Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,201)

Search Parameters:
Keywords = satellite data analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1935 KB  
Article
Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020
by Elvira Kovač-Andrić, Vlatka Gvozdić, Brunislav Matasović, Nikola Sakač and Amaury de Souza
Atmosphere 2025, 16(10), 1159; https://doi.org/10.3390/atmos16101159 - 3 Oct 2025
Abstract
This study analyses the stratospheric concentrations of ozone (O3) and nitrogen dioxide (NO2) over a 16-year period (2005 to 2020) over central Brazil using satellite data with the aim of determining the influence of NO2 on ozone distribution [...] Read more.
This study analyses the stratospheric concentrations of ozone (O3) and nitrogen dioxide (NO2) over a 16-year period (2005 to 2020) over central Brazil using satellite data with the aim of determining the influence of NO2 on ozone distribution and the impact of fires and volcanic eruptions on these gases. The analysis shows that ozone and NO2 follow seasonal patterns, with the highest concentrations occurring in September and October and the lowest from January to June. A positive correlation was found between the concentrations of ozone and NO2, and the results of the Fourier analysis indicate semi-annual and annual cycles in the concentrations of these gases. Although there was an increase in the number of fires in the last 11 years of the study, this increase did not lead to significant changes in ozone or NO2 concentrations, indicating the stability of these parameters in the observed area. It is presumed that the reason for the lack of changes is lower intensity of fires despite their increased number. Regarding wind patterns, it is observed that they do not differ much either which is in accordance with the fact that the monitored area is fairly close to the equator. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

28 pages, 11737 KB  
Article
Comparative Evaluation of SNO and Double Difference Calibration Methods for FY-3D MERSI TIR Bands Using MODIS/Aqua as Reference
by Shufeng An, Fuzhong Weng, Xiuzhen Han and Chengzhi Ye
Remote Sens. 2025, 17(19), 3353; https://doi.org/10.3390/rs17193353 - 2 Oct 2025
Abstract
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous [...] Read more.
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous Nadir Overpass (SNO) and Double Difference (DD)—for the thermal infrared (TIR) bands of FY-3D MERSI. MODIS/Aqua serves as the reference sensor, while radiative transfer simulations driven by ERA5 inputs are generated with the Advanced Radiative Transfer Modeling System (ARMS) to support the analysis. The results show that SNO performs effectively when matchup samples are sufficiently large and globally representative but is less applicable under sparse temporal sampling or orbital drift. In contrast, the DD method consistently achieves higher calibration accuracy for MERSI Bands 24 and 25 under clear-sky conditions. It reduces mean biases from ~−0.5 K to within ±0.1 K and lowers RMSE from ~0.6 K to 0.3–0.4 K during 2021–2022. Under cloudy conditions, DD tends to overcorrect because coefficients derived from clear-sky simulations are not directly transferable to cloud-covered scenes, whereas SNO remains more stable though less precise. Overall, the results suggest that the two methods exhibit complementary strengths, with DD being preferable for high-accuracy calibration in clear-sky scenarios and SNO offering greater stability across variable atmospheric conditions. Future work will validate both methods under varied surface and atmospheric conditions and extend their use to additional sensors and spectral bands. Full article
Show Figures

Figure 1

33 pages, 7835 KB  
Article
PyGEE-ST-MEDALUS: AI Spatiotemporal Framework Integrating MODIS and Sentinel-1/-2 Data for Desertification Risk Assessment in Northeastern Algeria
by Zakaria Khaldi, Jingnong Weng, Franz Pablo Antezana Lopez, Guanhua Zhou, Ilyes Ghedjatti and Aamir Ali
Remote Sens. 2025, 17(19), 3350; https://doi.org/10.3390/rs17193350 - 1 Oct 2025
Abstract
Desertification threatens the sustainability of dryland ecosystems, yet many existing monitoring frameworks rely on static maps, coarse spatial resolution, or lack temporal forecasting capacity. To address these limitations, this study introduces PyGEE-ST-MEDALUS, a novel spatiotemporal framework combining the full MEDALUS desertification model with [...] Read more.
Desertification threatens the sustainability of dryland ecosystems, yet many existing monitoring frameworks rely on static maps, coarse spatial resolution, or lack temporal forecasting capacity. To address these limitations, this study introduces PyGEE-ST-MEDALUS, a novel spatiotemporal framework combining the full MEDALUS desertification model with deep learning (CNN, LSTM, DeepMLP) and machine learning (RF, XGBoost, SVM) techniques on the Google Earth Engine (GEE) platform. Applied across Tebessa Province, Algeria (2001–2028), the framework integrates MODIS and Sentinel-1/-2 data to compute four core indices—climatic, soil, vegetation, and land management quality—and create the Desertification Sensitivity Index (DSI). Unlike prior studies that focus on static or spatial-only MEDALUS implementations, PyGEE-ST-MEDALUS introduces scalable, time-series forecasting, yielding superior predictive performance (R2 ≈ 0.96; RMSE < 0.03). Over 71% of the region was classified as having high to very high sensitivity, driven by declining vegetation and thermal stress. Comparative analysis confirms that this study advances the state-of-the-art by integrating interpretable AI, near-real-time satellite analytics, and full MEDALUS indicators into one cloud-based pipeline. These contributions make PyGEE-ST-MEDALUS a transferable, efficient decision-support tool for identifying degradation hotspots, supporting early warning systems, and enabling evidence-based land management in dryland regions. Full article
Show Figures

