Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures
Abstract
:1. Introduction
2. Lewis Acidic Zn(II) Salen-Type Complexes
2.1. Origin of the Lewis Acidic Character
2.2. Molecular Aggregates
2.2.1. Structures of Mononuclear Complexes
2.2.2. Structures of Polynuclear and Macrocycle Complexes
2.2.3. Neutral and Charged Polytopic Lewis Bases Templating the Supramolecular Architecture
2.2.4. Self-Assembly of Zn(salen)-Type Complexes by Donor Substituents on the Ligand Framework
2.2.5. Studies in Solution
2.2.6. Sensing Studies
2.3. Molecular Self-Assembled Nanostructures
Responsive Properties
3. Zn(II) Complexes of Other Tetradentate Ligands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed.; Wiley: Chichester, UK, 2009; ISBN 978-0-470-51233-3. [Google Scholar]
- Ariga, K.; Kunitake, T. Supramolecular Chemistry—Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-01298-6. [Google Scholar]
- Beer, P.D.; Barendt, T.A.; Lim, J.Y.C. Supramolecular Chemistry: Fundamentals and Applications, 2nd ed.; Oxford University Press: Oxford, UK, 2022; ISBN 978-0-19-883284-3. [Google Scholar]
- Kolesnichenko, I.V.; Anslyn, E.V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 2017, 46, 2385–2390. [Google Scholar] [CrossRef]
- Ragazzon, G.; Baroncini, M.; Ceroni, P.; Credi, A.; Venturi, M. Electrochemically Controlled Supramolecular Switches and Machines. In Comprehensive Supramolecular Chemistry II, 2nd ed.; Atwood, J.L., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 343–368. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef]
- Kleij, A.W. New Templating Strategies with Salen Scaffolds (Salen=N,N’-Bis(salicylidene)ethylenediamine Dianion). Chem. Eur. J. 2008, 14, 10520–10529. [Google Scholar] [CrossRef]
- Kleij, A.W. Zinc-centred salen complexes: Versatile and accessible supramolecular building motifs. Dalton Trans. 2009, 4635–4639. [Google Scholar] [CrossRef] [PubMed]
- Leoni, L.; Dalla Cort, A. The Supramolecular Attitude of Metal–Salophen and Metal–Salen Complexes. Inorganics 2018, 6, 42. [Google Scholar] [CrossRef]
- Consiglio, G.; Oliveri, I.P.; Failla, S.; Di Bella, S. On the Aggregation and Sensing Properties of Zinc(II) Schiff–Base Complexes of Salen–Type Ligands. Molecules 2019, 24, 2514. [Google Scholar] [CrossRef]
- Di Bella, S. Lewis acidic zinc(II) salen-type Schiff-base complexes: Sensing properties and responsive nanostructures. Dalton Trans. 2021, 50, 6050–6063. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.T.L.; MacLachlan, M.J. Supramolecular Assembly and Coordination-Assisted Deaggregation of Multimetallic Macrocycles. Angew. Chem. Int. Ed. 2005, 44, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Oliveri, I.P.; Consiglio, G.; Failla, S.; Di Bella, S. On the Lewis acidic character of bis(salicylaldiminato)zinc(II) Schiff-base complexes: A computational and experimental investigation on a series of compounds varying the bridging diimine. Dalton Trans. 2017, 46, 4571–4581. [Google Scholar] [CrossRef]
- Lamine, W.; Boughdiri, S.; Christ, L.; Morell, C.; Chermette, H. Coordination Chemistry of Zn2+ With Sal(ph)en Ligands: Tetrahedral Coordination or Penta-Coordination? A DFT Analysis. J. Comput. Chem. 2019, 40, 717–725. [Google Scholar] [CrossRef]
- Odoko, M.; Tsuchida, N.; Okabe, N. Bis{µ-2,2′-[ethane-1,3-diylbis(nitrilomethylidyne)]diphenolato}dizinc(II). Acta Cryst. 2006, E62, m708–m709. [Google Scholar] [CrossRef]
- Reglinski, J.; Morris, S.; Stevenson, D.A. Supporting conformational change at metal centres. Part 2: Four and five coordinate geometry. Polyhedron 2002, 21, 2175–2182. [Google Scholar] [CrossRef]
- Hall, D.; Moore, F.H. The Crystal Structure of NN’-Disalicylidene-ethylenediaminezinc(II) Mono hydrate. J. Chem. Soc. A 1966, 1822–1824. [Google Scholar] [CrossRef]
- Matalobos, J.S.; García-Deibe, A.M.; Fondo, M.; Navarro, D.; Bermejo, M.R. A di-μ-phenoxo bridged zinc dimer with unfamiliar spatial arrangement. Inorg. Chem. Comm. 2004, 7, 311–314. [Google Scholar] [CrossRef]
- Mizukami, S.; Houjou, H.; Nagawa, Y.; Kanesato, M. First helical zinc(II) complex with a salen ligand. Chem. Commun. 2003, 1148–1149. [Google Scholar] [CrossRef]
- Enamullah, M.; Vasylyeva, V.; Janiak, C. Chirality and diastereoselection of Δ/Λ-configured tetrahedral zinc(II) complexes with enantiopure or racemic Schiff base ligands. Inorg. Chim. Acta 2013, 408, 109–119. [Google Scholar] [CrossRef]
- Chamayou, A.-C.; Lüdeke, S.; Brecht, V.; Freedman, T.B.; Nafie, L.A.; Janiak, C. Chirality and Diastereoselection of Δ/Λ-Configured Tetrahedral Zinc Complexes through Enantiopure Schiff Base Complexes: Combined Vibrational Circular Dichroism, Density Functional Theory, 1H NMR, and X-ray Structural Studies. Inorg. Chem. 2011, 50, 11363–11374. [Google Scholar] [CrossRef]
- Onodera, T.; Akitsu, T. Tuning of the optical properties of chiral Schiff base Zn(II) complexes by substituents. Polyhedron 2013, 59, 107–114. [Google Scholar] [CrossRef]
- Evans, C.; Luneau, D. New Schiff base zinc(II) complexes exhibiting second harmonic generation. Dalton Trans. 2002, 83–86. [Google Scholar] [CrossRef]
- Malik, P.; Jain, I. Synthesis and characterization of a double helical dinuclear Zn–salen complex and its application in the detection of nitroaromatics. New J. Chem. 2022, 46, 15296–15300. [Google Scholar] [CrossRef]
- Singer, A.L.; Atwood, D.A. Five-coordinate Salen(tBu) complexes of zinc. Inorg. Chim. Acta 1998, 277, 157–162. [Google Scholar] [CrossRef]
- Germain, M.E.; Vargo, T.R.; Khalifah, P.G.; Knapp, M.J. Fluorescent Detection of Nitroaromatics and 2,3-Dimethyl- 2,3-dinitrobutane (DMNB) by a Zinc Complex: (salophen)Zn. Inorg. Chem. 2007, 46, 4422–4429. [Google Scholar] [CrossRef]
- Kleij, A.W.; Kuil, M.; Lutz, M.; Tooke, D.M.; Spek, A.L.; Kamer, P.C.J.; van Leeuwen, P.W.N.M.; Reek, J.N.H. Supramolecular zinc(II)salphen motifs: Reversible dimerization and templated dimeric structures. Inorg. Chim. Acta 2006, 359, 1807–1814. [Google Scholar] [CrossRef]
- Song, J.-B.; Wang, P.; Yan, L.; Hao, L.; Khan, M.A.; Liu, G.-L.; Li, H. Crystal structures, red-shifted luminescence and iodide-anion recognition properties of four novel D–A type Zn(ii) complexes. Dalton Trans. 2020, 49, 4358–4368. [Google Scholar] [CrossRef]
- Martínez Belmonte, M.; Wezenberg, S.J.; Haak, R.M.; Anselmo, D.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Kleij, A.W. Self-Assembly of Zn(Salphen) Complexes: Steric Regulation, Stability Studies and Crystallographic Analysis Revealing an Unexpected Dimeric 3,3′-t-Bu-Substituted Zn(Salphen) Complex. Dalton Trans. 2010, 39, 4541–4550. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Maccarrone, G.; Di Bella, S. A Lewis Basicity Scale in Dichloromethane for Amines and Common Nonprotogenic Solvents Using a Zinc(II) Schiff-Base Complex as Reference Lewis Acid. J. Org. Chem. 2011, 76, 8879–8884. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.A.; Zhou, H.; Stern, C.L.; Nguyen, S.T. A General High-Yield Route to Bis(salicylaldimine) Zinc(II) Complexes: Application to the Synthesis of Pyridine-Modified Salen-Type Zinc(II) Complexes. Inorg. Chem. 2001, 40, 3222–3227. [Google Scholar] [CrossRef]
