Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = saponite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14258 KiB  
Article
Geochemical Variations of Kerolite, Stevensite, and Saponite from the Pre-Salt Sag Interval of the Santos Basin: An Approach Using Electron Probe Microanalysis
by Maurício Dias da Silva, Márcia Elisa Boscato Gomes, André Sampaio Mexias, Manuel Pozo, Susan Martins Drago, Everton Marques Bongiolo, Paulo Netto, Victor Soares Cardoso, Lucas Bonan Gomes and Camila Wense Ramnani
Minerals 2025, 15(3), 285; https://doi.org/10.3390/min15030285 - 11 Mar 2025
Viewed by 1018
Abstract
This study investigates the mineralogy and chemical characteristics of pre-salt clay minerals, classifies them, and defines assemblages in reactive microsites. Using Electron Probe Micro-Analysis (EPMA), the chemical formulas of Mg-rich clays were determined. Stevensite exhibited low interlayer charge and aluminum content, while kerolite [...] Read more.
This study investigates the mineralogy and chemical characteristics of pre-salt clay minerals, classifies them, and defines assemblages in reactive microsites. Using Electron Probe Micro-Analysis (EPMA), the chemical formulas of Mg-rich clays were determined. Stevensite exhibited low interlayer charge and aluminum content, while kerolite was characterized by a minimal charge. K/S (kerolite/stevensite) mixed layer showed intermediate compositions and charges between these endmembers. Saponite was distinguished by higher levels of Al, K, and Fe, along with a higher interlayer charge. The proposed assemblages are as follows: saponite in mudstone facies (without spherulites/shrubs), with a hybrid matrix; pure kerolite in spherulstone and shrubstone facies, marked by the absence of significant reactions and high preservation of matrix and textures; stevensite in facies with extensive matrix replacement by dolomitization/silicification; and K/S and kerolite in similar facies with intermediate matrix replacement levels and the coexistence of two intimately related clay mineral compositions. This study enables reliable differentiation of these species based on point mineral chemistry and mapping, combined with a microsite approach and conventional techniques. Additionally, it discusses the formation of pre-salt clays, influenced by significant kinetic and chemical interactions during their genesis and burial to depths of approximately 5 km. Full article
Show Figures

Figure 1

22 pages, 9157 KiB  
Article
The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain)
by Pablo del Buey, María Esther Sanz-Montero, Juan Pablo Rodríguez-Aranda, Mónica Sánchez-Román and Fernando Nieto
Minerals 2025, 15(1), 50; https://doi.org/10.3390/min15010050 - 3 Jan 2025
Cited by 1 | Viewed by 1200
Abstract
Palygorskite is assumed to be the predominant clay mineral in playa-lakes, where it may be detrital or authigenic in origin. Discriminating between detrital and authigenic clays is crucial to elucidate paleoenvironmental conditions in lacustrine deposits. This study provides insight into the sedimentary evolution [...] Read more.
Palygorskite is assumed to be the predominant clay mineral in playa-lakes, where it may be detrital or authigenic in origin. Discriminating between detrital and authigenic clays is crucial to elucidate paleoenvironmental conditions in lacustrine deposits. This study provides insight into the sedimentary evolution of clay minerals from source, lacustrine Miocene marlstones and mudstones, to sink, represented by three recent hyperalkaline playa-lakes in Central Spain. XRD, TEM, and AEM analyses show concomitant detrital and authigenic palygorskites in the three playa-lakes. The inherited palygorskites exhibit degradation features, larger widths, and common and ideal compositions, in contrast to neoformed particles. The latter are narrower. Depending on the hydrochemical composition of each playa-lake, neoformed palygorskites are enriched in a different octahedral cation (Al2O3, MgO, and Fe2O3). Iron-rich palygorskites are only formed in association with authigenic saponites in one of the playa-lakes. The same effect of magnesium competition between smectite and palygorskite is observed in Miocene mudstones, where palygorskite is relatively enriched in iron. In hyperalkaline, seasonal playa-lakes lying in the vicinity, slight physicochemical differences play a crucial role in the crystallochemical composition of authigenic palygorskites, highlighting the use of this mineral as a geochemical proxy. Full article
Show Figures