Graphical abstract

21 pages, 1743 KB  
Article
A Simple Aridity Index to Monitor Vineyard Health: Evaluating the De Martonne Index in the Iberian Peninsula
by Nazaret Crespo-Cotrina, Luís Pádua, André M. Claro, André Fonseca, Francisco J. Rebollo, Francisco J. Moral, Luis L. Paniagua, Abelardo García-Martín, João A. Santos and Helder Fraga
Appl. Sci. 2025, 15(19), 10605; https://doi.org/10.3390/app151910605 - 30 Sep 2025
Abstract
Viticulture in the Iberian Peninsula is increasingly threatened by climate change, particularly rising temperatures and prolonged droughts. This study evaluates the ability of the De Martonne Index (DMI), a simple climatic aridity index based solely on temperature and precipitation, to serve as a [...] Read more.
Viticulture in the Iberian Peninsula is increasingly threatened by climate change, particularly rising temperatures and prolonged droughts. This study evaluates the ability of the De Martonne Index (DMI), a simple climatic aridity index based solely on temperature and precipitation, to serve as a proxy for vineyard health over a 30-year period (1993–2022). Vineyard health was assessed using the Vegetation Health Index (VHI), derived from satellite remote sensing data. DMI values were computed from bias-corrected ERA5-Land data, and VHI composites were generated from NOAA satellite imagery. Vineyard-specific outputs were isolated using land cover datasets, and a contingency analysis compared drought classifications from both indices. Results show a strong spatio-temporal correspondence between low DMI values and reduced VHI, with agreement rates for severe/extreme drought conditions reaching up to 56% under the most restrictive DMI thresholds. In the analyzed period, years such as 1995, 1997, 2005, 2009, and 2012, showed over 20% of vineyard areas affected by moderate-to-severe/extreme drought. The spatial analysis revealed that northern and northwestern regions of the peninsula experienced less drought stress, while central and southern areas were more frequently affected. This approach demonstrates that the DMI alone can provide a reliable assessment of vineyard health, potentially enabling its direct use with seasonal forecasts, which are generally available for temperature and precipitation, to anticipate drought impacts and support adaptation in viticulture. The proposed methodology is scalable and transferable to other crops and regions, serving as a tool for climate adaptation strategies in viticulture. Full article
24 pages, 108802 KB  
Article
Enhanced Garlic Crop Identification Using Deep Learning Edge Detection and Multi-Source Feature Optimization with Random Forest
by Junli Zhou, Quan Diao, Xue Liu, Hang Su, Zhen Yang and Zhanlin Ma
Sensors 2025, 25(19), 6014; https://doi.org/10.3390/s25196014 - 30 Sep 2025
Abstract
Garlic, as an important economic crop, plays a crucial role in the global agricultural production system. Accurate identification of garlic cultivation areas is of great significance for agricultural resource allocation and industrial development. Traditional crop identification methods face challenges of insufficient accuracy and [...] Read more.
Garlic, as an important economic crop, plays a crucial role in the global agricultural production system. Accurate identification of garlic cultivation areas is of great significance for agricultural resource allocation and industrial development. Traditional crop identification methods face challenges of insufficient accuracy and spatial fragmentation in complex agricultural landscapes, limiting their effectiveness in precision agriculture applications. This study, focusing on Kaifeng City, Henan Province, developed an integrated technical framework for garlic identification that combines deep learning edge detection, multi-source feature optimization, and spatial constraint optimization. First, edge detection training samples were constructed using high-resolution Jilin-1 satellite data, and the DexiNed deep learning network was employed to achieve precise extraction of agricultural field boundaries. Second, Sentinel-1 SAR backscatter features, Sentinel-2 multispectral bands, and vegetation indices were integrated to construct a multi-dimensional feature space containing 28 candidate variables, with optimal feature subsets selected through random forest importance analysis combined with recursive feature elimination techniques. Finally, field boundaries were introduced as spatial constraints to optimize pixel-level classification results through majority voting, generating field-scale crop identification products. The results demonstrate that feature optimization improved overall accuracy from 0.91 to 0.93 and the Kappa coefficient from 0.8654 to 0.8857 by selecting 13 optimal features from 28 candidates. The DexiNed network achieved an F1-score of 94.16% for field boundary extraction. Spatial optimization using field constraints effectively eliminated salt-and-pepper noise, with successful validation in Kaifeng’s garlic. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