- Ouari, K.; Ourari, A.; Weiss, J. Synthesis and Characterization of a Novel Unsymmetrical Tetradentate Schiff Base Complex of Zinc(II) Derived from N,N′-bis(5-Bromosalicylidene) 2,3-Diaminopyridine (H2L): Crystal Structure of [Zn(II)L] Pyridine. J. Chem. Crystallogr. 2010, 40, 831–836. [Google Scholar] [CrossRef]
- Salassa, G.; Ryan, J.W.; Escudero-Adána, E.C.; Kleij, A.W. Spectroscopic properties of Zn(salphenazine) complexes and their application in small molecule organic solar cells. Dalton Trans. 2014, 43, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Liuzzo, V.; Oberhauser, W.; Pucci, A. Synthesis of new red photoluminescent Zn(II)-salicylaldiminato complex. Inorg. Chem. Commun. 2010, 13, 686–688. [Google Scholar] [CrossRef]
- Meng, Q.; Zhou, P.; Song, F.; Wang, Y.; Liu, G.; Li, H. Controlled Fluorescent Properties of Zn(II) Salen-Type Complex Based on Ligand Design. CrystEngComm 2013, 15, 2786–2790. [Google Scholar] [CrossRef]
- Consiglio, G.; Oliveri, I.P.; Punzo, F.; Thompson, A.L.; Di Bella, S.; Failla, S. Structure and Aggregation Properties of a Schiff-Base Zinc(II) Complex Derived from cis-1,2-Diaminocyclohexane. Dalton Trans. 2015, 44, 13040–13048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, Q.; Proni, G. One-Pot Diastereoselective Assembly of Helicates Based on a Chiral Salen Scaffold. Inorg. Chem. Commun. 2014, 40, 47–50. [Google Scholar] [CrossRef]
- Whiteoak, C.J.; Salassa, G.; Kleij, A.W. Recent advances with π-conjugated salen systems. Chem. Soc. Rev. 2012, 41, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.M.; Storr, T. The chemistry and applications of multimetallic salen complexes. Dalton Trans. 2014, 43, 9380–9391. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Adán, E.C.; Benet-Buchholz, J.; Kleij, A.W. Supramolecular Adsorption of Alkaloids by Metallosalphen Complexes. Inorg. Chem. 2008, 47, 4256–4263. [Google Scholar] [CrossRef]
- Salassa, G.; Castilla, A.M.; Kleij, A.J. Cooperative self-assembly of a macrocyclic Schiff base complex. Dalton Trans. 2011, 40, 5236–5243. [Google Scholar] [CrossRef]
- Escárcega-Bobadilla, M.V.; Anselmo, D.; Wezenberg, S.J.; Escudero-Adán, E.C.; Martínez Belmonte, M.; Martina, E.; Kleij, A.W. Metal-directed assembly of chiral bis-Zn(II) Schiff base structures. Dalton Trans. 2012, 41, 9766–9772. [Google Scholar] [CrossRef]
- Ullmann, S.; Börner, M.; Kahnt, A.; Abel, B.; Kersting, B. Green-Emissive Zn2+ Complex Supported by a Macrocyclic Schiff-Base/Calix[4]arene-Ligand: Crystallographic and Spectroscopic Characterization. Eur. J. Inorg. Chem. 2021, 2021, 3691–3698. [Google Scholar] [CrossRef]
- Crane, A.K.; MacLachlan, M.J. Portraits of Porosity: Porous Structures Based on Metal Salen Complexes. Eur. J. Inorg. Chem. 2012, 2012, 17–30. [Google Scholar] [CrossRef]
- Wezenberg, S.J.; Kleij, A.W. Material Applications for Salen Frameworks. Angew. Chem. Int. Ed. 2008, 47, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Kleij, A.W.; Kuil, M.; Tooke, D.M.; Lutz, M.; Spek, A.L.; Reek, J.N.H. ZnII-Salphen Complexes as Versatile Building Blocks for the Construction of Supramolecular Box Assemblies. Chem. Eur. J. 2005, 11, 4743–4750. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Martínez Belmonte, M.; Escudero-Adán, E.C.; Kleij, A.W. Exploring the Building-Block Potential of Readily Accessible Chiral [Zn(salen)] Complexes. Eur. J. Inorg. Chem. 2014, 2014, 4632–4641. [Google Scholar] [CrossRef]
- Groizard, T.; Kahlal, S.; Dorcet, V.; Roisnel, T.; Bruneau, C.; Halet, J.-F.; Gramage-Doria, R. Nonconventional Supramolecular Self-Assemblies of Zinc(II)-Salphen Building Blocks. Eur. J. Inorg. Chem. 2016, 2016, 5143–5151. [Google Scholar] [CrossRef]
- Wezenberg, S.J.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Kleij, A.W. Anion-Templated Formation of Supramolecular Multinuclear Assemblies. Chem. Eur. J. 2009, 15, 5695–5700. [Google Scholar] [CrossRef]
- Wezenberg, S.J.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Kleij, A.W. Versatile Approach toward the Self-Assembly of Heteromultimetallic Salen Structures. Inorg. Chem. 2008, 47, 2925–2927. [Google Scholar] [CrossRef]
- Kleij, A.W.; Kuil, M.; Tooke, D.M.; Spek, A.L.; Reek, J.N.H. Metal-Directed Self-Assembly of a ZnII-salpyr Complex into a Supramolecular Vase Structure. Inorg. Chem. 2007, 46, 5829–5831. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, I.P.; Failla, S.; Malandrino, G.; Di Bella, S. New Molecular Architectures by Aggregation of Tailored Zinc(II) Schiff-Base Complexes. New J. Chem. 2011, 35, 2826–2831. [Google Scholar] [CrossRef]
- Kim, W.-S.; Lee, K.Y.; Ryu, E.-H.; Gu, J.-M.; Kim, Y.; Lee, S.J.; Huh, S. Catalytic Transesterifications by a Zn–BisSalen MOF Containing Open Pyridyl Groups Inside 1D Channels. Eur. J. Inorg. Chem. 2013, 2013, 4228–4233. [Google Scholar] [CrossRef]
- Consiglio, G.; Failla, S.; Oliveri, I.P.; Purrello, R.; Di Bella, S. Controlling the Molecular Aggregation. An Amphiphilic Schiff-Base Zinc(II) Complex as Supramolecular Fluorescent Probe. Dalton Trans. 2009, 10426–10428. [Google Scholar] [CrossRef]
- Consiglio, G.; Failla, S.; Finocchiaro, P.; Oliveri, I.P.; Purrello, R.; Di Bella, S. Supramolecular Aggregation/Deaggregation in Amphiphilic Dipolar Schiff-Base Zinc(II) Complexes. Inorg. Chem. 2010, 49, 5134–5142. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, G.; Failla, S.; Finocchiaro, P.; Oliveri, I.P.; Di Bella, S. Aggregation Properties of Bis(Salicylaldiminato)Zinc(II) Schiff-Base Complexes and their Lewis Acidic Character. Dalton Trans. 2012, 41, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, I.P.; Failla, S.; Colombo, A.; Dragonetti, C.; Righetto, S.; Di Bella, S. Synthesis, Characterization, Optical Absorption/Fluorescence Spectroscopy, and Second-Order Nonlinear Optical Properties of Aggregate Molecular Architectures of Unsymmetrical Schiff-Base Zinc(II) Complexes. Dalton Trans. 2014, 43, 2168–2175. [Google Scholar] [CrossRef]
- Consiglio, G.; Failla, S.; Finocchiaro, P.; Oliveri, I.P.; Di Bella, S. An Unprecedented Structural Interconversion in Solution of Aggregate Zinc(II) Salen Schiff-Base Complexes. Inorg. Chem. 2012, 51, 8409–8418. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, G.; Oliveri, I.P.; Failla, S.; Di Bella, S. Supramolecular Aggregates of Defined Stereochemical Scaffolds: Aggregation/Deaggregation in Schiff-Base Zinc(II) Complexes Derived from Enantiopure trans-1,2-Diaminocyclohexane. Inorg. Chem. 2016, 55, 10320–10328. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Forte, G.; Consiglio, G.; Failla, S.; Di Bella, S. Aggregates of Defined Stereochemical Scaffolds: A Study in Solution of a Zinc(II) Schiff Base Complex Derived from the Enantiopure trans-1,2-Cyclopentanediamine. Inorg. Chem. 2017, 56, 14206–14213. [Google Scholar] [CrossRef]
- Consiglio, G.; Oliveri, I.P.; Failla, S.; Di Bella, S. Supramolecular Aggregation of a New Substituted Bis(salicylaldiminato)zinc(II) Schiff-Base Complex Derived from trans-1,2-Diaminocyclohexane. Inorganics 2018, 6, 8. [Google Scholar] [CrossRef]
- Consiglio, G.; Oliveri, I.P.; Cacciola, S.; Maccarrone, G.; Failla, S.; Di Bella, S. Dinuclear zinc(II) salen-type Schiff-base complexes as molecular tweezers. Dalton Trans. 2020, 49, 5121–5133. [Google Scholar] [CrossRef]
- Dalla Cort, A.; De Bernardin, P.; Forte, G.; Yafteh Mihan, F. Metal–salophen-based receptors for anions. Chem. Soc. Rev. 2010, 39, 3863–3874. [Google Scholar] [CrossRef]
- Yin, H.-Y.; Tang, J.; Zhang, J.-L. Introducing Metallosalens to Biological Studies: The Renaissance of Traditional Coordination Complexes. Eur. J. Inorg. Chem. 2017, 2017, 5085–5093. [Google Scholar] [CrossRef]
- Dalla Cort, A.; Mandolini, L.; Pasquini, C.; Rissanen, K.; Russo, L.; Schiaffino, L. Zinc–salophen complexes as selective receptors for tertiary amines. New J. Chem. 2007, 31, 1633–1638. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Di Bella, S. Sensitive Fluorescent Detection and Lewis Basicity of Aliphatic Amines. J. Phys. Chem. A 2011, 115, 14325–14330. [Google Scholar] [CrossRef]
- Wezenberg, S.J.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Kleij, A.W. Colorimetric Discrimination between Important Alkaloid Nuclei Mediated by a Bis-Salphen Chromophore. Org. Lett. 2008, 10, 3311–3314. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, I.P.; Di Bella, S. Highly Sensitive Fluorescent Probe for Detection of Alkaloids. Tetrahedron 2011, 67, 9446–9449. [Google Scholar] [CrossRef]
- Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Trusso Sfrazzetto, G. Chiral Zn–salen complexes: A new class of fluorescent receptors for enantiodiscrimination of chiral amines. New J. Chem. 2017, 41, 911–915. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, L.; Bandeira, N.A.G.; Bo, C.; Kleij, A.W. Highly Efficient Chirality Transfer from Diamines Encapsulated within a Self-Assembled Calixarene-Salen Host. Chem. Eur. J. 2015, 21, 7144–7150. [Google Scholar] [CrossRef] [PubMed]
- Escárcega-Bobadilla, M.V.; Salassa, G.; Martínez Belmonte, M.; Escudero-Adán, E.C.; Kleij, A.W. Versatile Switching in Substrate Topicity: Supramolecular Chirality Induction in Di- and Trinuclear Host Complexes. Chem. Eur. J. 2012, 18, 6805–6810. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Di Bella, S. Lewis basicity of relevant monoanions in a non-protogenic organic solvent using a zinc(II) Schiff-base complex as reference Lewis acid. Dalton Trans. 2017, 46, 11608–11614. [Google Scholar] [CrossRef]
- Cano, M.; Rodríguez, L.; Lima, J.C.; Pina, F.; Dalla Cort, A.; Pasquini, C.; Schiaffino, L. Specific Supramolecular Interactions between Zn2+-Salophen Complexes and Biologically Relevant Anions. Inorg. Chem. 2009, 48, 6229–6235. [Google Scholar] [CrossRef]
- Sabaté, F.; Giannicchi, I.; Acóna, L.; Dalla Cort, A.; Rodríguez, L. Anion selectivity of Zn-salophen receptors: Influence of ligand substituents. Inorg. Chim. Acta 2015, 434, 1–6. [Google Scholar] [CrossRef]
- Wezenberg, S.J.; Anselmo, D.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Kleij, A.W. Dimetallic Activation of Dihydrogen Phosphate by Zn(salphen) Chromophores. Eur. J. Inorg. Chem. 2010, 2010, 4611–4616. [Google Scholar] [CrossRef]
- Dalla Cort, A.; Bernardin, P.; Schiaffino, L. A New Water Soluble Zn-salophen Derivative as a Receptor for α-Aminoacids: Unexpected Chiral Discrimination. Chirality 2009, 21, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Jurček, O.; Cametti, M.; Pontini, M.; Kolehmainena, E.; Rissanen, K. A Zinc-Salophen/Bile-Acid Conjugate Receptor Solubilized by CTABr Micelles Binds Phosphate in Water. Org. Biomol. Chem. 2013, 11, 4585–4590. [Google Scholar] [CrossRef]
- Strianese, M.; Milione, S.; Maranzana, A.; Grassi, A.; Pellecchia, C. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor. Chem. Commun. 2012, 48, 11419–11421. [Google Scholar] [CrossRef]
- Strianese, M.; Lamberti, M.; Pellecchia, C. Interaction of monohydrogensulfide with a family of fluorescent pyridoxal-based Zn(II) receptors. Dalton Trans. 2018, 47, 17392–17400. [Google Scholar] [CrossRef] [PubMed]
- Dumur, F.; Contal, E.; Wantz, G.; Gigmes, D. Photoluminescence of Zinc Complexes: Easily Tunable Optical Properties by Variation of the Bridge Between the Imido Groups of Schiff Base Ligands. Eur. J. Inorg. Chem. 2014, 2014, 4186–4198. [Google Scholar] [CrossRef]
- Hai, Y.; Chen, J.-J.; Zhao, P.; Lv, H.; Yu, Y.; Xu, P.; Zhang, J.-L. Luminescent zinc salen complexes as single and two-photon fluorescence subcellular imaging probes. Chem. Commun. 2011, 47, 2435–2437. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Cai, Y.-B.; Jing, J.; Zhang, J.-L. Unravelling the Correlation Between Metal Induced Aggregation and Cellular Uptake/Subcellular Localization of Znsalen: An Overlooked Rule for Design of Luminescent Metal Probes. Chem. Sci. 2015, 6, 2389–2397. [Google Scholar] [CrossRef]
- Brissos, R.; Ramos, D.; Lima, J.C.; Yafteh Mihan, F.; Borràs, M.; de Lapuente, J.; Dalla Cort, A.; Rodríguez, L. Luminescent Zinc Salophen Derivatives: Cytotoxicity Assessment and Action Mechanism Studies. New J. Chem. 2013, 37, 1046–1055. [Google Scholar] [CrossRef]
- Giannicchi, I.; Brissos, R.; Ramos, D.; de Lapuente, J.; Lima, G.C.; Dalla Cort, A.; Rodríguez, L. Substituent Effects on the Biological Properties of Zn-Salophen Complexes. Inorg. Chem. 2013, 52, 9245–9253. [Google Scholar] [CrossRef] [PubMed]
- Strianese, M.; Guarnieri, D.; Lamberti, M.; Landi, A.; Peluso, A.; Pellecchia, C. Fluorescent salen-type Zn(II) complexes as probes for detecting hydrogen sulfide and its anion: Bioimaging applications. Inorg. Chem. 2020, 59, 15977–15986. [Google Scholar] [CrossRef]
- Munzi, G.; Consiglio, G.; Failla, S.; Di Bella, S. Binding Properties of a Dinuclear Zinc(II) Salen-Type Molecular Tweezer with a Flexible Spacer in the Formation of Lewis Acid-Base Adducts with Diamines. Inorganics 2021, 9, 49. [Google Scholar] [CrossRef]
- Munzi, G.; Failla, S.; Di Bella, S. Highly selective and sensitive colorimetric/fluorometric dual mode detection of relevant biogenic amines. Analyst 2021, 146, 2144–2151. [Google Scholar] [CrossRef]
- Ikbal, S.A.; Sakata, Y.; Akine, S. A chiral spirobifluorene-based bis(salen) zinc(II) receptor towards highly enantioselective binding of chiral carboxylates. Dalton Trans. 2021, 50, 4119–4123. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Consiglio, G.; Munzi, G.; Failla, S.; Di Bella, S. Deaggregation properties and transmetalation studies of a zinc(II) salen-type Schiff-base complex. Dalton Trans. 2022, 51, 11859–11867. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, I.P.; Munzi, G.; Di Bella, S. A simple approach based on transmetalation for the selective and sensitive colorimetric/fluorometric detection of copper(II) ions in drinking water. New J. Chem. 2022, 46, 18018–18024. [Google Scholar] [CrossRef]
- Hui, J.K.-H.; Yu, Z.; MacLachlan, M.J. Supramolecular Assembly of Zinc Salphen Complexes: Access to Metal-Containing Gels and Nanofibers. Angew. Chem. Int. Ed. 2007, 46, 7980–7983. [Google Scholar] [CrossRef]
- Hui, J.K.-H.; MacLachlan, M.G. Metal-containing nanofibers via coordination chemistry. Coord. Chem. Rev. 2010, 254, 2363–2390. [Google Scholar] [CrossRef]
- Hui, J.K.-H.; Yu, Z.; Mirfakhrai, T.; MacLachlan, M.J. Supramolecular Assembly of Carbohydrate-Functionalized Salphen−Metal Complexes. Chem. Eur. J. 2009, 15, 13456–13465. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.K.-H.; MacLachlan, M.J. Fibrous Aggregates from Dinuclear Zinc(II) Salphen Complexes. Dalton Trans. 2010, 39, 7310–7319. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Failla, S.; Malandrino, G.; Di Bella, S. Controlling the Molecular Self-Assembly into Nanofibers of Amphiphilic Zinc(II) Salophen Complexes. J. Phys. Chem. C 2013, 117, 15335–15341. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Malandrino, G.; Di Bella, S. Self-Assembled Nanostructures of Amphiphilic Zinc(II) Salophen Complexes: Role of The Solvent on their Structure and Morphology. Dalton Trans. 2014, 43, 10208–10214. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Mondal, P.; Prasad, S.K.; Rao, D.S.S.; Bhattacharjee, C.R. Zinc(II)-salphen complexes bearing long alkoxy side arms: Synthesis, solvent dependent aggregation, and spacer group substituent effect on mesomorphism and photophysical property. J. Mol. Liq. 2017, 246, 290–301. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mondal, P.; Prasad, S.K.; Rao, D.S.S.; Bhattacharjee, C.R. Induction of Mesomorphism through Supramolecular Assembly in Metal Coordination Compounds of “salphen”-Type Schiff Bases: Photoluminescence and Solvatochromism. Eur. J. Inorg. Chem. 2016, 2016, 4604–4614. [Google Scholar] [CrossRef]
- Bhattacharjee, C.R.; Das, G.; Mondal, P.; Prasad, S.K.; Rao, D.S.S. Novel Green Light Emitting Nondiscoid Liquid Crystalline Zinc(II) Schiff-Base Complexes. Eur. J. Inorg. Chem. 2011, 2011, 1418–1424. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhattacharjee, C.R.; Mondal, P.; Prasad, S.K.; Rao, D.S.S. Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with ‘salen’ type asymmetric Schiff base ligands. Dalton Trans. 2015, 44, 7477–7488. [Google Scholar] [CrossRef]
- Pyrlin, S.V.; Hine, N.D.M.; Kleij, A.W.; Ramos, M.M.D. Self-assembly of bis-salphen compounds: From semiflexible chains to webs of nanorings. Soft Matter 2018, 14, 1181–1194. [Google Scholar] [CrossRef]
- Di Bella, S.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D. Zinc(II) as a versatile template for efficient dipolar and octupolar second-order nonlinear optical molecular materials. Inorganics 2018, 6, 133. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Malandrino, G.; Di Bella, S. Phase Transition and Vapochromism in Molecular Assemblies of a Polymorphic Zinc(II) Schiff-Base Complex. Inorg. Chem. 2014, 53, 9771–9777. [Google Scholar] [CrossRef]