Figure 1

13 pages, 3939 KiB  
Article
CuO-TiO2–Saponite Ternary Nanocomposite for Efficient Removal of Bromocresol Green Dye
by Pollyana Trigueiro, Willams A. Albuquerque, Aimée G. Jerônimo, Monica Sá Rodrigues, Emanoel L. Tavares França and Ramón Raudel Peña-Garcia
Minerals 2024, 14(12), 1268; https://doi.org/10.3390/min14121268 - 13 Dec 2024
Cited by 4 | Viewed by 1196
Abstract
This study presents the synthesis of a CuO-TiO2–saponite ternary nanocomposite via a hydrothermal method, designed to efficiently remove bromocresol green dye. Characterization techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy, confirmed significant interactions between metal oxide nanoparticles [...] Read more.
This study presents the synthesis of a CuO-TiO2–saponite ternary nanocomposite via a hydrothermal method, designed to efficiently remove bromocresol green dye. Characterization techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy, confirmed significant interactions between metal oxide nanoparticles and the clay mineral matrix. Diffuse reflectance and photoluminescence analyses revealed a narrow band gap and surface defects, such as oxygen vacancies, enhancing the material’s photocatalytic properties. Under UV irradiation, the nanocomposite achieved 83% discoloration of bromocresol green dye within 150 min. The inhibitor studies identified hydroxyl and superoxide radicals as key species in the degradation mechanism. This work underscores the potential of clay-mineral-based nanocomposites, where clay minerals function both as structural support and as enhancers of the semiconductor’s photocatalytic activity. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

18 pages, 3488 KiB  
Article
Adsorption of Ciprofloxacin and Lidocaine by Non-Fibrous Raw Mg-Clays: The Role of Composition and Texture
by Maria Eugenia Roca-Jalil, Telma Musso, Vanina Rodriguez-Ameijide, Micaela Sanchez, Andrea Maggio, Miria Teresita Baschini, Gisela Pettinari, Luis Villa, Manuel Pozo and Alejandro Pérez-Abad
Minerals 2024, 14(10), 966; https://doi.org/10.3390/min14100966 - 25 Sep 2024
Viewed by 1050
Abstract
This study evaluated non-fibrous Mg-clays as potential adsorbents of emerging contaminants (ECs) from water. The materials were characterized, and their textural and structural properties were related to their ability to remove two model EC molecules: ciprofloxacin (CPX) and lidocaine (LID). The results showed [...] Read more.
This study evaluated non-fibrous Mg-clays as potential adsorbents of emerging contaminants (ECs) from water. The materials were characterized, and their textural and structural properties were related to their ability to remove two model EC molecules: ciprofloxacin (CPX) and lidocaine (LID). The results showed that Ad-6 and Ad-7 are mixed-layer kerolite/stevensite, while Ad-5 and Ad-8 are mainly composed of smectite minerals like stevensite and saponite, respectively. Ad-8 exhibited the highest CPX-adsorption capacity (0.91 mmol·g−1 clay), likely due to its saponite content. Mixed-layer materials also performed well, with Ad-6 and Ad-7 achieving an adsorption capacity of 0.8 and 0.55 mmol·g−1 clay, respectively. Adsorption studies suggested that CPX is adsorbed through ion exchange in materials with high smectite content (Ad-8 and Ad-5), while interstratified materials showed enhanced retention due to kerolite presence, which improves their porous structures. Similar findings were observed for LID, indicating a cationic-exchange mechanism for LID adsorption in all the materials and suggesting that the molecular size of the EC could regulate the removal capacity of these materials. This work showed that the studied Mg-clays could be effectively used for the removal of pharmaceutical pollutants, expanding their commercial possibilities. Full article
Show Figures

Figure 1

19 pages, 4050 KiB  
Article
Reversed Mg-Based Smectites: A New Approach for CO2 Adsorption
by Francisco Franco, Juan Antonio Cecilia, Laura Pardo, Salima Essih, Manuel Pozo, Lucía dos Santos-Gómez and Rosario M. P. Colodrero
Nanomaterials 2024, 14(18), 1532; https://doi.org/10.3390/nano14181532 - 21 Sep 2024
Viewed by 1409
Abstract
Addressing climate change requires transitioning to cleaner energy sources and adopting advanced CO2 capture techniques. Clay minerals are effective in CO2 adsorption due to their regenerative properties. Recent advancements in nanotechnology further improve their efficiency and potential for use in carbon [...] Read more.
Addressing climate change requires transitioning to cleaner energy sources and adopting advanced CO2 capture techniques. Clay minerals are effective in CO2 adsorption due to their regenerative properties. Recent advancements in nanotechnology further improve their efficiency and potential for use in carbon capture and storage. This study examines the CO2 adsorption properties of montmorillonite and saponite, which are subjected to a novel microwave-assisted acid treatment to enhance their adsorption capacity. While montmorillonite shows minimal changes, saponite undergoes significant alterations. Furthermore, the addition of silica pillars to smectites results in a new nanomaterial with a higher surface area (653 m2 g−1), denoted as reversed smectite, with enhanced CO2 adsorption capabilities, potentially useful for electrochemical devices for converting captured CO2 into value-added products. Full article
(This article belongs to the Special Issue Design of Nanomaterials for Electrochemical Devices)
Show Figures

Figure 1

15 pages, 628 KiB  
Article
The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies
by Alina Pikhtirova, Ewa Pecka-Kiełb, Bożena Króliczewska, Andrzej Zachwieja, Jarosław Króliczewski and Robert Kupczyński
Animals 2024, 14(5), 738; https://doi.org/10.3390/ani14050738 - 27 Feb 2024
Cited by 4 | Viewed by 1749
Abstract
Reducing the emission of global warming gases currently remains one of the strategic tasks. Therefore, the objective of our work was to determine the effect of saponite clay on fermentation in the rumen of cows. The pH, total gas production, CH4, [...] Read more.
Reducing the emission of global warming gases currently remains one of the strategic tasks. Therefore, the objective of our work was to determine the effect of saponite clay on fermentation in the rumen of cows. The pH, total gas production, CH4, and volatile fatty acid (VFA) production in ruminal fluid was determined in vitro. Saponite clay from the Tashkiv deposit (Ukraine) has a high content of silicon, iron, aluminum, and magnesium. The addition of 0.15 and 0.25 g of saponite clay to the incubated mixture did not change the pH but reduced the total production (19% and 31%, respectively) and CH4 (24% and 46%, respectively) in the ruminal fluid compared to the control group and had no significant effect on the total VFA levels, but propionic acid increased by 15% and 21% and butyric acid decreased by 39% and 32%, respectively. We observed a decrease in the fermentation rates, with a simultaneous increase in the P:B ratio and an increase in the fermentation efficiency (FE) in the groups fermented with saponite clay, probably a consequence of the high efficiency in the breakdown of starch in the rumen. Therefore, further in vivo studies to determine the effective dose and effect of saponite clay on cow productivity and the reduction of gas emissions are promising and important. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

35 pages, 37975 KiB  
Article
Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin
by Argos Belmonte Silveira Schrank, Thisiane Dos Santos, Sabrina Danni Altenhofen, William Freitas, Elias Cembrani, Thiago Haubert, Felipe Dalla Vecchia, Rosalia Barili, Amanda Goulart Rodrigues, Anderson Maraschin and Luiz Fernando De Ros
Minerals 2024, 14(2), 191; https://doi.org/10.3390/min14020191 - 11 Feb 2024
Cited by 7 | Viewed by 3314
Abstract
The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated in a magnesian clay [...] Read more.
The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated in a magnesian clay matrix (stevensite, kerolite, and saponite/hectorite). Although vital for understanding the origin and main reservoir quality control, the genesis and interactions of clays and carbonates are still poorly constrained. The detailed petrographic description was focused on 812 thin sections from five wells drilled in the Santos Basin Aptian Barra Velha Formation, combined with cathodoluminescence, UV epifluorescence, and X-ray diffraction analyses. The main syngenetic processes were the deposition of finely laminated peloidal and ooidal Mg-clays, the formation of fascicular calcite crusts on the sediment–water interface, and the redeposition of these materials as intraclasts. Abundant clay peloids engulfed in syngenetic shrubs indicate that calcite and clay precipitation was concomitant, though with highly variable rates. Eodiagenetic phases include matrix-replacive and -displacive spherulites and fascicular shrubs; matrix-replacive blocky calcite and dolomite; lamellar carbonates filling matrix shrinkage pores; and microcrystalline calcite, dolomite, and silica replacing the Mg-clay matrix. The preferential dolomitization and calcitization of peloidal layers were most likely due to their higher permeability and larger specific surface. Matrix-replacive saddle dolomite, macrocrystalline calcite, and dawsonite are interpreted as mesodiagenetic or hydrothermal phases after significant matrix dissolution. Unraveling the processes of the formation and alteration of the carbonates and clays and their interactions in the Pre-salt deposits is essential for constraining the depositional and diagenetic conditions in their unique environments and their diagenetic overprinting and for decreasing the exploration risks and increasing the production of those extraordinary reservoirs. Full article
Show Figures

Figure 1

38 pages, 5235 KiB  
Article
Mineral Indicators of Geologically Recent Past Habitability on Mars
by Roger Hart and Dawn Cardace
Life 2023, 13(12), 2349; https://doi.org/10.3390/life13122349 - 15 Dec 2023
Viewed by 3270
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water–rock reactions in recent geologic paleohabitats for follow-on study. We modeled, [...] Read more.
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water–rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist’s Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named “Rosy Red”, related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water–rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

11 pages, 822 KiB  
Article
Unlocking the Saponite Potential in Aided Phytostabilisation of Multi-Metal-Contaminated Soils
by Barbara Klik, Martin Brtnicky, Iwona Jaskulska, Mariusz Zygmunt Gusiatin, Dariusz Jaskulski, Jiri Holatko, Tivadar Baltazar, Ernesta Liniauskiene and Maja Radziemska
Minerals 2023, 13(11), 1354; https://doi.org/10.3390/min13111354 - 24 Oct 2023
Cited by 1 | Viewed by 1406
Abstract
Human activities have significantly impacted the environment, resulting in a need to restore degraded areas through various remediation techniques. This study aimed to evaluate the effectiveness of saponite in the aided phytostabilisation technique for heavy-metal-contaminated soil. The research was conducted on soil from [...] Read more.
Human activities have significantly impacted the environment, resulting in a need to restore degraded areas through various remediation techniques. This study aimed to evaluate the effectiveness of saponite in the aided phytostabilisation technique for heavy-metal-contaminated soil. The research was conducted on soil from a post-industrial site characterised by high metal content (Cu, Ni, Cd, Pb, Zn, and Cr) surpassing the established regulatory limits. Saponite was added to the contaminated soil at a ratio of 3% (w/w). The experiment was performed using Lolium perenne L. and Festuca rubra L. due to their adaptability to harsh soil conditions and rapid growth. The results demonstrated that saponite application significantly increased soil pH, which is beneficial for phytostabilisation of heavy metals. Saponite has been found to selectively enhance Ni accumulation in roots while not affecting Pb accumulation in above-ground parts, implying that saponite can effectively regulate heavy metal accumulation in plant biomass. Furthermore, saponite has been observed to significantly decrease soil Cd, Zn, and Cr levels with no impact on Cu, Ni, and Pb levels. Overall, saponite shows promise as an effective and scalable solution for large-scale phytostabilisation projects, contributing to the restoration of degraded soils and the protection of environmental and human health. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

14 pages, 2660 KiB  
Article
Impregnation of Synthetic Saponites with Aldehydes: A Green Approach in the Intercalation of Bioactive Principles
by Stefano Marchesi, Geo Paul, Matteo Guidotti, Stefano Econdi, Chiara Bisio and Fabio Carniato
Inorganics 2022, 10(10), 159; https://doi.org/10.3390/inorganics10100159 - 29 Sep 2022
Cited by 1 | Viewed by 1964
Abstract
Synthetic saponite clay was impregnated with either linear saturated or unsaturated aldehydes through an incipient-wetness deposition approach. To increase the aldehyde loading, saponite was also intercalated with positively charged cetyltrimethylammonium (CTA+) species, aiming to expand the clay gallery and to increase [...] Read more.
Synthetic saponite clay was impregnated with either linear saturated or unsaturated aldehydes through an incipient-wetness deposition approach. To increase the aldehyde loading, saponite was also intercalated with positively charged cetyltrimethylammonium (CTA+) species, aiming to expand the clay gallery and to increase the hydrophobic character of the host solid. A multitechnique, physicochemical investigation was performed on the organic–inorganic hybrid solids. The analyses revealed that the aldehydes are mainly adsorbed on the clay particles’ surface, with a small fraction inside the interlayer space. In CTA+-modified saponites, the concentration of saturated aldehydes was higher than the one observed in the pure clay. These features are quite promising for the development of novel layered solids containing bioactive molecules for ecocompatible and economically sustainable applications, especially in agriculture, for the development of innovative hybrid materials for crop protection. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

16 pages, 3077 KiB  
Article
Modified Polymer Surfaces: Thin Films of Silicate Composites via Polycaprolactone Melt Fusion
by Eva Skoura, Peter Boháč, Martin Barlog, Helena Palková, Martin Danko, Juraj Šurka, Andreas Mautner and Juraj Bujdák
Int. J. Mol. Sci. 2022, 23(16), 9166; https://doi.org/10.3390/ijms23169166 - 15 Aug 2022
Cited by 2 | Viewed by 2233
Abstract
Polymer/layered silicate composites have gained huge attention in terms of research and industrial applications. Traditional nanocomposites contain particles regularly dispersed in a polymer matrix. In this work, a strategy for the formation of a composite thin film on the surface of a polycaprolactone [...] Read more.
Polymer/layered silicate composites have gained huge attention in terms of research and industrial applications. Traditional nanocomposites contain particles regularly dispersed in a polymer matrix. In this work, a strategy for the formation of a composite thin film on the surface of a polycaprolactone (PCL) matrix was developed. In addition to the polymer, the composite layer was composed of the particles of saponite (Sap) modified with alkylammonium cations and functionalized with methylene blue. The connection between the phases of modified Sap and polymer was achieved by fusing the chains of molten polymer into the Sap film. The thickness of the film of several μm was confirmed using electron microscopy and X-ray tomography. Surfaces of precursors and composite materials were analyzed in terms of structure, composition, and surface properties. The penetration of polymer chains into the silicate, thus joining the phases, was confirmed by chemometric analysis of spectral data and changes in some properties upon PCL melting. Ultimately, this study was devoted to the spectral properties and photoactivity of methylene blue present in the ternary composite films. The results provide directions for future research aimed at the development of composite materials with photosensitizing, photodisinfection, and antimicrobial surfaces. Full article
Show Figures

Figure 1

21 pages, 6603 KiB  
Article
Gated Organonanoclays for Large Biomolecules: Controlled Release Triggered by Surfactant Stimulus
by Elisa Poyatos-Racionero, Édgar Pérez-Esteve, Serena Medaglia, Elena Aznar, José M. Barat, Ramón Martínez-Máñez, Maria Dolores Marcos and Andrea Bernardos
Nanomaterials 2022, 12(15), 2694; https://doi.org/10.3390/nano12152694 - 5 Aug 2022
Cited by 2 | Viewed by 2068
Abstract
The low toxicity and high adsorption capacities of clay minerals make them attractive for controlled delivery applications. However, the number of controlled-release studies in the literature using clay minerals is still scarce. In this work, three different clays from the smectite group (Kunipia [...] Read more.
The low toxicity and high adsorption capacities of clay minerals make them attractive for controlled delivery applications. However, the number of controlled-release studies in the literature using clay minerals is still scarce. In this work, three different clays from the smectite group (Kunipia F, montmorillonite; Sumecton SA, saponite; and Sumecton SWN, hectorite) were successfully loaded with rhodamine B dye and functionalized with oleic acid as a gatekeeper to produce organonanoclays for active and controlled payload-release. Moreover, hematin and cyanocobalamin have also been encapsulated in hectorite gated clay. These organonanoclays were able to confine the entrapped cargos in an aqueous environment, and effectively release them in the presence of surfactants (as bile salts). A controlled delivery of 49 ± 6 μg hematin/mg solid and 32.7 ± 1.5 μg cyanocobalamin/mg solid was reached. The cargo release profiles of all of the organonanoclays were adjusted to three different release-kinetic models, demonstrating the Korsmeyer–Peppas model with release dependence on (i) the organic–inorganic hybrid system, and (ii) the nature of loaded molecules and their interaction with the support. Furthermore, in vitro cell viability assays were carried out with Caco-2 cells, demonstrating that the organonanoclays are well tolerated by cells at particle concentrations of ca. 50 μg/mL. Full article
(This article belongs to the Special Issue Silica Nanoparticles as Safety Nanocarriers)
Show Figures

Graphical abstract

20 pages, 11286 KiB  
Article
Sepiolite and Other Authigenic Mg-Clay Minerals Formation in Different Palustrine Environments (Madrid Basin, Spain)
by Juan Emilio Herranz and Manuel Pozo
Minerals 2022, 12(8), 987; https://doi.org/10.3390/min12080987 - 3 Aug 2022
Cited by 5 | Viewed by 3583
Abstract
Lithofacies belonging to mud-flat and palustrine deposits (lake margin) in the Miocene of the Madrid Basin (Spain) have been studied. Four lithofacies corresponding to mud flat (1 and 3) and palustrine (2 and 4) deposits have been differentiated. Units 1 and 3 consist [...] Read more.
Lithofacies belonging to mud-flat and palustrine deposits (lake margin) in the Miocene of the Madrid Basin (Spain) have been studied. Four lithofacies corresponding to mud flat (1 and 3) and palustrine (2 and 4) deposits have been differentiated. Units 1 and 3 consist mainly of mudstones and carbonates (calcretes and diolocretes). The clay fraction is dominated by trioctahedral smectite (up to 79%) with illite and kaolinite as minor components. The d(060) spacing value shows reflections at 1.52 and 1.50 Å indicating also the presence of dioctahedral phyllosilicates. Unit 2 consists predominantly of lutites (claystones), locally with carbonate and chert nodules. The clay fraction is dominated by sepiolite (up to 96%) with variable contents of smectite and subordinate illite. The d(060) spacing value shows reflections at 1.51 and 1.52 Å indicating trioctahedral clay minerals. Unit 4 consists mostly of carbonates (limestones) with mudstone and lutite inserts. The clay fraction shows different contents of sepiolite, palygorskite and dioctahedral smectite. The analysis of a selection of trace elements (Cr, Co, Th, La, Sc) has allowed us to determine the characteristics of the source area as dioritic, somewhat different from those of the nearby materials from the Batallones sector. Sepiolite shows FWHM values ranging between 0.68 and 1.10 (2θ), indicating “low crystallinity sepiolite”. Differences in the conditions of formation of magnesian smectite and palygorskite have been observed in the mud-flat and palustrine deposits. The formation of sepiolite mainly by neoformation in palustrine deposits with different hydrochemistry is remarkable, leading to differences in fibre size and crystallinity of the fibrous clay mineral. Authigenic transformation processes from previous Al-rich phases would be responsible for the formation of saponite and palygorskite in mud flat and palustrine environments, with different pH conditions. Full article
(This article belongs to the Collection Clays and Other Industrial Mineral Materials)
Show Figures

