |
SPOT VGT | 4 |
WorldView-2 | 4 |
ENVISAT ASAR | 4 |
UAV | 4 |
WorldView-3 | 3 |
PROBA-V | 3 |
Lidar | 3 |
Sentinel-1 | 3 |
TerraSAR-X | 2 |
European Remote-Sensing (ERS-1) | 2 |
ALOS PALSAR | 2 |
HJ1B-CCD2 | 2 |
RADARSAT | 2 |
COSMO-SkyMed (CSK) | 1 |
Hyperion | 1 |
Indian Remote Sensing | 1 |
MERIS | 1 |
HyMap | 1 |
Apex | 1 |
SSMI | 1 |
Ultrasonic distance sensor | 1 |
QuikScat | 1 |
SPOT-4 | 1 |
Digital camera | 1 |
SEA WIND | 1 |
Authors | Sensors | Country | Grassland Type |
---|---|---|---|
Sang et al. [34] | ENVISAT-ASAR | China | Steppe |
Moreau and Le Toan [35] | ERS-1 | Bolivia | Savannah |
Wang et al. [36] | ENVISAT-ASAR and ALOS POLSAR | Australia | Pampas |
Svoray and Shoshany [15] | ERS-1 | Israel | Steppe |
Hajj et al. [37] | TERRASAR-X-and COSMO SKYMED | France | Steppe |
Schmidt et al. [38] | TERRASAR-X- | Australia | Savannah |
[26] | TERRASAR-X | Ireland | Steppe |
Bao et al. [39] | Sentinel-1 | China | Pampas |
Naidoo et al. [40] | Sentinel-1 | South Africa | Savannah |
Braun et al. [41] | ENVISAT-ASAR, ALOS POLSAR and SSMI | Senegal | Savannah |
Frolking et al. [42] | SEA WIND | United States | Prairie |
Wang et al. [43] | Sentinel-1 | United States | Prairie |
Li and Guo, 2017 [44] | RADARSAT | Canada | Prairie |
Variable Name | Expression/Spectral Bands | Example Study |
---|---|---|
Backscatter | HH | Ali et al. [27] |
Canopy Sward Height | N/A | Wijesingha et al. [45] |
Enhanced Vegetation Index (EVI) | (R851 − R655)/(R851 + 6R655 − 7.8R482 + 1) | Meng et al. [12] |
Fraction of Photosynthetically Active Radiation (FAPAR) | FAPAR = 1 − t − r + trs | Schmidt et al. [38] |
Modified Soil-Adjusted Vegetation Index (MSAVI) | [2NIR + 1 − ((2NIR + 1)2 − 8(NIR − R)) 0.5]/2 | Jiang et al. [46] |
Normalised Difference Vegetation Index (NDVI) | NDVI = − (infrared band − red band)/(infrared band + red band) | Ikeda et al. [47] |
Normalised Band Depth Index (NBDI) | NBDI = BD − Dc/BD + D | Ullah et al. [48] |
Ratio Vegetation Index (RVI) | RVI = NIR/Red | Ding et al. [49] |
Red Edge-Based NDVI | (R750 − R705)/(R750 + R705) | Li and Guo [50] |
Red Edge-Based Simple Ratio | (R708 − R755)/(R708 + R755) | Mutanga and Skidmore [16] |
Simple Ratio (SR) | SR = NIR/Red | Ren and Feng [51] |
Soil-Adjusted Vegetation Index (SAVI) | 1 + L × (RNIR − RRED)/(RNIR + RRED) + L | Ren and Feng [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maake, R.; Mutanga, O.; Chirima, G.; Sibanda, M. Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review. Geomatics 2023, 3, 478-500. https://doi.org/10.3390/geomatics3040026
Maake R, Mutanga O, Chirima G, Sibanda M. Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review. Geomatics. 2023; 3(4):478-500. https://doi.org/10.3390/geomatics3040026
Chicago/Turabian StyleMaake, Reneilwe, Onisimo Mutanga, George Chirima, and Mbulisi Sibanda. 2023. "Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review" Geomatics 3, no. 4: 478-500. https://doi.org/10.3390/geomatics3040026
APA StyleMaake, R., Mutanga, O., Chirima, G., & Sibanda, M. (2023). Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review. Geomatics, 3(4), 478-500. https://doi.org/10.3390/geomatics3040026