Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm
Abstract
1. Introduction
2. Configuration Framework for the a-LT-MZI Sensor
3. Optical Characterization
4. Fabrication Procedure of PICs
5. Results and Discussion
5.1. Standard a-LT-MZI with Ridge Waveguide
5.2. SWG Segment Integrated a-LT-MZI
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a-LT-MZI | Asymmetric loop-terminated Mach-Zehnder Interferometer |
PICs | Photonic Integrated Circuits |
SWG | Subwavelength grating |
RIU | Refractive index unit |
FSR | Free spectral range |
CMOS | Complementary Metal-Oxide-Semiconductor |
FF | Fill factor |
References
- Butt, M.A. High Sensitivity Design for Silicon-On-Insulator-Based Asymmetric Loop-Terminated Mach–Zehnder Interferometer. Materials 2025, 18, 798. [Google Scholar] [CrossRef]
- Butt, M.A. Integrated Optics: Conventional Mach–Zehnder Interferometer Configuration versus Loop Terminated Mach–Zehnder Interferometer Configuration–A Perspective. J. Opt. 2024, 26, 102501. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Li, X.; El Rayany, M.M.; Sultan, A.; Swillam, M.A. On-Chip Loop-Terminated Mach-Zehnder Interferometer Gas Sensor. In Proceedings of the 2022 Photonics North (PN), Niagara Falls, ON, Canada, 24–26 May 2022; p. 1. [Google Scholar]
- Lu, J.; Benea-Chelmus, I.-C.; Ginis, V.; Ossiander, M.; Capasso, F. Cascaded-Mode Interferometers: Spectral Shape and Linewidth Engineering. Sci. Adv. 2025, 11, eadt4154. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Afifi, A.E.; Badr, M.M.; Swillam, M.A. Modelling, Characterization, and Applications of Silicon on Insulator Loop Terminated Asymmetric Mach Zehnder Interferometer. Sci. Rep. 2022, 12, 3598. [Google Scholar] [CrossRef]
- Moghaddam, M.R.A.; Harun, S.W.; Shahi, S.; Lim, K.S.; Ahmad, H. Comparisons of Multi-Wavelength Oscillations Using Sagnac Loop Mirror and Mach-Zehnder Interferometer for Ytterbium Doped Fiber Lasers. Laser Phys. 2010, 20, 516–521. [Google Scholar] [CrossRef]
- Butt, M.A. Loop-Terminated Mach–Zehnder Interferometer Integrated with Functional Polymer for CO2 Gas Sensing. Appl. Sci. 2024, 14, 4714. [Google Scholar] [CrossRef]
- Ajad, A.K.; Islam, M.J.; Kaysir, M.R.; Atai, J. Highly Sensitive Bio Sensor Based on WGM Ring Resonator for Hemoglobin Detection in Blood Samples. Optik 2021, 226, 166009. [Google Scholar] [CrossRef]
- Boeck, R.; Jaeger, N.A.F.; Rouger, N.; Chrostowski, L. Series-Coupled Silicon Racetrack Resonators and the Vernier Effect: Theory and Measurement. Opt. Express 2010, 18, 25151–25157. [Google Scholar] [CrossRef] [PubMed]
- Castelló-Pedrero, L.; Gómez-Gómez, M.I.; García-Rupérez, J.; Griol, A.; Martínez, A. Performance Improvement of a Silicon Nitride Ring Resonator Biosensor Operated in the TM Mode at 1310 Nm. Biomed. Opt. Express 2021, 12, 7244–7260. [Google Scholar] [CrossRef]
- Luo, D.; Tong, R.; Wu, S.; Chen, Z.; Zheng, H.; Zhou, L.; Li, X. An Optical Fiber High Sensitivity Temperature Sensor with MZI and FPI Parallel Connection. Measurement 2025, 242, 115788. [Google Scholar] [CrossRef]
- Zhang, L.; He, H.; Zhang, S.; Xiong, Y.; Pan, R.; Yang, W. Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration. Photonics 2024, 11, 631. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-Fiber Mach-Zehnder Interferometers for Sensing Applications. Opt. Express 2012, 20, 11109–11120. [Google Scholar] [CrossRef]
- Arianfard, H.; Juodkazis, S.; Moss, D.J.; Wu, J. Sagnac Interference in Integrated Photonics. Appl. Phys. Rev. 2023, 10, 011309. [Google Scholar] [CrossRef]
- Soref, R.A.; Leonardis, F.D.; Passaro, V.M.N. Multiple-Sagnac-Loop Mach–Zehnder Interferometer for Wavelength Interleaving, Thermo-Optical Switching and Matched Filteri. J. Light. Technol. 2018, 36, 5254–5262. [Google Scholar] [CrossRef]
