Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = salen type ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3701 KiB  
Article
Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands
by Paula Mediavilla, Antonio Ribeiro, Ángel Gutiérrez, Santiago Herrero and Mari Carmen Torralba
Inorganics 2025, 13(3), 93; https://doi.org/10.3390/inorganics13030093 - 19 Mar 2025
Viewed by 490
Abstract
Three new asymmetrically coordinated lanthanide derivatives based on the bicompartmental salen-type ligands N,N′-bis(3-ethoxysalicylidene)propylene-1,3-diamine (H2EtOsalpr) and 3-ethoxysalicylaldehyde (HEtvain) have been synthesized and structurally and photophysically characterized. All the compounds show dimeric structures of the [...] Read more.
Three new asymmetrically coordinated lanthanide derivatives based on the bicompartmental salen-type ligands N,N′-bis(3-ethoxysalicylidene)propylene-1,3-diamine (H2EtOsalpr) and 3-ethoxysalicylaldehyde (HEtvain) have been synthesized and structurally and photophysically characterized. All the compounds show dimeric structures of the general formula [Ln(H2EtOsalpr)(NO3)2(Etvain)]2 (Ln = Nd, Eu, Dy), with each salen-type ligand bridging two lanthanide ions. The Etvain ligand comes from the H2EtOsalpr decomposition being coordinated to the corresponding lanthanide. The Nd(III) derivative shows fluorescence emission in the NIR region, but for the Eu(III) and Dy(III) compounds, only a broad band, attributed to the ligand emission, was observed. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

25 pages, 11877 KiB  
Review
Chiral 4f and 3d-4f Complexes from Enantiopure Salen-Type Schiff Base Ligands
by Catherine P. Raptopoulou
Crystals 2024, 14(5), 474; https://doi.org/10.3390/cryst14050474 - 18 May 2024
Cited by 2 | Viewed by 1875
Abstract
This review summarizes the structural characteristics and physicochemical properties of chiral 4f and 3d-4f complexes based on enantiopure salen-type Schiff base ligands. The chirality originates from the enantiopure diamines and is imparted to the Schiff base ligands and complexes and finally to the [...] Read more.
This review summarizes the structural characteristics and physicochemical properties of chiral 4f and 3d-4f complexes based on enantiopure salen-type Schiff base ligands. The chirality originates from the enantiopure diamines and is imparted to the Schiff base ligands and complexes and finally to the crystal structures. The reported enantiopure Schiff base ligands derive from the condensation of aromatic aldehydes, such as salicylaldehyde and its various derivatives, and the enantiopure diamines, (1R,2R) or (1S,2S)-1,2-diamino-cyclohexane, (1R,2R) or (1S,2S)-1,2-diamino-1,2-diphenylethane, (R) or (S)-2,2′-diamino-1,1′-binaphthalene, and 1,2-diaminopropane. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

15 pages, 3983 KiB  
Article
Chromium Complexes Supported by Salen-Type Ligands for the Synthesis of Polyesters, Polycarbonates, and Their Copolymers through Chemoselective Catalysis
by Ilaria Grimaldi, Federica Santulli, Marina Lamberti and Mina Mazzeo
Int. J. Mol. Sci. 2023, 24(8), 7642; https://doi.org/10.3390/ijms24087642 - 21 Apr 2023
Cited by 10 | Viewed by 3140
Abstract
Salen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO2 and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, [...] Read more.
Salen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO2 and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, the more flexible skeleton of salalen and salan ancillary ligands favors high activity. Differently, in the copolymerization of phthalic anhydride with the epoxides, the salen complex showed the best performance. Diblock polycarbonate-polyester copolymers were selectively obtained by one-pot procedures from mixtures of CO2, cyclohexene oxide, and phthalic anhydride with all complexes. In addition, all chromium complexes were revealed to be very active in the chemical depolymerization of polycyclohexene carbonate producing cyclohexene oxide with high selectivity, thus offering the opportunity to close the loop on the life of these materials. Full article
(This article belongs to the Special Issue Biodegradable Polymer: From Design to Applications 2.0)
Show Figures

Figure 1

15 pages, 1785 KiB  
Article
Substituent-Guided Cluster Nuclearity for Tetranuclear Iron(III) Compounds with Flat {Fe43-O)2} Butterfly Core
by Lorenzo Marchi, Stefano Carlino, Carlo Castellano, Francesco Demartin, Alessandra Forni, Anna M. Ferretti, Alessandro Ponti, Alessandro Pasini and Luca Rigamonti
Int. J. Mol. Sci. 2023, 24(6), 5808; https://doi.org/10.3390/ijms24065808 - 18 Mar 2023
Cited by 2 | Viewed by 2012
Abstract
The tetranuclear iron(III) compounds [Fe43-O)2(μ-LZ)4] (13) were obtained by reaction of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N’-bis(salicylidene)-o [...] Read more.
The tetranuclear iron(III) compounds [Fe43-O)2(μ-LZ)4] (13) were obtained by reaction of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N’-bis(salicylidene)-o-Z-phenylmethanediamine H2LZ (Z = NO2, Cl and OMe, respectively), where the one-carbon bridge between the two iminic nitrogen donor atoms guide preferentially to the formation of oligonuclear species, and the ortho position of the substituent Z on the central phenyl ring selectively drives towards Fe4 bis-oxido clusters. All compounds show a flat almost-symmetric butterfly-like conformation of the {Fe43-O)2} core, surrounded by the four Schiff base ligands, as depicted by both the X-ray molecular structures of 1 and 2 and the optimized geometries of all derivatives as obtained by UM06/6-311G(d) DFT calculations. The strength of the antiferromagnetic exchange coupling constants between the iron(III) ions varies among the three derivatives, despite their magnetic cores remain structurally almost unvaried, as well as the coordination of the metal ions, with a distorted octahedral environment for the two-body iron ions, Feb, and a pentacoordination with trigonal bipyramidal geometry for the two-wing iron ions, Few. The different magnetic behavior within the series of examined compounds may be ascribed to the influence of the electronic features of Z on the electron density distribution (EDD) of the central {Fe43-O)2} core, substantiated by a Quantum Theory of Atoms In Molecules (QTAIM) topological analysis of the EDD, as obtained by UM06 calculations 13. Full article
(This article belongs to the Special Issue Oligonuclear Metal Complexes with Schiff Base Ligands 2.0)
Show Figures

Figure 1

19 pages, 2107 KiB  
Article
Asymmetric Monomer Design Enables Structural Control of M(Salen)-Type Polymers
by Maria Novozhilova, Julia Polozhentseva and Mikhail Karushev
Polymers 2023, 15(5), 1127; https://doi.org/10.3390/polym15051127 - 23 Feb 2023
Cited by 1 | Viewed by 2198
Abstract
Conductive and electrochemically active polymers consisting of Salen-type metal complexes as building blocks are of interest for energy storage and conversion applications. Asymmetric monomer design is a powerful tool for fine-tuning the practical properties of conductive electrochemically active polymers but has never been [...] Read more.
Conductive and electrochemically active polymers consisting of Salen-type metal complexes as building blocks are of interest for energy storage and conversion applications. Asymmetric monomer design is a powerful tool for fine-tuning the practical properties of conductive electrochemically active polymers but has never been employed for polymers of M(Salen)]. In this work, we synthesize a series of novel conducting polymers composed of a nonsymmetrical electropolymerizable copper Salen-type complex (Cu(3-MeOSal–Sal)en). We show that asymmetrical monomer design provides easy control of the coupling site via polymerization potential control. With in-situ electrochemical methods such as UV-vis-NIR (ultraviolet-visible-near infrared) spectroscopy, EQCM (electrochemical quartz crystal microbalance), and electrochemical conductivity measurements, we elucidate how the properties of these polymers are defined by chain length, order, and cross-linking. We found that the highest conductivity in the series has a polymer with the shortest chain length, which emphasizes the importance of intermolecular iterations in polymers of [M(Salen)]. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

19 pages, 5039 KiB  
Review
Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures
by Ivan Pietro Oliveri and Santo Di Bella
Chemistry 2023, 5(1), 119-137; https://doi.org/10.3390/chemistry5010010 - 13 Jan 2023
Cited by 18 | Viewed by 4228
Abstract
This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of [...] Read more.
This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of a variety of supramolecular structures, either in solution or in the solid state. Stabilization of these Lewis acidic complexes is almost always reached through an axial coordination of a Lewis base, leading to a penta-coordinated square-pyramidal geometry around the metal center. The coverage is not exhaustive, mainly focused on their crystallographic structures, but also on their aggregation and sensing properties in solution, and on their self-assembled and responsive nanostructures, summarizing their salient aspects. The axial ligands can easily be displaced, either in solution or in the solid state, with suitable Lewis bases, thus being responsive supramolecular structures useful for sensing. This contribution represents the first attempt to relate some common features of the chemistry of different families of Zn(II) complexes of tetradentate ligands to their intrinsic Lewis acidic character. Full article
(This article belongs to the Special Issue Programmable and Stimulus-Responsive Supramolecular Assemblies)
Show Figures

Graphical abstract

19 pages, 1950 KiB  
Article
Comprehensive Empirical Model of Substitution—Influence on Hydrogen Bonding in Aromatic Schiff Bases
by Katarzyna M. Krupka, Michał Pocheć, Jarosław J. Panek and Aneta Jezierska
Int. J. Mol. Sci. 2022, 23(20), 12439; https://doi.org/10.3390/ijms232012439 - 18 Oct 2022
Cited by 3 | Viewed by 2567
Abstract
In this work, over 500 structures of tri-ring aromatic Schiff bases with different substitution patterns were investigated to develop a unified description of the substituent effect on the intramolecular hydrogen bridge. Both proximal and distal effects were examined using Density Functional Theory (DFT) [...] Read more.
In this work, over 500 structures of tri-ring aromatic Schiff bases with different substitution patterns were investigated to develop a unified description of the substituent effect on the intramolecular hydrogen bridge. Both proximal and distal effects were examined using Density Functional Theory (DFT) in the gas phase and with solvent reaction field (Polarizable Continuum Model (PCM) and water as the solvent). In order to investigate and characterize the non-covalent interactions, a topological analysis was performed using the Quantum Theory of Atoms In Molecules (QTAIM) theory and Non-Covalent Interactions (NCI) index. The obtained results were summarized as the generalized, empirical model of the composite substituent effect, assessed using an additional group of simple ring-based Schiff bases. The composite substituent effect has been divided into separate increments describing the different interactions of the hydrogen bridge and the substituent: the classical substituent effect, involving resonance and induction mediated through the ring, steric increment based on substituent proximity to the bridge elements, and distal increment, derived from substitution on the distal ring. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogen Bonding)
Show Figures

Graphical abstract

16 pages, 3526 KiB  
Article
New Heterotrinuclear CuIILnIIICuII (Ln = Ho, Er) Compounds with the Schiff Base: Syntheses, Structural Characterization, Thermal and Magnetic Properties
by Beata Cristóvão, Dariusz Osypiuk and Agata Bartyzel
Materials 2022, 15(12), 4299; https://doi.org/10.3390/ma15124299 - 17 Jun 2022
Cited by 3 | Viewed by 2241
Abstract
New heterotrinuclear complexes with the general formula [Cu2Ln(H2L)(HL)(NO3)2]·MeOH (Ln = Ho (1), Er (2), H4L = N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) were synthesized using compartmental Schiff base ligand in conjugation [...] Read more.
New heterotrinuclear complexes with the general formula [Cu2Ln(H2L)(HL)(NO3)2]·MeOH (Ln = Ho (1), Er (2), H4L = N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) were synthesized using compartmental Schiff base ligand in conjugation with auxiliary ligands. The compounds were characterized by elemental analysis, ATR-FTIR spectroscopy, X-ray diffraction, TG, DSC, TG-FTIR and XRD analysis. The N2O4 salen-type ligand coordinates 3d and 4f metal centers via azomethine nitrogen and phenoxo oxygen atoms, respectively, to form heteropolynuclear complexes having CuO2Ln cores. In the crystals 1 and 2, two terminal Cu(II) ions are penta-coordinated with a distorted square-pyramidal geometry and a LnIII ion with trigonal dodecahedral geometry is coordinated by eight oxygen atoms from [CuII(H2L)(NO3)] and [CuII(HL)(NO3)]2− units. Compounds 1 and 2 are stable at room temperature. During heating, they decompose in a similar way. In the first decomposition step, they lose solvent molecules. The exothermic decomposition of ligands is connected with emission large amounts of gaseous products e.g., water, nitric oxides, carbon dioxide, carbon monoxide. The final solid products of decomposition 1 and 2 in air are mixtures of CuO and Ho2O3/Er2O3. The measurements of magnetic susceptibilities and field dependent magnetization indicate the ferromagnetic interaction between CuII and HoIII ions 1. Full article
Show Figures