14 pages, 5022 KB  
Article
PM2.5 Concentration Prediction Model Utilizing GNSS-PWV and RF-LSTM Fusion Algorithms
by Mingsong Zhang, Li Li, Galina Dick, Jens Wickert, Huafeng Ma and Zehua Meng
Atmosphere 2025, 16(10), 1147; https://doi.org/10.3390/atmos16101147 - 30 Sep 2025
Abstract
Inadequate screening of features and insufficient extraction of multi-source time-series data potentially result in insensitivity to historical noise and poor extraction of features for PM2.5 concentration prediction models. Precipitable water vapor (PWV) data obtained from the Global Navigation Satellite System (GNSS), along [...] Read more.
Inadequate screening of features and insufficient extraction of multi-source time-series data potentially result in insensitivity to historical noise and poor extraction of features for PM2.5 concentration prediction models. Precipitable water vapor (PWV) data obtained from the Global Navigation Satellite System (GNSS), along with air quality and meteorological data collected in Suzhou city from February 2021 to July 2023, were employed in this study. The Spearman correlation analysis and Random Forest (RF) feature importance assessment were used to select key input features, including PWV, PM10, O3, atmospheric pressure, temperature, and wind speed. Based on RF, Long Short-Term Memory (LSTM), and Multilayer Perceptron (MLP) algorithms, four PM2.5 concentration prediction models were developed using sliding window and fusion algorithms. Experimental results show that the root mean square error (RMSE) of the 1 h PM2.5 concentration prediction model using the RF-LSTM fusion algorithm is 4.36 μg/m3, while its mean absolute error (MAE) and mean absolute percentage error (MAPE) values are 2.63 μg/m3 and 9.3%. Compared to the individual LSTM and MLP algorithms, the RMSE of the RF-LSTM PM2.5 prediction model improves by 34.7% and 23.2%, respectively. Therefore, the RF-LSTM fusion algorithm significantly enhances the prediction accuracy of the 1 h PM2.5 concentration model. As for the 2 h, 3 h, 6 h, 12 h, and 24 h PM2.5 prediction models using the RF-LSTM fusion algorithm, their RMSEs are 5.6 μg/m3, 6.9 μg/m3, 9.9 μg/m3, 12.6 μg/m3, and 15.3 μg/m3, and their corresponding MAPEs are 13.8%, 18.3%, 28.3%, 38.2%, and 48.2%, respectively. Their prediction accuracy decreases with longer forecasting time, but they can effectively capture the fluctuation trends of future PM2.5 concentrations. The RF-LSTM PM2.5 prediction models are efficient and reliable for early warning systems in Suzhou city. Full article
(This article belongs to the Special Issue GNSS Remote Sensing in Atmosphere and Environment (2nd Edition))
Show Figures