- Butt, M.A.; Tyszkiewicz, C.; Wojtasik, K.; Karasiński, P.; Kaźmierczak, A.; Piramidowicz, R. Subwavelength Grating Waveguide Structures Proposed on the Low-Cost Silica–Titania Platform for Optical Filtering and Refractive Index Sensing Applications. Int. J. Mol. Sci. 2022, 23, 6614. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef]
- Buzaverov, K.A.; Baburin, A.S.; Sergeev, E.V.; Avdeev, S.S.; Lotkov, E.S.; Bukatin, S.V.; Stepanov, I.A.; Kramarenko, A.B.; Amiraslanov, A.S.; Kushnev, D.V.; et al. Silicon Nitride Integrated Photonics from Visible to Mid-Infrared Spectra. Laser Photonics Rev. 2024, 18, 2400508. [Google Scholar] [CrossRef]
- Ji, X.; Okawachi, Y.; Gil-Molina, A.; Corato-Zanarella, M.; Roberts, S.; Gaeta, A.L.; Lipson, M. Ultra-Low-Loss Silicon Nitride Photonics Based on Deposited Films Compatible with Foundries. Laser Photonics Rev. 2023, 17, 2200544. [Google Scholar] [CrossRef]
- Butt, M.A.; Imran Akca, B.; Mateos, X. Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms. Nanomaterials 2025, 15, 731. [Google Scholar] [CrossRef]
- Bryan, M.R.; Butt, J.N.; Bucukovski, J.; Miller, B.L. Biosensing with Silicon Nitride Microring Resonators Integrated with an On-Chip Filter Bank Spectrometer. ACS Sens. 2023, 8, 739–747. [Google Scholar] [CrossRef]
- Subramanian, A.Z.; Ryckeboer, E.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; Groote, A.D.; et al. Silicon and Silicon Nitride Photonic Circuits for Spectroscopic Sensing On-a-Chip. Photonics Res. 2015, 3, B47–B59. [Google Scholar] [CrossRef]
- Butt, M.A. Beyond the detection limit: A review of high-Q optical ring resonator sensors. Materials Today Physics 2025, 58, 101873. [Google Scholar] [CrossRef]
- Gardes, F.; Shooa, A.; De Paoli, G.; Skandalos, I.; Ilie, S.; Rutirawut, T.; Talataisong, W.; Faneca, J.; Vitali, V.; Hou, Y.; et al. A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors 2022, 22, 4227. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fan, Z.; Zhou, J.; Cong, Q.; Zeng, X.; Zhang, Y.; Jia, L. Process Development of Low-Loss LPCVD Silicon Nitride Waveguides on 8-Inch Wafer. Appl. Sci. 2023, 13, 3660. [Google Scholar] [CrossRef]
- Mihailov, S.J. Femtosecond Laser-Induced Bragg Gratings in Silica-Based Fibers for Harsh Environment Sensing. APL Photonics 2023, 8, 071102. [Google Scholar] [CrossRef]
- Huang, W.; Luo, Y.; Zhang, W.; Li, C.; Li, L.; Yang, Z.; Xu, P. High-Sensitivity Refractive Index Sensor Based on Ge–Sb–Se Chalcogenide Microring Resonator. Infrared Phys. Technol. 2021, 116, 103792. [Google Scholar] [CrossRef]
- Aksnes, A. Photonic Sensors for Health and Environmental Monitoring. In NATO Science for Peace and Security Series C: Environmental Security, Proceedings of the Sensors for Environment, Health and Security, Vichy, France, 16–27 September 2007; Baraton, M.-I., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 191–203. [Google Scholar]
- Allsop, T.; Arif, R.; Neal, R.; Kalli, K.; Kundrát, V.; Rozhin, A.; Culverhouse, P.; Webb, D.J. Photonic Gas Sensors Exploiting Directly the Optical Properties of Hybrid Carbon Nanotube Localized Surface Plasmon Structures. Light. Sci. Appl. 2016, 5, e16036. [Google Scholar] [CrossRef]
- Butt, M.A.; Piramidowicz, R. Integrated Photonic Sensors for the Detection of Toxic Gasses—A Review. Chemosensors 2024, 12, 143. [Google Scholar] [CrossRef]
- Butt, M.A.; Mateos, X.; Piramidowicz, R. Photonics Sensors: A Perspective on Current Advancements, Emerging Challenges, and Potential Solutions (Invited). Phys. Lett. A 2024, 516, 129633. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. Sensors 2020, 20, 3416. [Google Scholar] [CrossRef] [PubMed]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Silicon Photonic Devices Realized on Refractive Index Engineered Subwavelength Grating Waveguides—A Review. Opt. Laser Technol. 2021, 138, 106863. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, G.; Cui, Y. Subwavelength Grating Waveguide Racetrack-Based Refractive Index Sensor with Improved Figure of Merit. Appl. Opt. 2020, 59, 10613–10617. [Google Scholar] [CrossRef]
