Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = safety of water system functioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2523 KB  
Review
Harnessing Natural Deep Eutectic Solvents for Functional Foods: Enhancing Extraction, and Antioxidant/Anti-Inflammatory Bioactivity
by Viktor Husak, Eliška Kováříková and Olena Bobrova
Sustain. Chem. 2026, 7(1), 9; https://doi.org/10.3390/suschem7010009 - 2 Feb 2026
Abstract
Natural deep eutectic solvents (NADES) are gaining interest as environmentally friendly alternatives to conventional organic solvents in the functional food sector. Their low volatility, biodegradability, and tunable polarity, combined with high affinity for phenolics, carotenoids, and other phytochemicals, make them particularly relevant for [...] Read more.
Natural deep eutectic solvents (NADES) are gaining interest as environmentally friendly alternatives to conventional organic solvents in the functional food sector. Their low volatility, biodegradability, and tunable polarity, combined with high affinity for phenolics, carotenoids, and other phytochemicals, make them particularly relevant for developing antioxidant and anti-inflammatory ingredients at a time of rising diet-related chronic disease burden. This review critically analyses the role of NADES along the functional food chain. We summarize their composition, preparation, and key physicochemical properties, and then examine the NADES-based extraction of antioxidant and anti-inflammatory compounds from plants and food by-products in comparison with traditional solvent systems. The influence of NADES on the stability and biological activity of recovered compounds is discussed, together with their use in the formulation, stabilization, and delivery strategies for functional foods. Emerging data indicate that NADES often enhance extraction yields and may protect labile bioactives, leading to stronger antioxidant and anti-inflammatory responses in vitro compared with ethanol or water extracts when normalized to phenolic content. At the same time, large-scale implementation is limited by challenges related to safety assessment, regulatory acceptance, viscosity, and recovery issues, and incomplete techno-economic data. This review highlights these constraints, identifies key knowledge gaps, and outlines research priorities required to translate NADES-based processes into scalable, safe, and health-promoting functional food applications. Full article
Show Figures

Graphical abstract

33 pages, 3293 KB  
Review
Bridging Material Innovation and Environmental Safety: Aerogel-Based Magnetic Nanocomposites as Emerging Platforms for Water Decontamination
by Elena-Theodora Moldoveanu, Adelina-Gabriela Niculescu, Denisa Alexandra Florea, Tony Hadibarata, Alexandru-Mihai Grumezescu and Dan-Eduard Mihaiescu
Toxics 2026, 14(2), 115; https://doi.org/10.3390/toxics14020115 - 26 Jan 2026
Viewed by 207
Abstract
Currently, water pollution is one of the major global environmental sustainability and public health issues that requires efficient and viable remediation technologies, as existing decontamination methods face limitations. In this sense, this review aims to highlight the potential of multifunctional aerogel-based magnetic nanocomposites [...] Read more.
Currently, water pollution is one of the major global environmental sustainability and public health issues that requires efficient and viable remediation technologies, as existing decontamination methods face limitations. In this sense, this review aims to highlight the potential of multifunctional aerogel-based magnetic nanocomposites as a novel strategy for water decontamination by integrating magnetic nanostructures into aerogel matrices that promote high adsorption capacity, selective catalysis, and facile magnetic recovery. In this regard, providing a comprehensive analysis of their functional design, contaminant-removal mechanisms, and multifunctional performance is crucial for developing and optimizing a system capable of addressing complex pollutants through multiple mechanisms (e.g., adsorption, photocatalysis, and reductive pathways). However, ecotoxicological evaluations focus on the potential for nanoparticles to leach, induce oxidative stress, and cause aquatic toxicity, supporting the development of strategies that comply with safety principles. Additionally, this review examines the aerogels’ capabilities for regeneration, operational stability, and scalability across repeated-use cycles, as well as their potential for real-world wastewater applications. Moreover, future directions for these aerogels include the development of smart, stimuli-responsive aerogels, machine-learning-based modeling, and the use of green synthesis approaches to enable sustainable water remediation strategies. Full article
(This article belongs to the Special Issue Degradation and Remediation of Environmental Pollutants)
Show Figures

Graphical abstract

16 pages, 1073 KB  
Review
Hydrogen and Ozone Therapies as Adjunctive Strategies for Gastrointestinal Health in Geriatric Populations
by Joanna Michalina Jurek, Zuzanna Jakimowicz, Runyang Su, Kexin Shi and Yiqiao Qin
Gastrointest. Disord. 2026, 8(1), 8; https://doi.org/10.3390/gidisord8010008 - 23 Jan 2026
Viewed by 291
Abstract
Aging is accompanied by progressive gastrointestinal structural and functional decline, increased intestinal permeability, dysbiosis, and impaired mucosal immunity, collectively elevating susceptibility to infections, chronic inflammation, and multimorbidity. These age-related changes are further exacerbated by polypharmacy, metabolic disorders, and lifestyle factors, positioning the gastrointestinal [...] Read more.
Aging is accompanied by progressive gastrointestinal structural and functional decline, increased intestinal permeability, dysbiosis, and impaired mucosal immunity, collectively elevating susceptibility to infections, chronic inflammation, and multimorbidity. These age-related changes are further exacerbated by polypharmacy, metabolic disorders, and lifestyle factors, positioning the gastrointestinal tract as a central driver of systemic physiological decline. Gut-centered interventions have emerged as critical strategies to mitigate these vulnerabilities and support healthy aging. Dietary modulation, prebiotic and probiotic supplementation, and microbiota-targeted approaches have demonstrated efficacy in improving gut microbial diversity, enhancing short-chain fatty acid production, restoring epithelial integrity, and modulating immune signaling in older adults. Beyond nutritional strategies, non-nutritional interventions such as molecular hydrogen and medical ozone offer complementary mechanisms by selectively neutralizing reactive oxygen species, reducing pro-inflammatory signaling, modulating gut microbiota, and promoting mucosal repair. Hydrogen-based therapies, administered via hydrogen-rich water or inhalation, confer antioxidant, anti-inflammatory, and cytoprotective effects, while ozone therapy exhibits broad-spectrum antimicrobial activity, enhances tissue oxygenation, and stimulates epithelial and vascular repair. