Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = sarcomere protein disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 - 2 Aug 2025
Viewed by 199
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 10557 KiB  
Article
Formation of an Amyloid-like Structure During In Vitro Interaction of Titin and Myosin-Binding Protein C
by Tatiana A. Uryupina, Liya G. Bobyleva, Nikita V. Penkov, Maria A. Timchenko, Azat G. Gabdulkhakov, Anna V. Glyakina, Vadim V. Rogachevsky, Alexey K. Surin, Oxana V. Galzitskaya, Ivan M. Vikhlyantsev and Alexander G. Bobylev
Int. J. Mol. Sci. 2025, 26(14), 6910; https://doi.org/10.3390/ijms26146910 - 18 Jul 2025
Viewed by 252
Abstract
Protein association and aggregation are fundamental processes that play critical roles in a variety of biological phenomena from cell signaling to the development of incurable diseases, including amyloidoses. Understanding the basic biophysical principles governing protein aggregation processes is of crucial importance for developing [...] Read more.
Protein association and aggregation are fundamental processes that play critical roles in a variety of biological phenomena from cell signaling to the development of incurable diseases, including amyloidoses. Understanding the basic biophysical principles governing protein aggregation processes is of crucial importance for developing treatment strategies for diseases associated with protein aggregation, including sarcopenia, as well as for the treatment of pathological processes associated with the disruption of functional protein complexes. This work, using a set of methods such as atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction, as well as bioinformatics analysis, investigated the structures of complexes formed by titin and myosin-binding protein C (MyBP-C). TEM revealed the formation of morphologically ordered aggregates in the form of beads during co-incubation of titin and MyBP-C under close-to-physiological conditions (175 mM KCl, pH 7.0). AFM showed the formation of a relatively homogeneous film with local areas of relief change. Fluorimetry with thioflavin T, as well as FTIR spectroscopy, revealed signs of an amyloid-like structure, including a signal in the cross-β region. X-ray diffraction showed the presence of a cross-β structure characteristic of amyloid aggregates. Such structural features were not observed in the control samples of the investigated proteins separately. In sarcomeres, these proteins are associated with each other, and this interaction plays a partial role in the formation of a strong sarcomeric cytoskeleton. We found that under physiological ionic-strength conditions titin and MyBP-C form complexes in which an amyloid-like structure is present. The possible functional significance of amyloid-like aggregation of these proteins in muscle cells in vivo is discussed. Full article
Show Figures

Figure 1

16 pages, 560 KiB  
Review
Comprehensive Review: Mavacamten and Aficamten in Hypertrophic Cardiomyopathy
by Helin Savsin and Tomasz Tokarek
Biomedicines 2025, 13(7), 1619; https://doi.org/10.3390/biomedicines13071619 - 1 Jul 2025
Viewed by 940
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease, with an estimated prevalence of 1:600 in the general population, and is associated with significant morbidity. HCM is characterized by left ventricular hypertrophy and interventricular septal thickening due to sarcomere protein gene mutations. [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease, with an estimated prevalence of 1:600 in the general population, and is associated with significant morbidity. HCM is characterized by left ventricular hypertrophy and interventricular septal thickening due to sarcomere protein gene mutations. The recent emergence of cardiac myosin inhibitors (CMIs), specifically mavacamten and aficamten, has introduced a paradigm shift in HCM management by directly targeting the hypercontractile state of the disease. This review comprehensively discusses the molecular mechanisms of mavacamten and aficamten, highlighting their biochemical similarities and differences from available data. It evaluates their reported efficacy in completed clinical trials, such as reducing left ventricular outflow tract (LVOT) obstruction, improving functional capacity, and enhancing quality of life in HCM. It further provides insight and updates to ongoing trials of both CMIs. Finally, it compares and elaborates on the safety profiles of mavacamten and aficamten, discussing their favorable safety profiles shown in completed studies. In current clinical practice, only mavacamten is approved for use, and clinical insights concerning both CMIs are limited, but encouraging. In summary, cardiac myosin inhibitors are a promising class of disease-modifying drugs for HCM with proven short-term safety and efficacy, but limited data are available to fully determine their long-term effects and efficacy in diverse patient populations. Ongoing research is necessary to further explore and define their role in HCM management. Full article
(This article belongs to the Special Issue Progress in Cardiovascular Pharmacology)
Show Figures

Figure 1

20 pages, 6091 KiB  
Review
The Role of Cardiac Magnetic Resonance Imaging in the Management of Hypertrophic Cardiomyopathy
by Luca Pugliese, Alessandra Luciano and Marcello Chiocchi
J. Cardiovasc. Dev. Dis. 2025, 12(5), 189; https://doi.org/10.3390/jcdd12050189 - 15 May 2025
Viewed by 808
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy, caused by either sarcomere protein or other gene mutations. It is a complex and highly heterogeneous disorder, with phenotypes ranging from asymptomatic to severe disease, characterized by asymmetric left ventricular (LV) hypertrophy unexplained by [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy, caused by either sarcomere protein or other gene mutations. It is a complex and highly heterogeneous disorder, with phenotypes ranging from asymptomatic to severe disease, characterized by asymmetric left ventricular (LV) hypertrophy unexplained by loading conditions, which is also associated with myocardial fiber disarray, and preserved or increased ejection fraction without LV dilation. Comprehensive personal and family history, physical examination, and ECG testing raise suspicion of HCM, and echocardiogram represents the first-line imaging modality for confirming a diagnosis. Moreover, contrast-enhanced cardiac magnetic resonance (CMR) imaging has increasingly emerged as a fundamental diagnostic and prognostic tool in HCM management. This article reviews the role of CMR in HCM identification and differentiation from phenotypic mimics, characterization of HCM phenotypes, monitoring of disease progression, evaluation of pre- and post-septal reduction treatments, and selection of candidates for implantable cardioverter-defibrillator. By providing information on cardiac morphology and function and tissue characterization, CMR is particularly helpful in the quantification of myocardial wall thickness, the detection of hypertrophy in areas blind to echocardiogram, subtle morphologic features in the absence of LV hypertrophy, myocardial fibrosis, and apical aneurysm, the evaluation of LV outflow tract obstruction, and the assessment of LV function in end-stage dilated HCM. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, and Genetics of Cardiomyopathy)
Show Figures

Figure 1

11 pages, 465 KiB  
Article
Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts
by Olga S. Chumakova, Tatiana N. Baklanova and Dmitry A. Zateyshchikov
J. Clin. Med. 2025, 14(3), 866; https://doi.org/10.3390/jcm14030866 - 28 Jan 2025
Cited by 1 | Viewed by 937
Abstract
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. The most frequently mutated genes encode proteins of the thick filament of the sarcomere, while mutations in thin-filament genes are rare findings in HCM cohorts. Recent studies have revealed distinct mechanisms [...] Read more.
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. The most frequently mutated genes encode proteins of the thick filament of the sarcomere, while mutations in thin-filament genes are rare findings in HCM cohorts. Recent studies have revealed distinct mechanisms of disease development linked to thin-filament mutations, highlighting the need for further investigation into this rare subgroup. Methods: A total of 82 adult patients with sarcomere-positive HCM were enrolled. Baseline characteristics and nearly five years of follow-up data from 15 patients with thin-filament mutations were analyzed and compared with those from 67 patients with thick-filament mutations and findings from other studies. Results: Compared to thick-filament HCM patients, individuals with thin-filament mutations exhibited significantly lower maximum left ventricular wall thickness, as measured by both echocardiography (p = 0.024) and cardiac magnetic resonance (p = 0.006), showed more rapid progression to advanced heart failure (HR = 5.6, p = 0.018), and less often underwent septal reduction therapy (p = 0.025). None of the thin-filament HCM patients experienced malignant arrhythmic events. Conclusions: In adults, thin-filament HCM is associated with a ‘thinner’ phenotype and a more rapid progression to advanced heart failure compared to thick-filament HCM. Data on a higher risk of malignant arrhythmias in thin-filament HCM remain controversial between studies and rather depend on the age of onset and genotype in each particular family. Full article
Show Figures

Figure 1

10 pages, 553 KiB  
Review
Unraveling the Genetic Heartbeat: Decoding Cardiac Involvement in Duchenne Muscular Dystrophy
by Valeria Novelli, Francesco Canonico, Renzo Laborante, Martina Manzoni, Alessandra Arcudi, Giulio Pompilio, Eugenio Mercuri, Giuseppe Patti and Domenico D’Amario
Biomedicines 2025, 13(1), 102; https://doi.org/10.3390/biomedicines13010102 - 4 Jan 2025
Viewed by 1408
Abstract
Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in [...] Read more.
Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in 5000 live male births. Identifying the genetic background, in addition to DMD disease-causing variants, is one of the unmet needs in understanding the cardiac disease’s pathogenetic mechanisms and its prognostic implications. The clinical scenario is made even more intricate by the difficulty in predicting the onset and progression of cardiomyopathy, as no clear genotype/phenotype correspondence has been found thus far. The evaluation of genes involved in the onset of primary cardiomyopathies could explore the hypothesis that changes in cytoskeletal and sarcomeric protein function are the modulators of ventricular dysfunction in DMD patients. In the last decade, with the advent of next-generation sequencing (NGS) technology, many disease-causing genes and modifiers have been identified. Assessing the genetic origin of the phenotypic variability of the disease in both the onset and progression of cardiomyopathy in DMD would be extremely helpful in managing these patients. This review article aims to spotlight the genetic background associated with Cardiomyopathy in DMD patients toward a more predictive personalized model of care. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of Muscular Dystrophy)
Show Figures

Figure 1

26 pages, 10465 KiB  
Article
Acetylation-Mediated Post-Translational Modification of Pyruvate Dehydrogenase Plays a Critical Role in the Regulation of the Cellular Acetylome During Metabolic Stress
by Aishwarya Rajakumar, Sarah Nguyen, Nicole Ford, Gbenga Ogundipe, Ethan Lopez-Nowak, Olena Kondrachuk and Manish K Gupta
Metabolites 2024, 14(12), 701; https://doi.org/10.3390/metabo14120701 - 12 Dec 2024
Viewed by 1321
Abstract
Background: Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, [...] Read more.
Background: Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. Methods: To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes. Further, the level of cellular acetylation was determined by Western blotting and affinity chromatography coupled with liquid chromatography–mass spectroscopy. Results: Our study found that the level of cellular acetylation significantly reduced during ischemic conditions compared to normoxic conditions. Further, in mass spectroscopy data, 179 acetylation sites were identified in the proteins in ischemic cardiomyocytes. Among them, acetylation at 121 proteins was downregulated, and 26 proteins were upregulated compared to the control groups. Differentially, acetylated proteins are mainly involved in cellular metabolism, sarcomere structure, and motor activity. Additionally, a protein enrichment study identified that the ischemic condition impacted two major biological pathways: the acetyl-CoA biosynthesis process from pyruvate and the tricarboxylic acid cycle by deacetylation of the associated proteins. Moreover, most differential acetylation was found in the protein pyruvate dehydrogenase complex. Conclusions: Understanding the differential acetylation of cellular protein during ischemia may help to protect against the harmful effect of ischemia on cellular metabolism and cytoskeleton organization. Additionally, our study can help to understand the fine-tuning of proteins at different sites during ischemia. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

32 pages, 15121 KiB  
Article
SMN Deficiency Induces an Early Non-Atrophic Myopathy with Alterations in the Contractile and Excitatory Coupling Machinery of Skeletal Myofibers in the SMN∆7 Mouse Model of Spinal Muscular Atrophy
by María T. Berciano, Alaó Gatius, Alba Puente-Bedia, Alexis Rufino-Gómez, Olga Tarabal, José C. Rodríguez-Rey, Jordi Calderó, Miguel Lafarga and Olga Tapia
Int. J. Mol. Sci. 2024, 25(22), 12415; https://doi.org/10.3390/ijms252212415 - 19 Nov 2024
Cited by 1 | Viewed by 1806
Abstract
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence [...] Read more.
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle. To better understand the potential primary impact of SMN deficiency in muscle, we explored the cellular, ultrastructural, and molecular basis of SMA myopathy in the SMNΔ7 mouse model of severe SMA at an early postnatal period (P0-7) prior to muscle denervation and MN loss (preneurodegenerative [PND] stage). This period contrasts with the neurodegenerative (ND) stage (P8-14), in which MN loss and muscle atrophy occur. At the PND stage, we found that SMN∆7 mice displayed early signs of motor dysfunction with overt myofiber alterations in the absence of atrophy. We provide essential new ultrastructural data on focal and segmental lesions in the myofibrillar contractile apparatus. These lesions were observed in association with specific myonuclear domains and included abnormal accumulations of actin-thin myofilaments, sarcomere disruption, and the formation of minisarcomeres. The sarcoplasmic reticulum and triads also exhibited ultrastructural alterations, suggesting decoupling during the excitation–contraction process. Finally, changes in intermyofibrillar mitochondrial organization and dynamics, indicative of mitochondrial biogenesis overactivation, were also found. Overall, our results demonstrated that SMN deficiency induces early and MN loss-independent alterations in myofibers that essentially contribute to SMA myopathy. This strongly supports the growing body of evidence indicating the existence of intrinsic alterations in the skeletal muscle in SMA and further reinforces the relevance of this peripheral tissue as a key therapeutic target for the disease. Full article
(This article belongs to the Special Issue Molecular Insight into Skeletal Muscle Atrophy and Regeneration)
Show Figures

Graphical abstract

19 pages, 1583 KiB  
Review
Definitional Challenges in Understanding Hypertrophic Cardiomyopathy
by Jan M. Federspiel, Jochen Pfeifer, Frank Ramsthaler, Jan-Christian Reil, Peter H. Schmidt and Vasco Sequeira
Diagnostics 2024, 14(22), 2534; https://doi.org/10.3390/diagnostics14222534 - 13 Nov 2024
Cited by 1 | Viewed by 1486
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy. It is often caused by mutations of genes encoding for sarcomeric or sarcomere-associated proteins. Despite its clinical importance, divergent definitions are published by major cardiology societies. Some regard HCM as a specific genetic disease, [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy. It is often caused by mutations of genes encoding for sarcomeric or sarcomere-associated proteins. Despite its clinical importance, divergent definitions are published by major cardiology societies. Some regard HCM as a specific genetic disease, whereas others define it as a broad ‘spectrum of the thick heart’. The present narrative review aimed to assess both definitions from a pathoanatomical perspective. As a conjoint interdisciplinary and translational approach is needed to further increase knowledge and improve the understanding of HCM, the PubMed database was searched using several advanced search algorithms to explore the perspectives of the (forensic) pathologist, clinician, and basic researcher regarding the difference between the definitions of HCM. This discrepancy between definitions can impact critical data, such as prevalence and mortality rate, and complicate the understanding of the disease. For example, due to the different definitions, research findings regarding molecular changes from studies applying the narrow definition cannot be simply extended to the ‘spectrum’ of HCM. Full article
Show Figures

Figure 1

34 pages, 13933 KiB  
Article
LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency
by Michael V. Zaragoza, Thuy-Anh Bui, Halida P. Widyastuti, Mehrsa Mehrabi, Zixuan Cang, Yutong Sha, Anna Grosberg and Qing Nie
Cells 2024, 13(17), 1479; https://doi.org/10.3390/cells13171479 - 3 Sep 2024
Cited by 2 | Viewed by 3456
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins [...] Read more.
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Graphical abstract

15 pages, 1374 KiB  
Review
Genetic Basis of Hypertrophic Cardiomyopathy in Cats
by Arkadiusz Grzeczka, Szymon Graczyk, Robert Pasławski and Urszula Pasławska
Curr. Issues Mol. Biol. 2024, 46(8), 8752-8766; https://doi.org/10.3390/cimb46080517 - 12 Aug 2024
Cited by 1 | Viewed by 4549
Abstract
Hypertrophic cardiomyopathy (HCM) is a common cardiovascular condition in cats, affecting yth males and females of all ages. Some breeds, such as Ragdolls and Maine Coons, can develop HCM at a young age. The disease has a wide range of progression and severity, [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a common cardiovascular condition in cats, affecting yth males and females of all ages. Some breeds, such as Ragdolls and Maine Coons, can develop HCM at a young age. The disease has a wide range of progression and severity, characterized by various pathological changes in the heart, including arteritis, fibrous tissue deposition, and myocardial cell hypertrophy. Left ventricular hypertrophy, which can restrict blood flow, is a common feature of HCM. The disease may persist into old age and eventually lead to heart failure and increased diastolic pressure. The basis of HCM in cats is thought to be genetic, although the exact mechanisms are not fully understood. Mutations in sarcomeric proteins, in particular myosin-binding protein C (MYBPC3), have been identified in cats with HCM. Two specific mutations, MYBPC3 [R818W] and MYBPC3 [A31P], have been classified as ‘pathogenic’. Other variants in genes such as MYBPC3, TNNT2, ALMS1, and MYH7 are also associated with HCM. However, there are cases where cats without known genetic mutations still develop HCM, suggesting the presence of unknown genetic factors contributing to the disease. This work aims to summarise the new knowledge of HCM in cats and the alterations in cardiac tissue as a result of genetic variants. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

26 pages, 4294 KiB  
Article
The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease
by Nathaniel P. Mohar, Efrem M. Cox, Emily Adelizzi, Steven A. Moore, Katherine D. Mathews, Benjamin W. Darbro and Lori L. Wallrath
Int. J. Mol. Sci. 2024, 25(9), 4930; https://doi.org/10.3390/ijms25094930 - 30 Apr 2024
Cited by 2 | Viewed by 2167
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb–Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to [...] Read more.
Mutations in the LMNA gene-encoding A-type lamins can cause Limb–Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes. Full article
Show Figures

Figure 1

19 pages, 1470 KiB  
Article
Effects of Neuromuscular Electrical Stimulation and Therapeutic Ultrasound on Quadriceps Contracture of Immobilized Rats
by Kanokwan Suwankanit and Miki Shimizu
Vet. Sci. 2024, 11(4), 158; https://doi.org/10.3390/vetsci11040158 - 1 Apr 2024
Viewed by 2692
Abstract
Quadriceps contracture is a condition where the muscle–tendon unit is abnormally shortened. The treatment prognosis is guarded to poor depending on the progress of the disease. To improve the prognosis, we investigated the effectiveness of therapeutic ultrasound and NMES in treating quadriceps contracture [...] Read more.
Quadriceps contracture is a condition where the muscle–tendon unit is abnormally shortened. The treatment prognosis is guarded to poor depending on the progress of the disease. To improve the prognosis, we investigated the effectiveness of therapeutic ultrasound and NMES in treating quadriceps contracture in an immobilized rat model. Thirty-six Wistar rats were randomized into control, immobilization alone, immobilization and spontaneous recovery, immobilization and therapeutic ultrasound, immobilization and NMES, and immobilization and therapeutic ultrasound and NMES combination groups. The continuous therapeutic ultrasound (frequency, 3 MHz, intensity 1 W/cm2) and NMES (TENS mode, frequency 50 Hz; intensity 5.0 ± 0.8 mA) were performed on the quadriceps muscle. On Day 15, immobilization-induced quadriceps contracture resulted in a decreased ROM of the stifle joint, reduction in the sarcomere length, muscle atrophy, and muscle fibrosis. On Day 43, therapeutic ultrasound, NMES, and combining both methods improved muscle atrophy and shortening and decreased collagen type I and III and α-SMA protein. The combination of therapeutic ultrasound and NMES significantly reduced the mRNA expression of IL-1β, TGF-β1, and HIF-1α and increased TGF-β3. Therefore, the combination of therapeutic ultrasound and NMES is the most potent rehabilitation program for treating quadriceps contracture. Full article
Show Figures

