Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = sagnac structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3975 KB  
Communication
A Composite Sagnac Fiber Loop for Gas Pressure Sensing
by Lingyu Wang, Yang Li, Rujun Zhou, Qiang Ling, Zhangwei Yu, Zuguang Guan and Daru Chen
Photonics 2025, 12(12), 1174; https://doi.org/10.3390/photonics12121174 - 29 Nov 2025
Viewed by 322
Abstract
A novel optical fiber sensor, based on a composed-type Sagnac loop for gas pressure sensing, has been introduced and experimentally validated. This sensor consists of a centimeter-scale twin-hole and dual-core fiber (THDCF) sandwiched by two segments of polarization-maintaining fibers (PMFs) via splicing. Given [...] Read more.
A novel optical fiber sensor, based on a composed-type Sagnac loop for gas pressure sensing, has been introduced and experimentally validated. This sensor consists of a centimeter-scale twin-hole and dual-core fiber (THDCF) sandwiched by two segments of polarization-maintaining fibers (PMFs) via splicing. Given that the pure quartz PMF is insensitive to the variations in gas pressure, it is unsuitable for gas pressure sensing. To improve the sensitivity, a short piece of THDCF is added to the PMF-based Sagnac loop. Theoretical analysis has demonstrated that the presence of THDCF could significantly amplify the impact of air pressure on birefringence. Experimental results reveal that as the ambient gas pressure rises from 0 to 1.2 MPa, the interference spectrum exhibits an obvious red shift with a high sensitivity of 8.381 nm/MPa. The sensor’s reliability has undergone repeated verification by increasing and decreasing the pressure. Attributed to its simple structure, easy fabrication, low cost, and high sensitivity, the proposed sensor is particularly suited for development in harsh environments. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

15 pages, 2936 KB  
Article
Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm
by Muhammad A. Butt, Mateusz Słowikowski, Dagmara Drecka, Michał Jarosik and Ryszard Piramidowicz
Nanomaterials 2025, 15(19), 1532; https://doi.org/10.3390/nano15191532 - 8 Oct 2025
Cited by 4 | Viewed by 966
Abstract
We report the design, fabrication, and experimental characterization of an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) realized on a silicon nitride (SiN) platform for refractive index (RI) sensing. The LT-MZI architecture incorporates a Sagnac loop that enables bidirectional light propagation, effectively doubling the interaction [...] Read more.
We report the design, fabrication, and experimental characterization of an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) realized on a silicon nitride (SiN) platform for refractive index (RI) sensing. The LT-MZI architecture incorporates a Sagnac loop that enables bidirectional light propagation, effectively doubling the interaction length without enlarging the device footprint, enhancing sensitivity and improving stability against environmental noise. Subwavelength grating (SWG) waveguides were integrated into the sensing arm to further strengthen light-matter interaction. The fabricated devices exhibited stable and well-defined interference fringes, with uniform wavelength shifts that scaled linearly with changes in the surrounding refractive index. Standard a-LT-MZI structures (ΔL = 300 μm) achieved experimental sensitivities of 288.75–301.25 nm/RIU, while SWG-enhanced devices reached 496–518 nm/RIU, confirming the effectiveness of refractive index engineering. Comparative analysis against previously reported MZI-based sensors highlights the competitive performance of the proposed design. By combining the scalability and CMOS compatibility of silicon nitride with the sensitivity and robustness of the a-LT-MZI architecture, this device provides a compact and versatile platform for next-generation lab-on-chip photonic sensors. It holds strong potential for applications in biochemical diagnostics, medical testing, and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 1793 KB  
Communication
Enhanced Nanoparticle Sensing by Sagnac–Fizeau Shift in a Microcavity Based on Exceptional Surfaces
by Qingde Yang, Peixin Chen, Tonghua Hu and Shuo Jiang
Sensors 2025, 25(19), 6055; https://doi.org/10.3390/s25196055 - 2 Oct 2025
Viewed by 540
Abstract
The exceptional surface (ES) in non-Hermitian physics has attracted much attention due to its strong robustness and enhanced frequency splitting in the sensing field. However, the detection limit of the ES-based sensing structure is still limited by the mode linewidth in the optical [...] Read more.
The exceptional surface (ES) in non-Hermitian physics has attracted much attention due to its strong robustness and enhanced frequency splitting in the sensing field. However, the detection limit of the ES-based sensing structure is still limited by the mode linewidth in the optical microcavity. In this paper, we demonstrate that Sagnac–Fizeau shift in a microcavity based on an ES separates the dark mode from the bright mode, further enhancing the frequency splitting in the transmission spectrum. Moreover, a strategy for manipulating spectral line shape is realized by the phase in the reflection loop. Compared with the traditional ES-based sensing structure, the proposed nanoparticle sensing mechanism significantly reduces the detection limit for weak perturbations. This work will contribute to the development of high-precision nanoparticle sensors. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

