Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = saline sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8538 KiB  
Article
Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection
by Weichao Liu, Jiapeng Xiao, Rongyuan Liu, Yan Liu, Yunzhu Tao, Tian Zhang, Fuping Gan, Ping Zhou, Yuanbiao Dong and Qiang Zhou
Remote Sens. 2025, 17(14), 2444; https://doi.org/10.3390/rs17142444 - 14 Jul 2025
Viewed by 241
Abstract
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data [...] Read more.
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data source, we collected spectral data for seven distinct land cover types: lush vegetation, yellow sand, white sand, saline soil, saline shell, saline soil with saline vegetation, and sandy soil. We applied Particle Swarm Optimization (PSO) to fine-tune the Wavelet Packet (WP) decomposition levels, thresholds, and wavelet basis function, ensuring optimal spectral decomposition and reconstruction. Subsequently, PSO was deployed to optimize key hyperparameters of the Random Forest algorithm and compare its performance with the ResNet-Transformer model. Our results indicate that PSO effectively automates the search for optimal WP decomposition parameters, preserving essential spectral information while efficiently reducing high-frequency spectral noise. The Genetic Algorithm (GA) was also found to be effective in extracting feature bands relevant to land desertification, which enhances the classification accuracy of the model. Among all the models, integrating wavelet packet denoising, genetic algorithm feature selection, the first-order differential (FD), and the hybrid architecture of the ResNet-Transformer, the WP-GA-FD-ResNet-Transformer model achieved the highest accuracy in extracting soil sandification and salinization, with Kappa coefficients and validation set accuracies of 0.9746 and 97.82%, respectively. This study contributes to the field by advancing hyperspectral desertification monitoring techniques and suggests that the approach could be valuable for broader ecological conservation and land management efforts. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

19 pages, 865 KiB  
Article
Salinity Stress and Calcium in Pomegranate: Impacts on Growth, Ion Homeostasis, and Photosynthesis
by Christos Chatzissavvidis, Nina Devetzi, Chrysovalantou Antonopoulou, Ioannis E. Papadakis, Ioannis Therios and Stefanos Koundouras
Horticulturae 2025, 11(7), 786; https://doi.org/10.3390/horticulturae11070786 - 3 Jul 2025
Viewed by 403
Abstract
Salinity has significant impacts on crops, a problem that is exacerbated under climate change conditions. For this reason, research is focused on possible ways to mitigate the impacts by adapting cultivation methods such as administering appropriate materials or formulations to plants. Therefore, this [...] Read more.
Salinity has significant impacts on crops, a problem that is exacerbated under climate change conditions. For this reason, research is focused on possible ways to mitigate the impacts by adapting cultivation methods such as administering appropriate materials or formulations to plants. Therefore, this study investigated the effects of calcium (Ca2+) supplementation on the growth, physiology, and chemical composition of pomegranate plants (Punica granatum L. cv. ‘Wonderful’) grown under salinity stress. Young self-rooted plants were cultivated in pots containing a sand/perlite (1:1) mixture and irrigated with Hoagland’s nutrient solution amended with NaCl (0, 60, or 120 mM) and CaCl2·2H2O (0 or 10 mM). Salinity significantly reduced the fresh and dry weight of aboveground tissues; photosynthetic performance; chlorophyll content; and potassium (K), calcium (Ca), and magnesium (Mg) concentrations, particularly under high NaCl levels. Sodium (Na) accumulation increased in all plant parts, while nitrogen (N), manganese (Mn), and zinc (Zn) concentrations were elevated in basal leaves. Calcium supplementation mitigated several of these adverse effects, especially under moderate salinity. It helped maintain leaf biomass, supported K+ retention in roots, partially improved chlorophyll concentration, and limited Na+ accumulation in certain tissues. However, Ca2+ application did not consistently reverse the negative impacts of severe salinity (120 mM NaCl), and in some cases, interactions between Ca2+ and other nutrients such as Mg2+ were antagonistic. These findings confirm the inherent salt tolerance of pomegranate and demonstrate that calcium plays a partially protective role under salinity, particularly at moderate stress levels. Further research is needed to optimize Ca2+ use in saline agriculture and enhance sustainable cultivation of pomegranate in salt-affected soils. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