Figure 1

18 pages, 4493 KB  
Article
Study on the Ecological Effect of Acoustic Rain Enhancement: A Case Study of the Experimental Area of the Yellow River Source Where Agriculture and Animal Husbandry Are Intertwined
by Guoxin Chen, Jinzhao Wang, Zunfang Liu, Suonam Kealdrup Tysa, Qiong Li and Tiejian Li
Land 2025, 14(10), 1971; https://doi.org/10.3390/land14101971 - 30 Sep 2025
Abstract
The quantitative assessment of acoustic rain enhancement technology is highly significant for improving the ecological environment. A scientific and accurate evaluation of its operational effects provides an important basis for continued government and public support and investment in artificial weather modification activities. To [...] Read more.
The quantitative assessment of acoustic rain enhancement technology is highly significant for improving the ecological environment. A scientific and accurate evaluation of its operational effects provides an important basis for continued government and public support and investment in artificial weather modification activities. To effectively analyze the effects of acoustic rain enhancement on the vegetation of grassland ecosystems in arid and semi-arid areas and to clarify its mechanism, this study constructed eight vegetation indices based on Sentinel-2 satellite data. A comprehensive assessment of the changes in vegetation within the grassland ecosystem of the experimental zone was conducted by analyzing spatiotemporal distribution patterns, double-ratio analysis, and difference value comparisons. The results showed that (1) following the acoustic rain enhancement experiment, vegetation growth improved significantly. The mean values of all eight vegetation indices increased more substantially than before the experiment, with kNDVI showing the most notable gain. The proportion of the zone with kNDVI values greater than 0.417 increased from 52.62% to 71.59%, representing a relative increase of 36.05%. (2) The rain enhancement experiment significantly raised the values of eight vegetation indices: kNDVI increased by 0.042 (18.68%), ARVI by 0.043 (18.67%), and the remaining indices also increased to varying degrees (9.51–12.34%). (3) Vegetation improvement was more pronounced in areas closer to the acoustic rain enhancement site. Under consistent climate conditions, vegetation growth in the experimental zone showed significant enhancement. This study demonstrates that acoustic rain enhancement technology can mitigate drought and low rainfall, improve grassland ecosystem services, and provide a valuable foundation for ecological restoration and aerial water resource utilization in arid and semi-arid regions. Full article
Show Figures

Figure 1

24 pages, 8871 KB  
Article
Satellite-Derived Multi-Temporal Palm Trees and Urban Cover Changes to Understand Drivers of Changes in Agroecosystem in Al-Ahsa Oasis Using a Spectral Mixture Analysis (SMA) Model
by Abdelrahim Salih, Abdalhaleem Hassaballa and Abbas E. Rahma
Agriculture 2025, 15(19), 2043; https://doi.org/10.3390/agriculture15192043 - 29 Sep 2025
Abstract
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, [...] Read more.
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, has placed enormous pressure on the palm-growing area and led to the loss of productive land. These challenges highlight the need for robust, integrative methods to assess their impact on the agroecosystem. Here, we analyze spatiotemporal fluctuations in vegetation cover and its effect on the agroecosystem to determine the potential influencing factors. Data from Landsat satellites, including TM (Thematic mapper of Landsat 5), ETM+ (Enhanced Thematic mapper plus of Landsat 7), and OIL (Landsat 8) and Sentinel-2A imageries were used for analysis, while GeoEye-1 satellite images as well as socioeconomic data were applied for result validation. Principal Component Analysis (PCA) was applied to extract pure endmembers, facilitating Spectral Mixture Analysis (SMA) for mapping vegetation and urban fractions. The spatiotemporal change patterns were analyzed using time- and space-oriented detection algorithms. Results indicated that vegetation fraction patterns differed significantly; pixels with high fraction values declined significantly from 1990 to 2020. The mean vegetation fraction value varied from 0.79 to 0.37. This indicates that a reduction in palm trees was quickly occurring at a decreasing rate of −14.24%. Results also suggest that vegetation fractions decreased significantly between 1990 and 2020, and this decrease had the greatest effect on the agroecosystem situation of the Oasis. We assessed urban sprawl, and our results indicated substantial variability in average urban fractions: 0.208%, 0.247%, 0.699%, and 0.807% in 1990, 2000, 2010, and 2020, respectively. Overall, the data revealed an association between changes in palm tree fractions and urban ones, supporting strategic vegetation and/or agricultural management to enhance the agroecosystem in an arid Oasis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 1584 KB  
Article
Ionospheric Information-Assisted Spoofing Detection Technique and Performance Evaluation for Dual-Frequency GNSS Receiver
by Zhenyang Wu, Haixuan Fu, Xiaoxuan Xu, Yuhao Xiao, Yimin Ma, Ziheng Zhou and Hong Li
Electronics 2025, 14(19), 3865; https://doi.org/10.3390/electronics14193865 - 29 Sep 2025
Abstract
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle [...] Read more.
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle to replicate authentic total electron content (TEC) along each signal propagation path accurately and in a timely manner. In contrast, widespread dual-frequency (DF) receivers with access to the internet can validate local TEC measurements against external references, establishing a pivotal spoofing detection distinction. Here, we propose an Ionospheric Information-Assisted Spoofing Detection Technique (IIA-SDT), exploiting the inherent consistency between TEC values derived from DF pseudo-range measurements and external references in spoofing-free scenarios. Spoofing probably disrupts this consistency: in simulator-based full-channel spoofing where all channels are spoofed, the inaccuracies of the offline ionospheric model used by the spoofer inevitably cause TEC mismatches; in partial-channel spoofing where the spoofer fails to control all channels, an unintended PVT deviation is induced, which also causes TEC deviations due to the spatial variation of the ionosphere. Basic principles and theoretical analysis of the proposed IIA-SDT are elaborated in the paper. Simulations using ionospheric data collected from 2023 to 2024 at a typical mid-latitude location are conducted to evaluate IIA-SDT performance under various parameter configurations. With a window length of 5 s and satellite number of 8, the annual average detection probability approximates 75% at a false alarm rate of 1×103, with observable temporal variations. Field experiments across multiple scenarios further validate the spoofing detection capability of the proposed method. Full article
Show Figures