15 pages, 8390 KB  
Article
Switchable Dual-Comb Fiber Laser Based on Sagnac Loop for Wavelength-Multiplexing and Polarization-Multiplexing
by Qianyu Yao, Lilin Luo, Yue Cai, Yongguo Zheng and Xinhai Zhang
Photonics 2025, 12(10), 961; https://doi.org/10.3390/photonics12100961 - 28 Sep 2025
Viewed by 639
Abstract
We present an all-fiber erbium-doped mode-locked laser capable of switching among continuously tunable single-pulse mode-locking, wavelength-multiplexing asynchronous-pulse mode-locking, and polarization-multiplexing asynchronous-pulse mode-locking states. The multiplexing mechanisms under different conditions are confirmed by separating the asynchronous-pulse sequences. Experimental results and numerical simulations indicate that [...] Read more.
We present an all-fiber erbium-doped mode-locked laser capable of switching among continuously tunable single-pulse mode-locking, wavelength-multiplexing asynchronous-pulse mode-locking, and polarization-multiplexing asynchronous-pulse mode-locking states. The multiplexing mechanisms under different conditions are confirmed by separating the asynchronous-pulse sequences. Experimental results and numerical simulations indicate that the adjustment of the polarization controller within the Sagnac loop is the key factor for switching between wavelength- and polarization-multiplexing asynchronous-pulse mode-locking. The multiple output characteristics of the same laser can support diverse application scenarios, offering significant cost reduction in practical applications. To the best of our knowledge, this is the first demonstration of switching between wavelength- and polarization-multiplexing asynchronous-pulse mode-locking states in a noise-like laser. Compared to previous related work, the proposed laser not only enables tunable mode-locking wavelengths but also achieves higher pulse energy. This work provides a light source solution with a simple structure and high switchability for dual-comb applications. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

18 pages, 10932 KB  
Article
Detecting Partial Discharge in Cable Joints Based on Implanting Optical Fiber Using MZ–Sagnac Interferometry
by Weikai Zhang, Yuxuan Song, Xiaowei Wu, Hong Liu, Haoyuan Tian, Zijie Tang, Shaopeng Xu and Weigen Chen
Sensors 2025, 25(10), 3166; https://doi.org/10.3390/s25103166 - 17 May 2025
Cited by 3 | Viewed by 2429
Abstract
Detecting partial discharges in cable joints is critical for timely defect identification and reliable transmission system operation. To improve the long-term reliability and sensitivity of the sensing system, a novel method for cable joint monitoring based on implanting optical fibers within the joint [...] Read more.
Detecting partial discharges in cable joints is critical for timely defect identification and reliable transmission system operation. To improve the long-term reliability and sensitivity of the sensing system, a novel method for cable joint monitoring based on implanting optical fibers within the joint structure is proposed. The electric field distribution of the optical fiber-implanted cable joint was simulated, followed by electrical performance tests, demonstrating that optical fiber implantation had a negligible effect on the electrical properties of the cable joint. A platform utilizing Mach–Zehnder–Sagnac (MZ–Sagnac) interferometry was developed to evaluate the frequency response of the implanted optical fiber sensor, with calibration performed on a non-standard curved surface. The results show that the average sensitivity of the sensor in the 10 kHz–80 kHz range is 71.6 dB, 2.0 dB higher than that of the piezoelectric transducer, with a maximum signal-to-noise ratio of 65.2 dB. To simulate common fault conditions in the actual operation of cable joints, four types of discharge defects were introduced. Partial discharge tests conducted on an optical fiber-implanted cable joint, supplemented by measurements using a partial discharge detector, demonstrate that the optical fiber sensors can detect a minimum discharge of 16.0 pC. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 4045 KB  
Article
Sagnac Interference-Based Contact-Type Fiber-Optic Vibration Sensor
by Hongmei Li, Longhuang Tang, Lijie Zhang, Wenjuan Huang, Rong Cao, Cheng Huang, Xiaobo Hu, Yifei Sun and Jia Shi
Photonics 2025, 12(2), 131; https://doi.org/10.3390/photonics12020131 - 2 Feb 2025
Viewed by 1735
Abstract
The observation and evaluation of vibration signals is crucial for enhancing engineering quality and ensuring the safe operation of equipment. This paper proposes a fiber-optic vibration sensor based on the Sagnac interference principle. The polarization-maintaining fiber (PMF) is spliced between two single mode [...] Read more.
The observation and evaluation of vibration signals is crucial for enhancing engineering quality and ensuring the safe operation of equipment. This paper proposes a fiber-optic vibration sensor based on the Sagnac interference principle. The polarization-maintaining fiber (PMF) is spliced between two single mode fibers (SMFs) to form the SMF-PMF-SMF (SPS) fiber structure. The Sagnac interferometer consists of an SPS fiber structure connected to a 3 dB coupler. Due to the principle of the elastic-optical effect, the interferometric spectrum of the PMF-based Sagnac interferometric structure changes when the PMF is subjected to stress, enabling vibration to be measured. The experimental results show that the relative measurement error of the fiber-optic vibration sensor for healthy and faulty bearings is less than 1.8%, which verifies the effectiveness and accuracy of the sensor. The sensor offers benefits of excellent anti-vibration fatigue characteristics, simple production, small size, light weight, and has a wide range of applications in mechanical engineering, fault detection, safety and security, and other fields. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Fiber Sensors and Sensing Techniques)
Show Figures