- Cheng, W.; Ye, S.; Yuan, B.; Marsh, J.H.; Hou, L. Subwavelength Grating Cascaded Microring Resonator Biochemical Sensors with Record-High Sensitivity. ACS Photonics 2024, 11, 3343–3350. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Chen, Y.-J.; Wu, D.-S.; Huang, W.-H.; Wang, C.-T. High-Sensitivity Silicon Nitride Optical Temperature Sensor Based on Cascaded Mach-Zehnder Interferometers. Opt. Mater. 2025, 165, 117139. [Google Scholar] [CrossRef]
- Kumaar, P.; Sivabramanian, A. Design and Bulk Sensitivity Analysis of a Silicon Nitride Photonic Biosensor for Cancer Cell Detection. Int. J. Opt. 2022, 2022, 6085833. [Google Scholar] [CrossRef]
- Guan, X.; Frandsen, L.H. All-Silicon Interferometer with Multimode Waveguides for Temperature-Insensitive Filters and Compact Biosensors. Opt. Express 2019, 27, 753–760. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Pan, J.; Huang, T.; Jin, S. Design of Highly Sensitive Refractive Index Sensor Based on Silicon Photonic Mach–Zehnder Interferometer. Opt. Commun. 2023, 534, 129288. [Google Scholar] [CrossRef]
- Kwon, M.-S. Theoretical Investigation of an Interferometer-Type Plasmonic Biosensor Using a Metal-Insulator-Silicon Waveguide. Plasmonics 2010, 5, 347–354. [Google Scholar] [CrossRef]
- Gali, S.; Keloth, A.; Selvaraja, S.K. On-Chip Chemical Sensing Using Double-Slot Silicon Waveguide. IEEE Sens. J. 2023, 23, 8360–8365. [Google Scholar] [CrossRef]
Geometric Parameter | Expression | Value |
---|---|---|
W | Waveguide height | 400 nm |
H | Waveguide width | 1000 nm |
R | Radius of Sagnac loop | 50 µm and 100 µm |
g | Gap between waveguides | 150 nm |
LDc | Length of directional coupler | 15 µm |
Lref | Length of reference arm | 200 µm to 400 µm |
∆L | Difference between the sensing arm and the reference arm (Lref−Lsens) | 150 µm–350 µm |
Λ | SWG period | 400 nm |
FF | Fill factor (length of high index segment/grating period) | 0.625 |
Material Platform | Sensor Configuration | Application | Sensitivity | Numerical/Experimental | Ref. |
---|---|---|---|---|---|
Silicon nitride | Cascaded MZI | Temperature sensing | 710 pm/oC | Experimental | [37] |
Silicon nitride | MZI | RI sensing | 568 nm/RIU | Numerical | [38] |
Silicon-on-insulator | LT-MZI | RI sensing | 261 nm/RIU for ridge waveguide; 510 nm/RIU for SWG waveguide | Numerical | [1] |
Silicon-on-insulator | MZI with multimode waveguide | RI sensing | 826 nm/RIU | Experimental | [39] |
Silicon-on-insulator | MZI with SWG slot waveguide | Gas pressure | 232 nm/MPa | Numerical | [40] |
Silicon-on-insulator | Plasmonic MZI | RI sensing | 430 nm/RIU | Numerical | [41] |
Silicon-on-insulator | Double slot waveguide-based MZI | RI sensing | 700 nm/RIU | Numerical | [42] |
Silicon nitride | a-LT-MZI | RI sensing | 288.75 nm/RIU–301.25 nm/RIU | Experimental | This study |
Silicon nitride | a-LT-MZI with SWG segment | RI sensing | 496 nm/RIU to 518 nm/RIU | Experimental | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A.; Słowikowski, M.; Drecka, D.; Jarosik, M.; Piramidowicz, R. Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm. Nanomaterials 2025, 15, 1532. https://doi.org/10.3390/nano15191532
Butt MA, Słowikowski M, Drecka D, Jarosik M, Piramidowicz R. Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm. Nanomaterials. 2025; 15(19):1532. https://doi.org/10.3390/nano15191532
Chicago/Turabian StyleButt, Muhammad A., Mateusz Słowikowski, Dagmara Drecka, Michał Jarosik, and Ryszard Piramidowicz. 2025. "Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm" Nanomaterials 15, no. 19: 1532. https://doi.org/10.3390/nano15191532
APA StyleButt, M. A., Słowikowski, M., Drecka, D., Jarosik, M., & Piramidowicz, R. (2025). Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm. Nanomaterials, 15(19), 1532. https://doi.org/10.3390/nano15191532