Figure 1

15 pages, 2430 KiB  
Article
The Synthesis, Characterization, Molecular Docking and In Vitro Antitumor Activity of Benzothiazole Aniline (BTA) Conjugated Metal-Salen Complexes as Non-Platinum Chemotherapeutic Agents
by Md. Kamrul Islam, Seongmin Ha, Ah-Rum Baek, Byeong-Woo Yang, Yeoun-Hee Kim, Hyun-Jin Park, Minsup Kim, Sung-Wook Nam, Gang-Ho Lee and Yongmin Chang
Pharmaceuticals 2022, 15(6), 751; https://doi.org/10.3390/ph15060751 - 15 Jun 2022
Cited by 7 | Viewed by 3994
Abstract
Here, we describe the synthesis, characterization, and in vitro biological evaluation of a series of transition metal complexes containing benzothiazole aniline (BTA). We employed BTA, which is known for its selective anticancer activity, and a salen-type Schiff-based ligand to coordinate several transition metals [...] Read more.
Here, we describe the synthesis, characterization, and in vitro biological evaluation of a series of transition metal complexes containing benzothiazole aniline (BTA). We employed BTA, which is known for its selective anticancer activity, and a salen-type Schiff-based ligand to coordinate several transition metals to achieve selective and synergistic cytotoxicity. The compounds obtained were characterized by NMR spectroscopy, mass spectrometry, Fourier transform infrared spectroscopy, and elemental analysis. The compounds L, MnL, FeL, CoL, and ZnL showed promising in vitro cytotoxicity against cancer cells, and they had a lower IC50 than that of the clinically used cisplatin. In particular, MnL had synergistic cytotoxicity against liver, breast, and colon cancer cells. Moreover, MnL, CoL, and CuL promoted the production of reactive oxygen species in HepG2 tumor cell lines. The lead compound of this series, MnL, remained stable in physiological settings, and docking results showed that it interacted rationally with the minor groove of DNA. Therefore, MnL may serve as a viable alternative to platinum-based chemotherapy. Full article
(This article belongs to the Special Issue Metal-Based Agents in Drug Discovery)
Show Figures

Graphical abstract

20 pages, 6351 KiB  
Article
Reversible Redox Processes in Polymer of Unmetalated Salen-Type Ligand: Combined Electrochemical in Situ Studies and Direct Comparison with Corresponding Nickel Metallopolymer
by Julia Polozhentseva, Maria Novozhilova and Mikhail Karushev
Int. J. Mol. Sci. 2022, 23(3), 1795; https://doi.org/10.3390/ijms23031795 - 4 Feb 2022
Cited by 8 | Viewed by 3523
Abstract
Most non-metalized Salen-type ligands form passivation thin films on electrode surfaces upon electrochemical oxidation. In contrast, the H2(3-MeOSalen) forms electroactive polymer films similarly to the corresponding nickel complex. There are no details of electrochemistry, doping mechanism and charge transfer pathways in [...] Read more.
Most non-metalized Salen-type ligands form passivation thin films on electrode surfaces upon electrochemical oxidation. In contrast, the H2(3-MeOSalen) forms electroactive polymer films similarly to the corresponding nickel complex. There are no details of electrochemistry, doping mechanism and charge transfer pathways in the polymers of pristine Salen-type ligands. We studied a previously uncharacterized electrochemically active polymer of a Salen-type ligand H2(3-MeOSalen) by a combination of cyclic voltammetry, in situ ultraviolet–visible (UV–VIS) spectroelectrochemistry, in situ electrochemical quartz crystal microbalance and Fourier Transform infrared spectroscopy (FTIR) spectroscopy. By directly comparing it with the polymer of a Salen-type nickel complex poly-Ni(3-MeOSalen) we elucidate the effect of the central metal atom on the structure and charge transport properties of the electrochemically doped polymer films. We have shown that the mechanism of charge transfer in the polymeric ligand poly-H2(3-MeOSalen) are markedly different from the corresponding polymeric nickel complex. Due to deviation from planarity of N2O2 sphere for the ligand H2(3-MeOSalen), the main pathway of electron transfer in the polymer film poly-H2(3-MeOSalen) is between π-stacked structures (the π-electronic systems of phenyl rings are packed face-to-face) and C-C bonded phenyl rings. The main way of electron transfer in the polymer film poly-Ni(3-MeOSalen) is along the polymer chain, while redox processes are ligand-based. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