Figure 1

16 pages, 4212 KB  
Article
Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect
by Di Zhou, Sajid Ullah, Sa Zhang and Shuguang Li
Sensors 2024, 24(24), 8132; https://doi.org/10.3390/s24248132 - 19 Dec 2024
Viewed by 1354
Abstract
Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content [...] Read more.
Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same. Both of them adopt the polarization-maintaining photonic crystal fiber (PM-PCF) designed in this paper. The optical fiber structure of the effective sensing in the sensing SI loop deposited with the methane gas-sensitive film is polished to obtain a double-D structure. This operation makes it easier for methane gas to contact the sensitive film and realize the sensor’s repeated use. The sensing capability of the methane gas sensor was evaluated utilizing the finite element method (FEM). The numerical simulation results show that when the concentration of methane gas in the environment is 0~3.5%, the average sensitivity of two parallel Sagnac loops is 409.43 nm/%. Using Vernier effect cascade SI loops, the sensitivity of the sensor for detecting methane gas increased by four times. Without considering air and humidity, we provide a practical scheme for the development and design of high-sensitivity methane gas sensors. Full article
(This article belongs to the Special Issue Advances in the Design and Application of Optical Fiber Sensors)
Show Figures

Figure 1

14 pages, 13641 KB  
Communication
A Study on Sensitivity Improvement of the Fiber Optic Acoustic Sensing System Based on Sagnac Interference
by Ruixi Tang, Hongcheng Zhao, Juqin Feng, Jiang Wang, Ning Wang, Jun Ruan and Jianjun Chen
Sensors 2024, 24(19), 6188; https://doi.org/10.3390/s24196188 - 24 Sep 2024
Cited by 1 | Viewed by 1449
Abstract
A new pickup structure was introduced and modified to improve the resolution of the linear Sagnac optical fiber acoustic sensing system. The maximum strains corresponding to the material, diameter, wall thickness, and height of the pickups were analyzed by simulation. An aluminum cylinder [...] Read more.
A new pickup structure was introduced and modified to improve the resolution of the linear Sagnac optical fiber acoustic sensing system. The maximum strains corresponding to the material, diameter, wall thickness, and height of the pickups were analyzed by simulation. An aluminum cylinder with a diameter of 110 mm, a wall thickness of 3 mm, and a height of 120 mm was chosen as the basic pickup. A four-groove pickup with a vertical width of 80 mm and a horizontal width of 20 mm was introduced to improve the sensitivity of the system. The experiments showed that the average peak-to-peak sensitivity of the four-groove pickup increased by 215.54% to 106.806 mV/Pa. The improved pickup can be applied in areas to monitor the situation of invasion of the Sagnac optical fiber acoustic sensing system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 5456 KB  
Article
Temperature and Twist Sensor Based on the Sagnac Interferometer with Long-Period Grating in Polarization-Maintaining Fiber
by Qiufang Zhang, Yiwen Zheng, Yixin Zhu, Qianhao Tang, Yongqin Yu and Lihu Wang
Sensors 2024, 24(2), 377; https://doi.org/10.3390/s24020377 - 8 Jan 2024
Cited by 8 | Viewed by 2329
Abstract
We utilized a CO2 laser to carve long-period fiber gratings (LPFGs) on polarization-maintaining fibers (PMFs) along the fast and slow axes. Based on the spectra of LPFGs written along two different directions, we found that when LPFG was written along the fast [...] Read more.
We utilized a CO2 laser to carve long-period fiber gratings (LPFGs) on polarization-maintaining fibers (PMFs) along the fast and slow axes. Based on the spectra of LPFGs written along two different directions, we found that when LPFG was written along the fast axis, the spectrum had lower insertion loss and fewer side lobes. We investigated the temperature and twist characteristics of the embedded structure of the LPFG and Sagnac loop and ultimately obtained a temperature sensitivity of −0.295 nm/°C and a twist sensitivity of 0.87 nm/(rad/m) for the LPFG. Compared to the single LPFG, the embedded structure of the LPFG and Sagnac loop demonstrates a significant improvement in temperature and twist sensitivities. Additionally, it also possesses the capability to discern the direction of the twist. The embedded structure displays numerous advantages, including easy fabrication, low cost, good robustness, a wide range, and high sensitivity. These features make it highly suitable for applications in structural health monitoring and other related fields. Full article
Show Figures

Figure 1

16 pages, 12947 KB  
Communication
Integrated Fiber Ring Laser Temperature Sensor Based on Vernier Effect with Lyot–Sagnac Interferometer
by Yuhui Liu, Weihao Lin, Jie Hu, Fang Zhao, Feihong Yu, Shuaiqi Liu, Jinna Chen, Huanhuan Liu, Perry Ping Shum and Xuming Zhang
Sensors 2023, 23(14), 6632; https://doi.org/10.3390/s23146632 - 24 Jul 2023
Cited by 6 | Viewed by 2746
Abstract
The Vernier effect created using an incorporated Lyot–Sagnac loop is used to create an ultra-high sensitivity temperature sensor based on a ring laser cavity. Unlike standard double Sagnac loop systems, the proposed sensor is fused into a single Sagnac loop by adjusting the [...] Read more.
The Vernier effect created using an incorporated Lyot–Sagnac loop is used to create an ultra-high sensitivity temperature sensor based on a ring laser cavity. Unlike standard double Sagnac loop systems, the proposed sensor is fused into a single Sagnac loop by adjusting the welding angle between two polarization-maintaining fibers (PMFs) to achieve effective temperature sensitivity amplification. The PMFs are separated into two arms of 0.8 m and 1 m in length, with a 45° angle difference between the fast axes. The sensor’s performance is examined both theoretically and experimentally. The experimental results reveal that the Vernier amplification effect can be achieved via PMF rotating shaft welding. The temperature sensitivity in the laser cavity can reach 2.391 nm/°C, which is increased by a factor of more than eight times compared with a single Sagnac loop structure (0.298 nm/°C) with a length of 0.8 m without the Vernier effect at temperatures ranging from 20 °C to 30 °C. Furthermore, unlike traditional optical fiber sensing that uses a broadband light source (BBS) for detection, which causes issues such as low signal-to-noise ratio and broad bandwidth, the Sagnac loop can be employed as a filter by inserting itself into the fiber ring laser (FRL) cavity. When the external parameters change, the laser is offset by the interference general modulation, allowing the external temperature to be monitored. The superior performance of signal-to-noise ratios of up to 50 dB and bandwidths of less than 0.2 nm is achieved. The proposed sensor has a simple structure and high sensitivity and is expected to play a role in biological cell activity monitoring. Full article
(This article belongs to the Special Issue Developments and Applications of Optical Fiber Sensors)
Show Figures

Figure 1

15 pages, 15611 KB  
Article
Design of OMC-Sagnac Loop Using PDMS and Different Package Structures to Improve Sensing Performance and Optimize the Ill-Conditioned Matrix
by Shumao Zhang, Yang Yu, Xiaoyang Hu, Qiang Bian, Dongying Wang, Junjie Weng, Jianqiao Liang, Linyi Wei, Peng Jiang, Hong Luo, Linfeng Yang, Junbo Yang and Zhenrong Zhang
Sensors 2023, 23(10), 4655; https://doi.org/10.3390/s23104655 - 11 May 2023
Cited by 7 | Viewed by 2364
Abstract
In the process of ocean exploration, highly accurate and sensitive measurements of seawater temperature and pressure significantly impact the study of seawater’s physical, chemical, and biological processes. In this paper, three different package structures, V-shape, square-shape, and semicircle-shape, are designed and fabricated, and [...] Read more.
In the process of ocean exploration, highly accurate and sensitive measurements of seawater temperature and pressure significantly impact the study of seawater’s physical, chemical, and biological processes. In this paper, three different package structures, V-shape, square-shape, and semicircle-shape, are designed and fabricated, and an optical microfiber coupler combined Sagnac loop (OMCSL) is encapsulated in these structures with polydimethylsiloxane (PDMS). Then, the temperature and pressure response characteristics of the OMCSL, under different package structures, are analyzed by simulation and experiment. The experimental results show that structural change hardly affects temperature sensitivity, and square-shape has the highest pressure sensitivity. In addition, with an input error of 1% F.S., temperature and pressure errors were calculated, which shows that a semicircle-shape structure can increase the angle between lines in the sensitivity matrix method (SMM), and reduce the effect of the input error, thus optimizing the ill-conditioned matrix. Finally, this paper shows that using the machine learning method (MLM) effectively improves demodulation accuracy. In conclusion, this paper proposes to optimize the ill-conditioned matrix problem in SMM demodulation by improving sensitivity with structural optimization, which essentially explains the cause of the large errors for multiparameter cross-sensitivity. In addition, this paper proposes to use the MLM to solve the problem of large errors in the SMM, which provides a new method to solve the problem of the ill-conditioned matrix in SMM demodulation. These have practical implications for engineering an all-optical sensor that can be used for detection in the ocean environment. Full article
(This article belongs to the Special Issue Optic Fiber Sensing Technology for Marine Environment)
Show Figures

Figure 1

10 pages, 1729 KB  
Article
Photonics-Based Simultaneous DFS and AOA Measurement System without Direction Ambiguity
by Qingqing Meng, Zihang Zhu, Guodong Wang, He Li, Lingrui Xie and Shanghong Zhao
Micromachines 2023, 14(2), 457; https://doi.org/10.3390/mi14020457 - 15 Feb 2023
Cited by 5 | Viewed by 2213
Abstract
A novel scheme that can simultaneously measure the Doppler frequency shift (DFS) and angle of arrival (AOA) of microwave signals based on a single photonic system is proposed. At the signal receiving unit (SRU), two echo signals and the reference signal are modulated [...] Read more.
A novel scheme that can simultaneously measure the Doppler frequency shift (DFS) and angle of arrival (AOA) of microwave signals based on a single photonic system is proposed. At the signal receiving unit (SRU), two echo signals and the reference signal are modulated by a Sagnac loop structure and sent to the central station (CS) for processing. At the CS, two low-frequency electrical signals are generated after polarization control and photoelectric conversion. The DFS without direction ambiguity and wide AOA measurement can be real-time acquired by monitoring the frequency and power of the two low-frequency electrical signals. In the simulation, an unambiguous DFS measurement with errors of ±3 × 10−3 Hz and a −90° to 90° AOA measurement range with errors of less than ±0.5° are successfully realized simultaneously. It is compact and cost-effective, as well as has enhanced system stability and improved robustness for modern electronic warfare systems. Full article
(This article belongs to the Special Issue Multi-Functional Integration Microwave Photonic Systems)
Show Figures

Figure 1

8 pages, 1230 KB  
Communication
Fiber Optic All-Polarization Weak Magnetic Field Sensor Based on Sagnac Interferometer
by Cui Liang, Zhihang Zhang, Dengwei Zhang, Tengchao Huang and Shuangliang Che
Photonics 2023, 10(2), 101; https://doi.org/10.3390/photonics10020101 - 17 Jan 2023
Cited by 8 | Viewed by 3355
Abstract
A novel fiber-optic magnetic field sensor, based on a Sagnac structure, is proposed with the approach of polarization interference detection. The sensor takes advantage of common path interference, combining with a high magnetic field sensitivity sensing unit, composed of magneto-optical crystal, and magnetic [...] Read more.
A novel fiber-optic magnetic field sensor, based on a Sagnac structure, is proposed with the approach of polarization interference detection. The sensor takes advantage of common path interference, combining with a high magnetic field sensitivity sensing unit, composed of magneto-optical crystal, and magnetic field concentrators, to achieve high resolution, high stability, and large dynamic measurement of DC magnetic field signals. In this paper, the theoretical model is established and the related theory is derived in detail. The key technologies in the system are thoroughly investigated and verified. Experimental research on the proposed system is demonstrated and the results show that a DC magnetic field resolution of 5.6 nT and a dynamic range of larger than 70 dB is achieved. Furthermore, the linearity of the system is greater than 99.8% and the instability is less than 0.5%. Full article
(This article belongs to the Special Issue Optical Measurement Systems and Instruments)
Show Figures

Figure 1

12 pages, 23180 KB  
Article
Sagnac with Double-Sense Twisted Low-Birefringence Standard Fiber as Vibration Sensor
by Héctor Santiago-Hernández, Anuar Benjamín Beltrán-González, Azael Mora-Nuñez, Beethoven Bravo-Medina and Olivier Pottiez
Sensors 2022, 22(21), 8557; https://doi.org/10.3390/s22218557 - 7 Nov 2022
Cited by 2 | Viewed by 2886
Abstract
In this work, we study a double-sense twisted low-birefringence Sagnac loop structure as a sound/vibration sensing device. We study the relation between the adjustments of a wave retarder inside the loop (which allows controlling the transmission characteristic to deliver 10, 100, and 300 [...] Read more.
In this work, we study a double-sense twisted low-birefringence Sagnac loop structure as a sound/vibration sensing device. We study the relation between the adjustments of a wave retarder inside the loop (which allows controlling the transmission characteristic to deliver 10, 100, and 300 μW average power at the output of the system) and the response of the Sagnac sensor to vibration frequencies ranging from 0 to 22 kHz. For a 300 m loop Sagnac, two sets of experiments were carried out, playing at the same time all the sound frequencies mixed for ∼1 s, and playing a sweep of frequencies for 30 s. In both cases, the time- and frequency-domain transmission amplitudes are larger for an average power of 10 μW, and smaller for an average power of 300 μW. For mixed frequencies, the Fourier analysis shows that the Sagnac response is larger for low frequencies (from 0 to ∼5 kHz) than for high frequencies (from ∼5 kHz to ∼22 kHz). For a sweep of frequencies, the results reveal that the interferometer perceives all frequencies. However, beyond ∼2.5 kHz, harmonics are present each ∼50 Hz, revealing that some resonances are present. The results about the influence of the power transmission through the polarizer and power emission of laser diode (LD) on the Sagnac interferometer response at high frequencies reveal that our system is robust, and the results are highly reproducible, and harmonics do not depend on the state of polarization at the input of the Sagnac interferometer. Furthermore, increasing the LD output power from 5 mW to 67.5 mW allows us to eliminate noisy signals at the system output. in our setup, the minimum sound level detected was 56 dB. On the other hand, the experimental results of a 10 m loop OFSI reveal that the response at low frequencies (1.5 kHz to 5 kHz) is minor compared with the 300 m loop OFSI. However, the response at high frequencies is low but still enables the detection of these frequencies, yielding the possibility of tuning the response of the vibration sensor by varying the length of the Sagnac loop. Full article
(This article belongs to the Special Issue Advances in Fiber Laser Sensors)
Show Figures

Figure 1

9 pages, 2531 KB  
Article
Sagnac Interferometric Temperature Sensor Based on Boron-Doped Polarization-Maintaining Photonic Crystal Fibers
by Lan Cheng, Jun Liang, Shiwei Xie and Yilin Tong
Optics 2022, 3(4), 400-408; https://doi.org/10.3390/opt3040034 - 5 Nov 2022
Cited by 2 | Viewed by 2165
Abstract
A sensitive temperature sensor was demonstrated using boron-doped polarization-maintaining photonic crystal fiber (PM-PCF) as a Sagnac interferometer (SI). This boron-doped PM-PCF combines both the geometric birefringence introduced by the PCF structure design and the stress birefringence introduced by the boron-doped stress-applying parts. However, [...] Read more.
A sensitive temperature sensor was demonstrated using boron-doped polarization-maintaining photonic crystal fiber (PM-PCF) as a Sagnac interferometer (SI). This boron-doped PM-PCF combines both the geometric birefringence introduced by the PCF structure design and the stress birefringence introduced by the boron-doped stress-applying parts. However, we found that the stress birefringence dominates the total birefringence of the sensor by numerical analysis. In the experiments, the fabricated sensor exhibited the highest temperature sensitivity of −1.83 nm/°C within the wide temperature range of 28~76 °C. The temperature sensitivity was mainly derived from the stress birefringence of boron-doped PM-PCF SI. These findings provide some support for the designation of high-precision temperature sensors. Full article
(This article belongs to the Topic Advances in Optical Sensors)
Show Figures

Figure 1

Back to TopTop