21 pages, 5776 KiB  
Article
Thermal Effects on Fines Migration: Insights from Sand Pack Experiments
by Fernando Rengifo Barbosa, Rahman Miri, Mahmood Salimi and Alireza Nouri
Energies 2025, 18(13), 3471; https://doi.org/10.3390/en18133471 - 1 Jul 2025
Viewed by 283
Abstract
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity [...] Read more.
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity and temperature, trigger the detachment, transport, and redeposition of fines within porous media. This study introduces a novel high-pressure high-temperature (HP-HT) sand retention testing (SRT) facility designed for evaluating formation damage by fines migration in SAGD producer wells, under salinity change and elevated temperature conditions. Such an integrated approach accounting for conditions closer to near-wellbore SAGD producers has not been explored in previous SRT methodologies. Laboratory tests were conducted on synthetic sand mixtures replicating the particle size distribution (PSD) and sand composition of the McMurray Formation, packed over a slotted liner coupon as a common sand control device used in SAGD producer wells. Produced fines concentration analysis, permeability measurements, and post-mortem retention profile analysis were employed to explain the fines transport mechanisms. The results highlighted the influence of repulsive electrostatic forces in mobilising, transport mechanisms and retention of fine particles at elevated temperature and low salinity conditions. The findings of this paper provide a deeper understanding of fines migration in SAGD reservoirs, delivering insights for optimising field strategies to mitigate fines-related flow restrictions and enhance bitumen recovery efficiency. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

22 pages, 6610 KiB  
Article
Tricky with Heat and Salt: Soil Factors, Thermotaxis, and Potential for Heat–Saline Agar Trapping of Strongyloides Larvae
by Nuttapon Ekobol, Sirintip Boonjaraspinyo, Chatanun Eamudomkarn and Thidarut Boonmars
Biology 2025, 14(5), 559; https://doi.org/10.3390/biology14050559 - 16 May 2025
Viewed by 926
Abstract
The viability and host-seeking behavior of Strongyloides larvae are significantly influenced by soil conditions, emphasizing the critical role of environmental control in disease management. This is particularly relevant given the growing concerns about drug resistance resulting from mass chemotherapy or the use of [...] Read more.
The viability and host-seeking behavior of Strongyloides larvae are significantly influenced by soil conditions, emphasizing the critical role of environmental control in disease management. This is particularly relevant given the growing concerns about drug resistance resulting from mass chemotherapy or the use of chemical nematicides. Strongyloides stercoralis was effectively inactivated by exposure to 50 °C for both 12 and 24 h (long-term exposure). Strongyloides ratti was inactivated by 50 °C for 20 min (short-term exposure), 9% saline for 50 min, and a combination of 4% saline and 40 °C for 50 min. The combined treatment successfully inactivated S. ratti in four soil mediums using 5% saline at a central temperature of 40 °C. Thermotaxis responses to noxious heat revealed attraction at 40 °C, increased localized searching at 45 °C, and complete inactivation at 50 °C. Larvae migrating within agar at 45 °C were more readily inactivated. Long-range heat attraction at 5 cm resulted in the inactivation of up to 50% of incoming larvae; however, heat-high concentration saline traps at 3 cm distance proved ineffective. Thermal–saline agar trapping demonstrated promise for larval removal in sand, loam, and laterite soils. This method offers a promising approach to larval removal while minimizing hazards to non-target organisms. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

18 pages, 4284 KiB  
Article
Effectiveness of Grafting in Enhancing Salinity Tolerance of Tomato (Solanum lycopersicum L.) Using Novel and Commercial Rootstocks in Soilless Systems
by Thabit Alqardaeai, Abdulaziz Alharbi, Mekhled Alenazi, Abdulrasoul Alomran, Abdulaziz Alghamdi, Abdullah Obadi, Ahmed Elfeky and Mohamed Osman
Sustainability 2025, 17(10), 4333; https://doi.org/10.3390/su17104333 - 10 May 2025
Cited by 1 | Viewed by 792
Abstract
The scarcity of high-quality water in arid regions like Saudi Arabia necessitates saline water use in irrigation. Sustainable techniques, such as grafting and soilless cultivation, enhance crop resilience and optimize resource use, ensuring long-term agricultural and water sustainability to meet rising food demand. [...] Read more.
The scarcity of high-quality water in arid regions like Saudi Arabia necessitates saline water use in irrigation. Sustainable techniques, such as grafting and soilless cultivation, enhance crop resilience and optimize resource use, ensuring long-term agricultural and water sustainability to meet rising food demand. So, this study evaluated grafting’s effectiveness in enhancing the salt tolerance of tomato (Solanum lycopersicum L.) under soilless culture. The experiment tested two salinity levels, two growing media (volcanic rock and sand), and six grafting treatments: the scion ‘Tone Guitar F1’ was cultivated through non-grafting (G1), self-grafted onto itself (G2), and grafted onto the commercial rootstock ‘Maxifort F1’ (G3), which was grafted onto three newly developed rootstocks, namely X-218 (G4), X-238 (G5), and Alawamiya365 (G6). The results indicated that plants performed better at 2 dS m−1, while higher salinity (4 dS m−1) negatively impacted growth. However, grafting under saline stress improved most of the measured traits, excluding fruit quality (vitamin C, titratable acidity, and total soluble sugars). Grafted plants (G2–G6), particularly those grown in volcanic rock at 2 dS m−1, exhibited superior fruit characteristics, yield, water productivity, and leaf calcium (Ca2+) and potassium (K+) content compared to the non-grafted controls (G1). The sand medium generally produced lower values for all the traits, regardless of salinity or grafting. Moreover, grafting under 2 and 4 dS m−1 reduced leaf sodium (Na+) and chloride (Cl). The best overall performance was provided by the rootstocks X-218 and X-238. Grafting onto salt-tolerant rootstocks is a promising strategy for improving tomato yield and water productivity under saline irrigation in arid and semi-arid regions. Full article
Show Figures

Figure 1

27 pages, 7362 KiB  
Article
Preparation and Properties of a Novel Multi-Functional Viscous Friction Reducer Suspension for Fracturing in Unconventional Reservoirs
by Shenglong Shi, Jinsheng Sun, Shanbo Mu, Kaihe Lv, Yingrui Bai and Jian Li
Gels 2025, 11(5), 344; https://doi.org/10.3390/gels11050344 - 6 May 2025
Viewed by 402
Abstract
Aiming at the problem that conventional friction reducers used in fracturing cannot simultaneously possess properties such as temperature resistance, salt resistance, shear resistance, rapid dissolution, and low damage. Under the design concept of “medium-low molecular weight, salt-resistant functional monomer, supramolecular physical crosslinking aggregation, [...] Read more.
Aiming at the problem that conventional friction reducers used in fracturing cannot simultaneously possess properties such as temperature resistance, salt resistance, shear resistance, rapid dissolution, and low damage. Under the design concept of “medium-low molecular weight, salt-resistant functional monomer, supramolecular physical crosslinking aggregation, and enhanced chain mechanical strength”, acrylamide, sulfonic acid salt-resistant monomer 2-acrylamide-2-methylpropanesulfonic acid, hydrophobic association monomer, and rigid skeleton functional monomer acryloyl morpholine were introduced into the friction reducer molecular chain by free radical polymerization, and combined with the compound suspension technology to develop a new type of multi-functional viscous friction reducer suspension (SAMD), the comprehensive performance of SAMD was investigated. The results indicated that the critical micelle concentration of SAMD was 0.33 wt%, SAMD could be dissolved in 80,000 mg/L brine within 3.0 min, and the viscosity loss of 0.5 wt% SAMD solution was 24.1% after 10 min of dissolution in 80,000 mg/L brine compared with that in deionized water, the drag reduction rate of 0.1 wt% SAMD solution could exceed 70% at 120 °C and still maintained good drag reduction performance in brine with a salinity of 100,000 mg/L. After three cycles of 170 s−1 and 1022 s−1 variable shear, the SAMD solution restored viscosity quickly and exhibited good shear resistance. The Tan δ (a parameter characterizing the viscoelasticity of the system) of 1.0 wt% SAMD solution was 0.52, which showed a good sand-carrying capacity, and the proppant settling velocity in it could be as low as 0.147 mm/s at 120 °C, achieving the function of high drag reduction at low concentrations and strong sand transportation at high concentrations. The viscosity of 1.4 wt% SAMD was 95.5 mPa s after shearing for 120 min at 140 °C and at 170 s−1. After breaking a gel, the SAMD solution system had a core permeability harm rate of less than 15%, while the SAMD solution also possessed the performance of enhancing oil recovery. Compared with common friction reducers, SAMD simultaneously possessed the properties of temperature resistance, salt resistance, shear resistance, rapid dissolution, low damage, and enhanced oil recovery. Therefore, the use of this multi-effect friction reducer is suitable for the development of unconventional oil reservoirs with a temperature lower than 140 °C and a salinity of less than 100,000 mg/L. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

