Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Infrared Spectroscopy
2.3. Single-Crystal X-Ray Diffraction Analysis
2.4. Luminescent Properties
3. Materials and Methods
3.1. Materials
3.2. Physical Measurements
3.3. Synthesis of the Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Current Development of Lanthanide Complexes for Biomedical Applications. Chem. Asian J. 2024, 19, e202400038. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.J.; Zhu, Z.H.; Li, Y.L.; Qin, W.W.; Liang, F.P.; Wang, H.L.; Zou, H.H. Specific smart sensing of electron-rich antibiotics or histidine improves the antenna effect, luminescence, and photodynamic sterilization capabilities of lanthanide polyoxometalates. J. Colloid Interface Sci. 2025, 680, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- Martinon, T.L.M.; Pierre, V.C. Luminescent lanthanide probes for cations and anions: Promises, compromises, and caveats. Curr. Opin. Chem. Biol. 2023, 76, 102374. [Google Scholar] [CrossRef]
- Hasegawa, M.; Ohmagari, H.; Tanaka, H.; Machida, K. Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. J. Photochem. Photobiol. C 2022, 50, 100484. [Google Scholar] [CrossRef]
- Badiane, A.M.; Freslon, S.; Daiguebonne, C.; Suffren, Y.; Bernot, K.; Calvez, G.; Costuas, K.; Camara, M.; Guillou, O. Lanthanide-Based Coordination Polymers with a 4,5-Dichlorophthalate Ligand Exhibiting Highly Tunable Luminescence: Toward Luminescent Bar Codes. Inorg. Chem. 2018, 57, 3399–3410. [Google Scholar] [CrossRef]
- Godoy-Alcántar, C.; Yatsimirsky, A.K.; Lehn, J.M. Structure-stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 2005, 18, 979–985. [Google Scholar] [CrossRef]
- Boulechfar, C.; Ferkous, H.; Delimi, A.; Djedouani, A.; Kahlouche, A.; Boublia, A.; Darwish, A.S.; Lemaoui, T.; Verma, R.; Benguerba, Y. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun. 2023, 150, 110451. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, L.; Wong, W.-Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev. 2018, 355, 180–198. [Google Scholar] [CrossRef]
- Abu-Dief, M.A.; Mohamed, I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Nworie, F.S. Bis(salicylidene)ethylendiamine (salen) and bis(salycilene)ethilenediamine-metal complexes from structure to biological activity. J. Anal. Pharm. Res. 2016, 3, 76–85. [Google Scholar] [CrossRef]
- Al-Obaidi, F.N.; Al-Diwan, T.A.; Mahdi, A.S. Study of the Coordination Tendency of [N,N′-Ethylenebis(salicylidenimine)] Towards Transition Metal Ions. Int. J. Pure Appl. Chem. 2010, 52, 131–134. [Google Scholar]
- Azam, M.; Al-Resayes, S.I. Phenoxy-bridged binuclear Zn(II) complex holding salen ligand: Synthesis and structural characterization. J. Mol. Struct. 2016, 1107, 77–81. [Google Scholar] [CrossRef]
- Gao, T.; Li, G.M.; Gao, P.; Yan, P.F.; Hou, G.F. [N,N’-Bis(3-methoxy-2-oxidobenzylidene)ethane-1,2-diaminium-κ4O,O′,O’’,O’’’]tris(nitrato-κ2O,O’)erbium(III). Acta Crystallogr. E 2010, 66, m107. [Google Scholar] [CrossRef]
- Wang, J.H.; Yan, P.F.; Li, G.M.; Zhang, J.W.; Chen, P.; Suda, M.; Einaga, Y. N,N’-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminopropane dimeric 4f and 3d-4f heterodinuclear complexes: Syntheses, crystal structures and magnetic properties. Inorg. Chim. Acta 2010, 363, 3706–3713. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.-L.; Zhao, L.; Guo, M.; Tang, J. Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln4 to Ln4 Cluster Pairs. Inorg. Chem. 2017, 56, 4104–4111. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; Porebski, P.W.A.; Mortier, T.; Lynen, F.; Van Deun, R.; Van Hecke, K. Near-infrared luminescence and RNA cleavage ability of lanthanide Schiff base complexes derived from N,N′-bis(3-methoxysalicylidene)ethylene-1,2-diamine ligands. J. Inorg. Biochem. 2016, 163, 194–205. [Google Scholar] [CrossRef]