- Mirabella, S.; Oliveri, I.P.; Ruffino, F.; Maccarrone, G.; Di Bella, S. Low-cost chemiresistive sensor for volatile amines based on a 2D network of a zinc(II) Schiff-base complex. Appl. Phys. Lett. 2016, 109, 143108. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Malandrino, G.; Mirabella, S.; Di Bella, S. Vapochromic and chemiresistive characteristics of a nanostructured molecular material composed of a zinc(II)-salophen complex. Dalton Trans. 2018, 47, 15977–15982. [Google Scholar] [CrossRef]
- Piccinno, M.; Angulo-Pachón, C.A.; Ballester, P.; Escuder, B.; Dalla Cort, A. Rational Design of a Supramolecular Gel Based on a Zn(II)-salophen Bis-dipeptide Derivative. RSC Adv. 2016, 6, 57306–57309. [Google Scholar] [CrossRef]
- Song, X.; Yu, H.; Yan, X.; Zhang, Y.; Miao, Y.; Ye, K.; Wang, Y. A luminescent benzothiadiazole-bridging bis(salicylaldiminato)zinc(II) complex with mechanochromic and organogelation properties. Dalton Trans. 2018, 47, 6146–6155. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Song, X.; Mu, X.; Wang, Y. Mechanochromic luminescence based on a phthalonitrile-bridging salophen zinc(II) complex. New J. Chem. 2019, 43, 15886–15891. [Google Scholar] [CrossRef]
- Kurz, H.; Hörner, G.; Weser, O.; Li Manni, G.; Weber, B. Quenched Lewis Acidity: Studies on the Medium Dependent Fluorescence of Zinc(II) Complexes. Chem. Eur. J. 2021, 27, 15159–15171. [Google Scholar] [CrossRef] [PubMed]
- Kurz, H.; Hils, C.; Timm, J.; Hörner, G.; Greiner, A.; Marschall, R.; Schmalz, H.; Weber, B. Self-Assembled Fluorescent Block Copolymer Micelles with Responsive Emission. Angew. Chem. Int. Ed. 2022, 61, e202117570. [Google Scholar] [CrossRef]
- Kojima, T.; Nakanishi, T.; Honda, T.; Harada, R.; Shiro, M.; Fukuzumi, S. Impact of Distortion of Porphyrins on Axial Coordination in (Porphyrinato)zinc(II) Complexes with Aminopyridines as Axial Ligands. Eur. J. Inorg. Chem. 2009, 2009, 727–734. [Google Scholar] [CrossRef]
- KC, C.B.; D’Souza, F. Design and photochemical study of supramolecular donor–acceptor systems assembled via metal–ligand axial coordination. Coord. Chem. Rev. 2016, 322, 104–141. [Google Scholar] [CrossRef]
- Salter, M.H.; Reibenspies, J.H.; Jones, D.B.; Hancock, R.D. Lewis Acid Properties of Zinc(II) in Its Cyclen Complex. The Structure of [Zn(Cyclen)(S=C(NH2)2](ClO4)2 and the Bonding of Thiourea to Metal Ions. Some Implications for Zinc Metalloenzymes. Inorg. Chem. 2005, 44, 2791–2797. [Google Scholar] [CrossRef]
- Linder, D.P.; Vinson, B.; Parks, R.; Crisp, A.; McAdoo, A.G.; Ebel, J.P.; Hoang, T.; Smith, H.; Oliver, A.G.; Hubin, T.J. Zinc-based cyclens containing pyridine and cross-bridges: X-ray and DFT structures, Lewis acidity, gas-phase acidity, and pKa values. Polyhedron 2022, 223, 115941. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveri, I.P.; Di Bella, S. Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. Chemistry 2023, 5, 119-137. https://doi.org/10.3390/chemistry5010010
Oliveri IP, Di Bella S. Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. Chemistry. 2023; 5(1):119-137. https://doi.org/10.3390/chemistry5010010
Chicago/Turabian StyleOliveri, Ivan Pietro, and Santo Di Bella. 2023. "Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures" Chemistry 5, no. 1: 119-137. https://doi.org/10.3390/chemistry5010010
APA StyleOliveri, I. P., & Di Bella, S. (2023). Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. Chemistry, 5(1), 119-137. https://doi.org/10.3390/chemistry5010010