25 pages, 6120 KiB  
Article
Are Rain Gardens Resistant to Salinization Stresses? The Consequences of De-Icing Chemicals’ Implementation for Soil Health, Plant Condition, and Groundwater Quality
by Olga Romzaykina, Viacheslav Vasenev, Ekaterina Kozlova, Igor Shchukin, Artem Losev and Andrey Smagin
Land 2025, 14(5), 942; https://doi.org/10.3390/land14050942 - 26 Apr 2025
Viewed by 655
Abstract
Rain gardens are efficient nature-based solutions (NBSs) for the sustainable management of surface run-off in urban areas. The functionality of a rain garden in an urban environment depends on the resistance of plant and soil components to anthropogenic stressors. In temperate climates, the [...] Read more.
Rain gardens are efficient nature-based solutions (NBSs) for the sustainable management of surface run-off in urban areas. The functionality of a rain garden in an urban environment depends on the resistance of plant and soil components to anthropogenic stressors. In temperate climates, the negative effects of de-icing chemicals applied in wintertime are one of the major anthropogenic stressors for the rain gardens’ ecosystem. The research aimed to study the effect of a NaCl-based de-icer in the mesocosm experiment, where materials of soil mixtures (seven parts by volume of quartz or carbonate sand and three parts by volume of loam or peat), plants (Hemerocallis hybrida), de-icer dose (529 mg L−1 for Cl and 472 mg L−1 for Na+ concentrations), and irrigation period simulated typical conditions for the Moscow city—the largest world megapolis with permanent snow cover during the wintertime. For all soil mixtures, a short-term negative impact of salinization on soil health included a decrease in microbial biomass (4–7-times) and basal respiration (2–3.6-times). After six months, soil health indicators recovered by 80–90% in the peat and carbonate sand mixture, whereas the negative effects on the quartz sand and loam mixtures remained irreversible (1.3 and 3 times lower than the control, respectively). The chlorophyll content of the plants on all soil mixtures was reduced compared to the control plants (37.1 ± 4.1 vs. 39.9 ± 1.2 SPAD units). The worst plat condition was observed for soil mixtures based on quartz sand. In this variant, the negative effect of salinization coincided with low nutrient content. In our results, the ash content was up to three times less compared to the initial state, as well as to the other materials. Plants grown in mixtures based on loam were more resistant to salinization due to higher nutrient content than peat. Overall, based on soil Na uptake, plant biomass, and recovery of soil microbiota, soil mixtures based on peat, loam, and carbonate sand will be the most resistant to NaCl-based de-icers and could be recommended for the creation of rain gardens in cities with permanent snow cover in winter. Full article
Show Figures