Figure 1

21 pages, 20186 KB  
Article
Study on Ionospheric Depletion and Traveling Ionospheric Disturbances Induced by Rocket Launches Using Multi-Source GNSS Observations and the MRMIT Method
by Jianghe Chen, Pan Xiong, Ming Ou, Ting Zhang, Xiaoran Zhang, Yuqi Lin and Jiahao Zhu
Remote Sens. 2025, 17(19), 3327; https://doi.org/10.3390/rs17193327 - 28 Sep 2025
Abstract
Rocket launches constitute a major anthropogenic source of disturbance in the near-Earth space environment, inducing significant ionospheric perturbations through both chemical and dynamic mechanisms. This study presents a systematic analysis of ionospheric disturbances—specifically, electron density depletion and traveling ionospheric disturbances (TIDs)—triggered by four [...] Read more.
Rocket launches constitute a major anthropogenic source of disturbance in the near-Earth space environment, inducing significant ionospheric perturbations through both chemical and dynamic mechanisms. This study presents a systematic analysis of ionospheric disturbances—specifically, electron density depletion and traveling ionospheric disturbances (TIDs)—triggered by four rocket launches from China’s Jiuquan Satellite Launch Center between 2023 and 2025. Using high-rate, multi-constellation GNSS data from 370 ground stations and BeiDou GEO satellites, we extracted total electron content (TEC) signals and applied advanced detection methods, including the Multi-Rolling-Multi-Image-Tracking (MRMIT) algorithm for depletion identification and a parametric integration framework for quantitative comparison. Our results reveal that all launches produced rapid TEC depletions, evolving along the rocket trajectory and peaking within approximately 30 min. Launch mass was the dominant factor controlling depletion intensity, while propellant chemistry (UDMH-based vs. liquid oxygen/methane) and local time/background TEC levels modulated the recovery rate and spatial extent. Additionally, distinct TIDs exhibiting wave-like and V-shaped structures were observed, propagating outward from the trajectory with latitudinal variations in amplitude and waveform. These findings highlight the critical roles of rocket attributes and ambient ionospheric conditions in shaping disturbance characteristics. The study underscores the value of multi-source GNSS networks and novel methodologies in monitoring anthropogenic space weather effects, with implications for GNSS performance and sustainable space operations. Full article
(This article belongs to the Special Issue Advances in GNSS Remote Sensing for Ionosphere Observation)
Show Figures

Figure 1

33 pages, 10753 KB  
Article
Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum
by Temenuzhka Spasova, Andrey Stoyanov, Adlin Dancheva and Daniela Avetisyan
Remote Sens. 2025, 17(19), 3326; https://doi.org/10.3390/rs17193326 - 28 Sep 2025
Abstract
The study presents a spectral assessment and analysis of various data and methods for snow cover analysis in different ranges of the electromagnetic spectrum through a differentiated approach applied to the territory of Bansko, Pirin Mountain. The aim of the presented research is [...] Read more.
The study presents a spectral assessment and analysis of various data and methods for snow cover analysis in different ranges of the electromagnetic spectrum through a differentiated approach applied to the territory of Bansko, Pirin Mountain. The aim of the presented research is to assess the effectiveness and accuracy of satellite observations together with field (in situ) measurements and to create a model of an integrated methodology. To achieve this goal, several indices, such as land surface temperature (LST), optical indices, Tasseled Cap Transformation (TCT) with wetness component (TCW), High-Resolution (HR) imagery, and Synthetic Aperture Radar (SAR) measurements, were analyzed. The results of the analysis proved that combining satellite and field data through a mobile thermal camera provides an accurate and comprehensive picture of snow conditions in high mountain regions for powder, hard-packed and wet snow. As the most important, there is the verification and validation of the results through the so-called regression analysis of the different data types, through which multiple correlations (over 10) were established, both in data from Sentinel 1SAR, Sentinel 2MSI, Sentinel 3 SLSTR, and PlanetScope. The results showed the effectiveness of optical indices for hard and fresh snow and radar and LST data for wet snow. The results can be used to improve snow surveys, event prediction (e.g., avalanches), and the interpretation of spectral analysis of snow. The study does not aim to perform a temporal analysis; all satellite data is from the temporal period 30 December 2024–5 January 2025. Full article
Show Figures

Figure 1

20 pages, 4846 KB  
Article
Public Garden Environmental Factors Impact on Land Surface Temperatures of the Adjacent Urban Areas in an Arid Region
by Marouane Samir Guedouh, Kamal Youcef and Rabah Hadji
Urban Sci. 2025, 9(10), 391; https://doi.org/10.3390/urbansci9100391 - 28 Sep 2025
Abstract
Urban growth in hot, arid regions intensifies the urban heat island effect, making green spaces vital for climate mitigation. This research investigates the impact of public gardens on the surrounding urban thermal environment and on the mitigation of the urban heat island (UHI) [...] Read more.
Urban growth in hot, arid regions intensifies the urban heat island effect, making green spaces vital for climate mitigation. This research investigates the impact of public gardens on the surrounding urban thermal environment and on the mitigation of the urban heat island (UHI) in a hot arid region. This study selects an important public garden in Biskra, the “5 July 1962” Garden, as a case study of significance at the urban scale. To achieve research objectives, onsite measurement using a digital measurement device (5-in-1 Environmental Meter “Extech EN300”) and satellite remote sensing data from LANDSAT8 are employed, capturing summer measurements of key parameters and indices: Land Surface Temperature (LST), Air Temperature (AT), Relative Humidity (RH), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Difference Moisture Index (NDMI). The analysis and correlation of these indices with the LST values allow us to evaluate the zoning and distance impacts of the garden studied. Land surface temperature rises gradually from the garden outward, peaking in the North-East with the strongest heat island effect and remaining lower in the cooler, vegetation-rich South-West. The results reveal that air temperature is the primary driver of land surface temperature (72% impact), while relative humidity (17.3%), vegetation index (7.8%), moisture index (2.9%), and water index (1.7%) contribute to cooling, with vegetation and moisture reducing surface temperatures through shading, transpiration, and latent heat exchange. Full article
Show Figures

Figure 1

25 pages, 17492 KB  
Article
Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah
by Elliot S. Shayle and Dirk Zeuss
Remote Sens. 2025, 17(19), 3323; https://doi.org/10.3390/rs17193323 - 28 Sep 2025
Abstract
Drought-induced forest mortality threatens biodiversity globally, particularly in arid, and semi-arid woodlands. The continual development of remote sensing approaches enables enhanced monitoring of forest health. Herein, we investigate the ability of a limited ground-truthed canopy dieback dataset and satellite image derived Normalised Difference [...] Read more.
Drought-induced forest mortality threatens biodiversity globally, particularly in arid, and semi-arid woodlands. The continual development of remote sensing approaches enables enhanced monitoring of forest health. Herein, we investigate the ability of a limited ground-truthed canopy dieback dataset and satellite image derived Normalised Difference Vegetation Index (NDVI) to make inferences about forest health as temporal and spatial extent from its collection increases. We used ground-truthed observations of relative canopy mortality from the Pinus edulis-Juniperus osteosperma woodlands of southeastern Utah, United States of America, collected after the 2017–2018 drought, and PlanetScope satellite imagery. Through assessing different modelling approaches, we found that NDVI is significantly associated with sitewide mean canopy dieback, with beta regression being the most optimal modelling framework due to the bounded nature of the variable relative canopy dieback. Model performance was further improved by incorporating the proportion of J. osteosperma as an interaction term, matching the reports of species-specific differential dieback. A time-series analysis revealed that NDVI retained its predictive power for our whole testing period; four years after the initial ground-truthing, thus enabling retrospective inference of defoliation and regreening. A spatial random forest model trained on our ground-truthed observations accurately predicted dieback across the broader landscape. These findings demonstrate that modest field campaigns combined with high-resolution satellite data can generate reliable, scalable insights into forest health, offering a cost-effective method for monitoring drought-impacted ecosystems under climate change. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