- Debroye, E.; Parac-Vogt, T.N. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chem. Soc. Rev. 2014, 43, 8178–8192. [Google Scholar] [CrossRef]
- Andruh, M. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans. 2015, 44, 16633–16653. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.; Sarkar, S.; Lemoine, P.; Sasmal, S.; Koner, R.; Sparkes, H.A.; Howard, J.A.K.; Mohanta, S. Supramolecular Dimers of Copper(II) Complexes Resulting from Designed Host–Guest Interactions. Eur. J. Inorg. Chem. 2010, 2010, 744–752. [Google Scholar] [CrossRef]
- Ramadan, R.M.; Abu Al-Nasr, A.K. Unusual Catalytic Process Involving OH and NH Exchange. Int. J. Org. Chem. 2012, 2, 64–70. [Google Scholar] [CrossRef]
- Nakamoto, K.; Czernuszewicz, R.S. Infrared Spectroscopy. Methods Enzymol. 1993, 226, 259–289. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X.; Ma, Y.; Niua, M.; Jones, R.A. Construction of 14-metal lanthanide nanorings with NIR luminescence response to ions. Chem. Commun. 2020, 56, 8651. [Google Scholar] [CrossRef]
- Lozovan, V.; Borodi, G.; Perhat, I.; Turza, A.; Branzanic, A.M.V.; Pîrnau, A.; Mures, L.E. EuIII complexes derived from 2-quinolinecarbohydrazide Schiff base ligand, relations between structure and luminescence properties. J. Mol. Struct. 2025, 1322, 140397. [Google Scholar] [CrossRef]
- Cristóvão, B.; Hnatejko, Z. LanthanideIII compounds with the N2O4-donor Schiff base—Synthesis, spectral, thermal, magnetic and luminescence properties. J. Mol. Struct. 2015, 1088, 50–55. [Google Scholar] [CrossRef]
- Contreras, R.; Rojas Pérez, Y. Salen’s ligands in coordination chemistry. A short review. Cienc. Ing. 2018, 39, 307–314. [Google Scholar]
- Sheldrick, G.M. SADABS, Version 2.05. A Software for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, 2002. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Nidhi; Siddharam; Rao, D.P.; Gautam, A.K.; Verma, A.; Gautam, Y. Schiff bases and their possible therapeutic applications: A review. Results Chem. 2025, 13, 101941. [Google Scholar] [CrossRef]
- More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019, 14, 100195. [Google Scholar] [CrossRef]
t (ns) | λem = 479 nm, 298 K | λem = 518 nm, 77 K Fluorescence Lifetimes | λem = 518 nm, 77 K Phosphorescence Lifetimes |
---|---|---|---|
τ1 | 6.2 | 4.9 | 3090 |
τ2 | 2.4 | 1.8 | 363 |
τint | 4.0 | 3.4 | 2200 |
τamp | 3.3 | 2.7 | 900 |
Empirical Formula | C60H66Dy2N8O26 |
---|---|
Formula weight | 1640.2 |
Temperature | 293(2) K |
Wavelength | 1.54184 Å |
Crystal system | Triclinic |
Space group | P–1 (2) |
Unit cell dimensions | a = 10.1607(3) Å b = 10.6719(3) Å c = 17.0363(5) Å α = 74.543(2)° β = 79.487(2)° γ = 80.239(2)° |
Volume | 1736.30(9) Å3 |
Z | 1 |
Crystal size | 0.11 × 0.08 × 0.02 mm |
Density(calculated) μ | 1.569 g/cm3 |
12.102 mm–1 | |
Theta(max) | 68.31° |
Goodness-of-fit on F2 Refinement | 0.994 R[F2 > 2σ(F2)] = 0.0471 wR(F2) = 0.1255 |
Rint | 0.18 |
Largest diff. peak and hole | 1.644, −0.878 eA−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mediavilla, P.; Ribeiro, A.; Gutiérrez, Á.; Herrero, S.; Torralba, M.C. Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands. Inorganics 2025, 13, 93. https://doi.org/10.3390/inorganics13030093
Mediavilla P, Ribeiro A, Gutiérrez Á, Herrero S, Torralba MC. Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands. Inorganics. 2025; 13(3):93. https://doi.org/10.3390/inorganics13030093
Chicago/Turabian StyleMediavilla, Paula, Antonio Ribeiro, Ángel Gutiérrez, Santiago Herrero, and Mari Carmen Torralba. 2025. "Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands" Inorganics 13, no. 3: 93. https://doi.org/10.3390/inorganics13030093
APA StyleMediavilla, P., Ribeiro, A., Gutiérrez, Á., Herrero, S., & Torralba, M. C. (2025). Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands. Inorganics, 13(3), 93. https://doi.org/10.3390/inorganics13030093