9 pages, 1902 KiB  
Article
Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants
by Alexey A. Petrov, Daniil A. Lukyanov, Oleg A. Kopytko, Julia V. Novoselova, Elena V. Alekseeva and Oleg V. Levin
Catalysts 2021, 11(6), 729; https://doi.org/10.3390/catal11060729 - 12 Jun 2021
Cited by 8 | Viewed by 2887
Abstract
Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been [...] Read more.
Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been demonstrated for nickel complexes of Salen-type ligands. Herein, we report an unexpected inversion of the photogalvanic effect caused by doping of the NiSalen polymers with anionic porphyrins. The observed effect was studied by means of UV-Vis spectroscopy, cyclic voltammetry and chopped light chronoamperometry. While pristine NiSalens exhibit cathodic photopolarization, doping with porphyrins inverts the polarization. As a result, photoelectrochemical oxidation of the ascorbate proceeds smoothly on the NiSalen electrode doped with zinc porphyrins. The highest photocurrents were observed on NiSalen polymer with o-phenylene imine bridge, doped with anionic zinc porphyrin. Assuming this, porphyrin serves both as a catalytic center for the oxidation of ascorbate and an internal electron donor, facilitating the photoinduced charge transport and anodic depolarization. Full article
(This article belongs to the Special Issue Catalysts in Energy Applications)
Show Figures

Graphical abstract

20 pages, 1911 KiB  
Review
When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetradentate Salen-Type Schiff Base Ligands and Related Complexes
by Rita Mazzoni, Fabrizio Roncaglia and Luca Rigamonti
Crystals 2021, 11(5), 483; https://doi.org/10.3390/cryst11050483 - 26 Apr 2021
Cited by 28 | Viewed by 5218
Abstract
The reaction of organic molecules mediated by a metal center (template synthesis) can result in a final connectivity that may differ from the one obtained in the absence of the metal. The condensation of carbonyl fragments with primary amines form C=N [...] Read more.
The reaction of organic molecules mediated by a metal center (template synthesis) can result in a final connectivity that may differ from the one obtained in the absence of the metal. The condensation of carbonyl fragments with primary amines form C=N iminic bonds, the so-called Schiff bases, which can act as ligands for the templating metal center by means of the lone pair on the nitrogen atom. This review focuses on the template methods for the reaction between a carbonyl compound (mainly salicylaldehyde) and a primary aliphatic diamine able to prevent the double condensation on both amine groups and obtain tridentate N2O ligands. These adducts, still having one free amino group, can further react, yielding tetradentate salen-type Schiff base ligands. A screening over the transition metals able to show such a template effect will be presented, with particular attention to copper(II), together with their peculiar reactivity and the available crystal structure of the metal complexes and related coordination geometries. Full article
(This article belongs to the Special Issue Self-Assembled Complexes: “Love at First Sight”)
Show Figures

Graphical abstract

19 pages, 2749 KiB  
Article
Selective Formation, Reactivity, Redox and Magnetic Properties of MnIII and FeIII Dinuclear Complexes with Shortened Salen-Type Schiff Base Ligands
by Luca Rigamonti, Paolo Zardi, Stefano Carlino, Francesco Demartin, Carlo Castellano, Laura Pigani, Alessandro Ponti, Anna Maria Ferretti and Alessandro Pasini
Int. J. Mol. Sci. 2020, 21(21), 7882; https://doi.org/10.3390/ijms21217882 - 23 Oct 2020
Cited by 16 | Viewed by 3313
Abstract
The reactivity of the shortened salen-type ligands H3salmp, H2salmen and H2sal(p-X)ben with variable para-substituent on the central aromatic ring (X = tBu, Me, H, F, Cl, CF3, NO2) towards [...] Read more.
The reactivity of the shortened salen-type ligands H3salmp, H2salmen and H2sal(p-X)ben with variable para-substituent on the central aromatic ring (X = tBu, Me, H, F, Cl, CF3, NO2) towards the trivalent metal ions manganese(III) and iron(III) is presented. The selective formation of the dinuclear complexes [M2(μ-salmp)2], M = Mn (1a), Fe (2a), [M2(μ-salmen)2(μ-OR)2)], R = Et, Me, H and M = Mn (3ac) or Fe (4ac), and (M2(μ-sal[p-X]ben)2(μ-OMe)2), X = tBu, Me, H, F, Cl, CF3, NO2 and M = Mn (5ag) or Fe (6ag), could be identified by reaction of the Schiff bases with metal salts and the base NEt3, and their characterization through elemental analysis, infrared spectroscopy, mass spectrometry and single-crystal X-ray diffraction of 2a·2AcOEt, 2a·2CH3CN and 3c·2DMF was performed. In the case of iron(III) and H3salmp, when using NaOH as a base instead of NEt3, the dinuclear complexes [Fe2(μ-salmp)(μ-OR)(salim)2], R = Me, H (2b,c) could be isolated and spectroscopically characterized, including the crystal structure of 2b·1.5H2O, which showed that rupture of one salmp3− to two coordinated salim ligands and release of one salH molecule occurred. The same hydrolytic tendency could be identified with sal(p-X)ben ligands in the case of iron(III) also by using NEt3 or upon standing in solution, while manganese(III) did not promote such a C–N bond breakage. Cyclic voltammetry studies were performed for 3b, 4b, 5a and 6a, revealing that the iron(III) complexes can be irreversibly reduced to the mixed-valence FeIIFeIII and FeII2 dinuclear species, while the manganese(III) derivatives can be reversibly oxidized to either the mixed-valence MnIIIMnIV or to the MnIV2 dinuclear species. The super-exchange interaction between the metal centers, mediated by the bridging ligands, resulted in being antiferromagnetic (AFM) for the selected dinuclear compounds 3b, 4b, 5a, 5e,5f, 6a and 6e. The coupling constants J (–2JŜ1·Ŝ2 formalism) had values around −13 cm−1 for manganese(III) compounds, among the largest AFM coupling constants reported so far for dinuclear MnIII2 derivatives, while values between −3 and −10 cm−1 were obtained for iron(III) compounds. Full article
(This article belongs to the Special Issue Oligonuclear Metal Complexes with Schiff Base Ligands)
Show Figures