19 pages, 2205 KB  
Article
Final Implementation and Performance of the Cheia Space Object Tracking Radar
by Călin Bîră, Liviu Ionescu and Radu Hobincu
Remote Sens. 2025, 17(19), 3322; https://doi.org/10.3390/rs17193322 - 28 Sep 2025
Abstract
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of [...] Read more.
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of true spatial test objects orbiting Earth. The radar is based on two decommissioned 32 m satellite communication antennas already present at the Cheia Satellite Communication Center, that were retrofitted for radar operation in a quasi-monostatic architecture. A Linear Frequency Modulated Continuous Wave (LFMCW) Radar design was implemented, using low transmitted power (2.5 kW) and advanced software-defined signal processing for detection and tracking of Low Earth Orbit (LEO) targets. System validation involved dry-run acceptance tests and calibration campaigns with known reference satellites. The radar demonstrated accurate measurements of range, Doppler velocity, and angular coordinates, with the capability to detect objects with radar cross-sections as low as 0.03 m2 at slant ranges up to 1200 km. Tracking of medium and large Radar Cross Section (RCS) targets remained robust under both fair and adverse weather conditions. This work highlights the feasibility of re-purposing legacy satellite infrastructure for SST applications. The Cheia radar provides a cost-effective, EUSST-compliant performance solution using primarily commercial off-the-shelf components. The system strengthens the EU SST network while demonstrating the advantages of LFMCW radar architectures in electromagnetically congested environments. Full article
Show Figures

Figure 1

21 pages, 22622 KB  
Article
Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations
by Jing Fan, Chao Yu, Yichen Li, Ying Zhang, Meng Fan, Jinhua Tao and Liangfu Chen
Remote Sens. 2025, 17(19), 3321; https://doi.org/10.3390/rs17193321 - 27 Sep 2025
Abstract
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of [...] Read more.
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx)—such as the formaldehyde-to-nitrogen dioxide ratio (FNR, defined as HCHO/NO2, where HCHO represents VOCs and NO2 represents NOx)—is one of the most widely used satellite-based indicators. Recent studies have highlighted glyoxal (CHOCHO) as another critical ozone precursor, prompting the proposal of the glyoxal-to-nitrogen dioxide ratio (GNR, CHOCHO/NO2) as an alternative metric. This study systematically compares the performance of FNR and GNR across four major urban agglomerations in China: Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing (CY) region, by integrating satellite remote sensing with ground-based observations. Results reveal that both indices exhibit consistent spatial trends in OFS distribution, transitioning from VOC-limited regimes in urban centers to NOx-limited regimes in surrounding suburban areas. However, differences emerge in threshold values and classification outcomes. During summer, FNR identifies urban areas as transitional regimes (or VOC-limited in regions such as YRD and PRD), while suburban areas are classified as NOx-limited. In contrast, GNR, which shows heightened sensitive to anthropogenic VOCs (AVOCs), exhibits a more restricted spatial extent in the transition regimes. By autumn, most urban areas shift toward VOC-limited regimes, while suburban regions remain NOx-limited. Thresholds for both VOCs and NOx increase during this period, with GNR demonstrating stronger sensitivity to NOx. These findings underscore that the choice between FNR and GNR directly influences OFS determination, as their differing responses to biogenic and anthropogenic emissions lead to different conclusions. Future research should focus on integrating the complementary strengths of both indices to develop a more robust OFS identification method, thereby providing a theoretical basis for formulating effective ozone control strategies. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Trace Gases and Air Quality)
Show Figures

Figure 1

Back to TopTop