Figure 1

25 pages, 14713 KiB  
Review
From Flood Mitigation to Environmental and Socioeconomic Disruption: A Case Study of the Langue de Barbarie Sand Spit Breach
by Souleymane Fall
Hydrology 2025, 12(4), 97; https://doi.org/10.3390/hydrology12040097 - 19 Apr 2025
Viewed by 1012
Abstract
In October 2003, an artificial canal was dug across the Langue de Barbarie sand spit at the mouth of the Senegal River to prevent the city of Saint-Louis (Senegal) from being submerged by floods. This study aimed to explore the multiple facets of [...] Read more.
In October 2003, an artificial canal was dug across the Langue de Barbarie sand spit at the mouth of the Senegal River to prevent the city of Saint-Louis (Senegal) from being submerged by floods. This study aimed to explore the multiple facets of this sudden environmental change to provide a holistic overview of the situation and a better understanding of man-made alterations of coastal features, a crucial step for implementing efficient management of such situations and developing appropriate mitigation and adaptation policies. Satellite imagery from the US Geological Survey was used to show the historical evolution of the breach, and a comprehensive overview of the existing literature was conducted to explore its hydrological, geomorphological, ecological, and socioeconomic impacts. Although the canal facilitated the rapid evacuation of floodwaters and saved the city from a major flooding event, the breach widened considerably, becoming the new river mouth and resulted in unforeseen adverse consequences. Environmental consequences included the partial dismantling of the spit, increased tidal range, salinization of land and water, and loss of habitat and local biodiversity. Socioeconomic consequences were severe, including the loss of agricultural land and reduced yields, declining fishing productivity, the destruction of villages, the displacement of entire communities, and the forced migration of many young people. Affected communities developed resilience strategies, with women playing a leading role in these adaptive responses. This study highlights the need for integrated coastal management and policies that consider both environmental and human factors, as well as for future research that will help improve the management of coastal ecosystem alterations. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

14 pages, 3118 KiB  
Article
Experimental Investigation on the Mechanical Properties of the Frozen Rocks at the Yamal Peninsula, Russian Arctic
by Vladimir Leonidovich Trushko, Elena Konstantinovna Baeva and Alexander Alexandrovich Blinov
Eng 2025, 6(4), 76; https://doi.org/10.3390/eng6040076 - 14 Apr 2025
Cited by 2 | Viewed by 471
Abstract
This paper presents laboratory results on the physical–mechanical properties of frozen rocks from Russia’s Yamal Peninsula, aiming to improve foundation design in permafrost. Samples from various geological profiles underwent compression and shear tests along the freezing surface at −3 °C, following standard protocols. [...] Read more.
This paper presents laboratory results on the physical–mechanical properties of frozen rocks from Russia’s Yamal Peninsula, aiming to improve foundation design in permafrost. Samples from various geological profiles underwent compression and shear tests along the freezing surface at −3 °C, following standard protocols. Strength and deformation characteristics were established for prevalent frozen rock types (sands, sandy loams, clay loams, clays), revealing links between physical properties and mechanical behavior. The study specifically investigated how salinity and the degree of pore filling with ice/unfrozen water influence the deformation modulus, crucial for foundation reliability in permafrost. Results demonstrated significant property variability related to granulometry, plasticity, porosity, and salinity. Deformation modulus generally decreased with increasing dispersion, ranging from approximately 44 MPa for saline sands down to 6–14 MPa for clays. Shear resistance varied from 0.05 to 0.20 MPa (clays) to 0.20–0.30 MPa (sands). The influence of pore filling on deformation modulus depended complexly on rock type, porosity, and salinity. These findings provide valuable data for geomechanical modeling and bearing capacity assessments of pile foundations in Arctic regions, particularly the Yamal Peninsula. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