Figure 1

28 pages, 3164 KiB  
Review
Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes
by Lara Rouco, Ana M. González-Noya, Rosa Pedrido and Marcelino Maneiro
Antioxidants 2020, 9(8), 727; https://doi.org/10.3390/antiox9080727 - 10 Aug 2020
Cited by 16 | Viewed by 5375
Abstract
Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active [...] Read more.
Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have been shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess reactive oxygen species (ROS), thereby restoring the redox balance in damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. These disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory, and cardiovascular diseases; tissue injury; and other damages related to the liver, kidney, or lungs. Full article
(This article belongs to the Special Issue Effect of Antioxidant Therapy on Oxidative Stress In Vivo)
Show Figures

Graphical abstract

14 pages, 4204 KiB  
Article
Crystal Structure and Supramolecular Architecture of Inorganic Ligand-Coordinated Salen-Type Schiff Base Complex: Insights into Halogen Bond from Theoretical Analysis and 3D Energy Framework Calculations
by Qiong Wu, Jian-Chang Xiao, Cun Zhou, Jin-Rong Sun, Mei-Fen Huang, Xindi Xu, Tianyu Li and Hui Tian
Crystals 2020, 10(4), 334; https://doi.org/10.3390/cryst10040334 - 23 Apr 2020
Cited by 27 | Viewed by 4626
Abstract
To identify the effects of halogen bonding in the architecture of Schiff base complex supramolecular networks, we introduced halogenated Schiff-base 3-Br-5-Cl-salen as ligand and isolated a new salen-type manganese(III) complex [MnIII(Cl)(H2O)(3-Br-5-Cl-salen)] (1) where 3-Br-5-Cl-salen = [...] Read more.
To identify the effects of halogen bonding in the architecture of Schiff base complex supramolecular networks, we introduced halogenated Schiff-base 3-Br-5-Cl-salen as ligand and isolated a new salen-type manganese(III) complex [MnIII(Cl)(H2O)(3-Br-5-Cl-salen)] (1) where 3-Br-5-Cl-salen = N,N’-bis(3-bromo-5-chlorosalicylidene)-1,2-diamine. The complex was investigated in the solid-state for halogen bonds (XBs) by single crystal X-ray structure analysis. Meanwhile, theoretical calculations were carried out to rationalize the formation mechanism of different types of XBs in the complex. The analysis result of electronic structure of the halogen bonds indicated that the chlorine atom coordinated to the Mn(III) center possesses the most negative potential and acts as anionic XB acceptor (electron donor) to the adjacent substituted halogens on the ligand, meanwhile the intermolecular Mn-Cl···X-C halogen bonding plays a significant role in directing the packing arrangement of adjacent molecules and linking the 2D layers into a 3D network. In order to verify the above results and acquire detailed information, the title complex was further analyzed by using the Hirshfeld surface analyses. Full article
(This article belongs to the Special Issue Advanced Research in Halogen Bonding)
Show Figures

Graphical abstract

Back to TopTop