Figure 1

19 pages, 6546 KiB  
Article
Peculiarities of Dynamics of Hypergenic Mineral Transformation of Nickel Weathering Crusts of Ultramafic Rocks of the Kempirsay Group of Deposits in Western Kazakhstan
by Valeriy Korobkin, Iskander Samatov, Akhan Chaklikov and Zhamal Tulemissova
Minerals 2022, 12(5), 650; https://doi.org/10.3390/min12050650 - 20 May 2022
Cited by 3 | Viewed by 2718
Abstract
Nickel weathering ores are used to produce metallic nickel, stainless steels, and nickel sulfate, the main component of batteries. The global production of nickel from weathering ores is increasing and has surpassed production from sulfide magmatic deposits. The efficiency of the mining and [...] Read more.
Nickel weathering ores are used to produce metallic nickel, stainless steels, and nickel sulfate, the main component of batteries. The global production of nickel from weathering ores is increasing and has surpassed production from sulfide magmatic deposits. The efficiency of the mining and processing of nickel ores from weathering rocks is determined by their mineralogical composition. The weathering crust profile of the Kempirsay ultramafite massif is divided into three zones—leached (kerolitized) serpentinites, nontronites, and final hydrolysis minerals (later referred to as “ochers”). The kerolitized zone consists of a mixture of Ni-bearing talc and saponites (later referred to as “kerolite”). During the geological mapping of the Donskoye, Buranovskoye, and Shelektinskoye deposits, the products of ultramafite hypergenic transformation into disintegrated and leached serpentinites, kerolites, nontronites, and ochers were selected and studied. For this purpose, 44 rock samples were studied via X-ray diffractometric and thermal analyses, supplemented with data from chemical, microscopic, and granulometric determinations. Based on the obtained numerical parameters of the crystalline structure of the weathering products, the thermochemical values were obtained. The hypergenic transformation of the initial minerals and their subsequent transformation were traced. The trace element distribution along the profile of the serpentinite weathering ores is related to the initial material composition of the ultramafites. The accumulation of nickel in industrial concentrations is associated with the nontronite–kerolite zone. X-ray diffractometric analysis can be used as a fast and reliable method for controlling the nickel content of ores and monitoring their mineralogical composition. Full article
Show Figures

Figure 1

7 pages, 1141 KiB  
Article
Preliminary Study on the Mechanical Activation and High-Temperature Treatment of Saponite-Containing Tailings Generated during Kimberlite Ore Dressing
by Tatiana Drozdyuk, Maria Frolova, Arkady Ayzenshtadt, Rajnish Kaur Calay and Ashfaque Ahmed Jhatial
Appl. Sci. 2022, 12(10), 4957; https://doi.org/10.3390/app12104957 - 13 May 2022
Cited by 3 | Viewed by 1859
Abstract
This study investigates transformations of a pre-mechanically activated saponite-containing material with subsequent high-temperature treatment. The thermogravimetric analysis confirmed that the mechanical activation of saponite leads to the destruction of its layered structure, accompanied by the release of silicon dioxide and magnesium oxide in [...] Read more.
This study investigates transformations of a pre-mechanically activated saponite-containing material with subsequent high-temperature treatment. The thermogravimetric analysis confirmed that the mechanical activation of saponite leads to the destruction of its layered structure, accompanied by the release of silicon dioxide and magnesium oxide in free form. The values of surface activity for mechanically activated saponite-containing material are also calculated. It is shown that when mechanically activated saponite-containing material is mixed with water, minerals of the serpentine group are formed, and further high-temperature treatment leads to the formation of minerals of the olivine group. It is experimentally shown that high-temperature treatment leads to the creation of a more durable structure of the saponite-containing material. This is due to decreased porosity and pore size, and sorption of moisture from the environment is also reduced. The study showed that saponite-containing waste materials can be effectively treated to create composite materials based on magnesia binders. Thus, with this method, the waste is effectively recycled into various green building material and can be used as supplementary cementitious material or fine aggregate replacement in concrete. Full article
(This article belongs to the Special Issue Advances in Sustainable Materials for Engineering)
Show Figures

Figure 1

Back to TopTop