16 pages, 7400 KiB  
Article
Biodiversity and Seasonal Succession of Macrobenthos in Saltmarsh Habitat Adjacent to a Ship-Breaking Area
by M. Shafiqul Islam, Hossain Zamal, Muhammad Shah Alam, Md. Maheen Mahmud Bappy, Abu Hena Mustafa Kamal, M. Belal Hossain and Takaomi Arai
Diversity 2025, 17(4), 231; https://doi.org/10.3390/d17040231 - 25 Mar 2025
Viewed by 876
Abstract
The Fauzderhat coast of Chattogram (Bangladesh) is increasingly affected anthropogenic pressures, necessitating an understanding of its ecological conditions to inform effective ecosystem management. Despite this urgency, the local succession patterns and environmental impacts on macrobenthic communities remain poorly understood. This study examines the [...] Read more.
The Fauzderhat coast of Chattogram (Bangladesh) is increasingly affected anthropogenic pressures, necessitating an understanding of its ecological conditions to inform effective ecosystem management. Despite this urgency, the local succession patterns and environmental impacts on macrobenthic communities remain poorly understood. This study examines the saltmarsh bed macrobenthos in Fauzderhat, documenting 81,724 individuals from 54 species. These include ten families and twenty-two species of annelids, ten and twelve species of arthropods, and ten and eleven species of mollusks, as well as six and nine species from different phyla. Seasonality showed significantly different patterns of changes, with the number of species and abundance peaking during the monsoon (53 species) and post-monsoon (21,969) conditions, respectively, and being lowest in the post-monsoon condition (39 species) and winter (18,265 individuals). Species richness, diversity, and evenness were significantly higher in monsoon and lower in post-monsoon conditions, with the differences being only significant in the former. Cluster analysis and line graphs indicated that average species abundance was lowest post-monsoon, increased through the winter and pre-monsoon conditions, then declined again during monsoon conditions. SIMPER analysis revealed the highest dissimilarity between pre-monsoon and post-monsoon conditions while winter and post-monsoon conditions showed the lowest dissimilarity of microbenthic assemblages. Correlation coefficients showed the macrobenthos were positively correlated with soil salinity, dissolved oxygen, and pH, while they were negatively correlated with sand, Inundation Period, and nutrients. CCA showed that monsoon conditions (higher water temperature, inundation period, and tidal height) created unfavorable environments for most species, except for several species. Conversely, winter favored species like M. oligobranchia. Post-monsoon nutrient levels increased stress, reducing species presence, while pre-monsoon conditions supported balanced diversity. Full article
(This article belongs to the Special Issue Socioecology and Biodiversity Conservation—2nd Edition)
Show Figures

Figure 1

17 pages, 2218 KiB  
Article
Constructing and Spatially Differentiating Soil Quality Indices in Qiqihar’s Typical Black Soil Zone: A Case Study of Tailai, Longjiang, and Gannan Counties, China
by Lei Wang, Min Pang, Na Wang, Dan Wei, Zhizhuang An, Jianzhi Xie and Liang Jin
Agronomy 2025, 15(4), 773; https://doi.org/10.3390/agronomy15040773 - 21 Mar 2025
Viewed by 614
Abstract
Black soils in Qiqihar City are comprised primarily of black soil. They have been extensively exploited for agriculture. To investigate the spatial distribution of soils in this region, we analyze 72 samples collected from Tailai, Longjiang, and Gannan counties. A soil quality index [...] Read more.
Black soils in Qiqihar City are comprised primarily of black soil. They have been extensively exploited for agriculture. To investigate the spatial distribution of soils in this region, we analyze 72 samples collected from Tailai, Longjiang, and Gannan counties. A soil quality index (SQI) based on a subset of measured soil indicators is constructed to comprehensively evaluate black soil quality. We report an average soil bulk density in these black soil areas of 1.42 g/cm3, indicating relatively high compaction and density. The average soil moisture content (19%) is relatively low. In some areas, soil electrical conductivity reaches 2.92 μS/cm, indicating mild salinization (<4 μS/cm). Overall soil nutrient levels are relatively high, but in some areas they are poor. Principal components and correlation analyses identify five of nine measured indicators (soil bulk density, pH, moisture, nitrate nitrogen, and organic matter contents) that adequately characterize soil quality. The SQI values reveal soil quality to decrease along a north–south gradient, sand to be highest in Gannan County and lowest in Tailai County. Overall, black soil quality in Qiqihar City is relatively low. These results provide a scientific foundation and data support for soil restoration and ecological construction efforts in these areas. Full article
Show Figures