Figure 1

12 pages, 664 KiB  
Review
Hypertrophic Cardiomyopathy and Chronic Kidney Disease: An Updated Review
by Sheefah Dhuny, Henry H. L. Wu, Manova David and Rajkumar Chinnadurai
Cardiogenetics 2024, 14(1), 26-37; https://doi.org/10.3390/cardiogenetics14010002 - 12 Jan 2024
Viewed by 5195
Abstract
The links between chronic kidney disease (CKD) and cardiac conditions such as coronary heart disease or valvular disease are well established in the literature. However, the relationship between hypertrophic cardiomyopathy (HCM) and CKD is not as frequently described or researched. HCM is the [...] Read more.
The links between chronic kidney disease (CKD) and cardiac conditions such as coronary heart disease or valvular disease are well established in the literature. However, the relationship between hypertrophic cardiomyopathy (HCM) and CKD is not as frequently described or researched. HCM is the most common form of inherited cardiac disease. It is mainly transmitted in an autosomal dominant fashion and caused by mutations in genes encoding sarcomere proteins. HCM is estimated to affect 0.2% of the general population and has an annual mortality rate of between approximately 0.5 and 1%. Our review article aims to summarize the genetics of HCM; discuss the potential clinical mimics that occur concurrently with HCM and CKD, potential interlinks that associate between these two conditions, the role of renal dysfunction as a poor prognostic indicator in HCM; and based on currently available evidence, recommend a management approach that may be suitable when clinicians are faced with this clinical scenario. Full article
(This article belongs to the Section Cardiovascular Genetics in Clinical Practice)
Show Figures

Figure 1

14 pages, 972 KiB  
Review
Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Perspective from Fibroblasts
by Maja Schlittler, Peter P. Pramstaller, Alessandra Rossini and Marzia De Bortoli
Int. J. Mol. Sci. 2023, 24(19), 14845; https://doi.org/10.3390/ijms241914845 - 2 Oct 2023
Cited by 26 | Viewed by 5208
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and the leading cause of sudden cardiac death in young people. Mutations in genes that encode structural proteins of the cardiac sarcomere are the more frequent genetic cause of HCM. The disease is [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and the leading cause of sudden cardiac death in young people. Mutations in genes that encode structural proteins of the cardiac sarcomere are the more frequent genetic cause of HCM. The disease is characterized by cardiomyocyte hypertrophy and myocardial fibrosis, which is defined as the excessive deposition of extracellular matrix proteins, mainly collagen I and III, in the myocardium. The development of fibrotic tissue in the heart adversely affects cardiac function. In this review, we discuss the latest evidence on how cardiac fibrosis is promoted, the role of cardiac fibroblasts, their interaction with cardiomyocytes, and their activation via the TGF-β pathway, the primary intracellular signalling pathway regulating extracellular matrix turnover. Finally, we summarize new findings on profibrotic genes as well as genetic and non-genetic factors involved in the pathophysiology of HCM. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Molecular Mechanisms and Potential Therapy)
Show Figures

Figure 1

Back to TopTop