Figure 1

25 pages, 4445 KiB  
Article
The Impact of Extreme Sea Level Rise on the National Strategies for Flood Protection and Freshwater in the Netherlands
by Yann Friocourt, Meinte Blaas, Matthijs Bonte, Robert Vos, Robert Slomp, Rinse Wilmink, Quirijn Lodder, Laura Brakenhoff and Saskia van Gool
Water 2025, 17(7), 919; https://doi.org/10.3390/w17070919 - 21 Mar 2025
Viewed by 1314
Abstract
This work investigates the impact of sea level rise (SLR) of up to 3 m on flood protection and freshwater availability in the Netherlands. We applied an exploratory modeling approach to consider the large degree of uncertainty associated with SLR. The results show [...] Read more.
This work investigates the impact of sea level rise (SLR) of up to 3 m on flood protection and freshwater availability in the Netherlands. We applied an exploratory modeling approach to consider the large degree of uncertainty associated with SLR. The results show the current degree of flood protection can be technically and financially maintained for up to three meters of SLR. A primary finding of this work is that a similar degree of safety against floods can be maintained. There are, however, several challenges: First, maintaining this degree of safety against floods requires considerable spatial allocations to maintain and upgrade flood defenses, often in populated areas with limited space. Second, the supply of sand for coastal nourishments will be challenging due to other functions in the North Sea (wind energy, shipping) and explosive remnants of war. Third, an acceleration in the rate of SLR may impact the overall feasibility of maintaining flood defenses. Maintaining the freshwater strategy will be challenging due to SLR-induced salt intrusion, which aggravates climate impacts including droughts. Continued flushing of salinized areas of regional water systems and polders with fresh river water will increasingly compete with other demands. Our analysis highlights the vulnerabilities of the flood protection and freshwater strategies and gives input to follow-up analyses on societal impact and perspectives of actions for adaptation. Full article
(This article belongs to the Special Issue Climate Risk Management, Sea Level Rise and Coastal Impacts)
Show Figures

Figure 1

22 pages, 3827 KiB  
Article
Species Richness of Arbuscular Mycorrhizal Fungi in Heterogenous Saline Environments
by Jahangir A. Malik, Basharat A. Dar, Abdulaziz A. Alqarawi, Abdulaziz M. Assaeed, Fahad Alotaibi, Arafat Alkhasha, Abdelmalik M. Adam and Ahmed M. Abd-ElGawad
Diversity 2025, 17(3), 183; https://doi.org/10.3390/d17030183 - 4 Mar 2025
Cited by 1 | Viewed by 805
Abstract
Sabkha (inland and coastal—saline beds or saline lands) are widespread in Saudi Arabia and are distinguished by their hypersaline nature. These hypersaline habitats are commonly covered by halophytic vegetation. Moreover, Arbuscular mycorrhizal fungi (AMF) are an essential component of these habitats and exhibit [...] Read more.
Sabkha (inland and coastal—saline beds or saline lands) are widespread in Saudi Arabia and are distinguished by their hypersaline nature. These hypersaline habitats are commonly covered by halophytic vegetation. Moreover, Arbuscular mycorrhizal fungi (AMF) are an essential component of these habitats and exhibit a unique adaptation and contribute significantly to ecosystem variability, diversity, and function. Additionally, AMF from saline habitats are an essential component for the successful rehabilitation of salinity-affected areas. Despite their importance, little is known about the distribution and abundance of AMF along inland and coastal sabkhat of Saudi Arabia. Therefore, the main objective of this study was to investigate the abundance and diversity of AMF in the coastal and inland sabkhat of Saudi Arabia. Five soil samples, each from five randomly selected spots (considering the presence of dominant and co-dominant halophytic species), were collected from every location and were used to assess the AMF abundance and diversity. The study indicated that the highest number of AMF spores was recorded from Jouf, averaging ≈ 346 spores 100 g−1 dry soil, and the lowest from Uqair, averaging ≈ 96 spores 100 g−1 dry soil. A total of 25 AMF species were identified, belonging to eight identified genera viz., Acaulospora, Diversispora, Gigaspora, Scutellospora, Claroideoglomus, Funneliformis, Glomus, and Rhizophagus and five families. Of the total identified species, 52% belonged to the family Glomeraceae. Moreover, the highest number of species was isolated from the sabkha in Qasab. Additionally, Glomeraceae was abundant in all the studied locations with the highest relative abundance in Uqair (48.34%). AMF species Claroideoglomus etunicatum, Funneliformis mosseae, Glomus ambisporum, and Rhizophagus intraradices were the most frequently isolated species from all the Sabkha locations with isolation frequency (IF) ≥ 60%, and Claroideoglomus etunicatum (Ivi ≥ 50%) was the dominant species in all the studied locations. Furthermore, data on the Shannon–Wiener diversity index showed that the highest AMF species diversity was in Qaseem and Qasab habitats. The highest Pielou’s evenness index was recorded in Jouf. Moreover, the soil parameters that positively affected the diversity of identified species included Clay%, Silt%, HCO31−, OM, MC, N, and P, while some soil parameters such as EC, Na+, SO42−, and Sand% had a significant negative correlation with the isolated AMF species. This study revealed that AMF can adapt and survive the harshest environments, such as hypersaline sabkhas, and thus can prove to be a vital component in the potential restoration of salinity-inflicted/degraded ecosystems. Full article
(This article belongs to the Special Issue Microbial Community Dynamics in Soil Ecosystems)
Show Figures

Figure 1

15 pages, 5046 KiB  
Article
Changes and Influencing Factors of Carbon Content in Surface Sediments of Different Sedimentary Environments Along the Jiangsu Coast, China
by Linlu Xu, Hui Ye, Jianing Yin, Qiang Shu and Yuxin Fan
Diversity 2025, 17(3), 158; https://doi.org/10.3390/d17030158 - 25 Feb 2025
Viewed by 349
Abstract
Coastal areas are essential for global ‘blue carbon’ burial, significantly impacting the global carbon cycle. To better understand the carbon burial capacity, impact factors, and response mechanisms of surface sediments in different coastline regions, this study investigated the surface sediments of the Spartina [...] Read more.
Coastal areas are essential for global ‘blue carbon’ burial, significantly impacting the global carbon cycle. To better understand the carbon burial capacity, impact factors, and response mechanisms of surface sediments in different coastline regions, this study investigated the surface sediments of the Spartina alterniflora vegetation, transition, and bare flat areas along Jiangsu coast in China. The results indicated significant changes in organic carbon (OC), inorganic carbon (IC), and various physicochemical property indicators between the three coastal environments. There were also significant differences in the important impact factors of OC and IC in each region. In areas of vegetation, OC and IC influenced each other, while nitrogen (N), clay, and sand were common impact factors. The pH only had a significant impact on OC. In the bare flat area, the important impact factors of OC and IC were identical: OC/IC, clay, salinity (SAL), and sand. However, the important impact factors of OC and IC in the transition area have undergone significant changes. The important impact factors of OC were N, total phosphorus (TP), total sulfur (TS), SAL, and sand. The partial least squares regression analysis results of IC were poor, and there were no important impact factors. This study refined the spatial distribution patterns and response mechanisms to the important impact factors of carbon in different coastal subregions, providing a basis for accurately evaluating the role of coastal wetlands in mitigating global climate change. Full article
Show Figures

Figure 1

34 pages, 6071 KiB  
Review
Can the Beach–Dune Ecosystem Be Preserved Without Protecting the Beach? Ecological Assessment with a Focus on Specialized Beetle Fauna as Environmental Quality Indicators
by Lorenzo Zanella and Fabio Vianello
Sustainability 2025, 17(5), 1922; https://doi.org/10.3390/su17051922 - 24 Feb 2025
Viewed by 1161
Abstract
Anthropogenic development has historically concentrated in coastal areas to exploit resources from fishing and commercial navigation. In recent centuries, intensive tourism has added pressure on sandy shorelines, leading to their modification. This development model has led to the disappearance of most coastal sand [...] Read more.
Anthropogenic development has historically concentrated in coastal areas to exploit resources from fishing and commercial navigation. In recent centuries, intensive tourism has added pressure on sandy shorelines, leading to their modification. This development model has led to the disappearance of most coastal sand dunes and their rich biodiversity, which includes specialized plant and animal species adapted to sandy substrates, harsh arid conditions, and variable levels of salinity. The European Community’s conservation policies, particularly the Habitats Directive (Council Directive 92/43/EEC), have facilitated the preservation and restoration of the few remaining dune systems. However, these policies have unfortunately overlooked the protection of the adjacent beaches, which are integral to the coastal ecosystem. The loss of biodiversity typical of the beach–dune ecosystems is examined in relation to the anthropogenic disturbance factors, with particular attention to mechanical beach cleaning. Indeed, the metabolizable energy generated by this decomposer biomass is crucial for supporting a diverse trophic network of predators, ranging from insects to birds. The rapid disappearance of the specialized beetle fauna is examined, and some essential criteria for defining standard biotic indices suitable for monitoring these ecosystems are suggested. This approach aims to support more effective conservation programs for these fragile environments. We recommend revising the regulatory framework for safeguarding beach–dune ecosystems, while also proposing some key management principles to be incorporated into the protection guidelines. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop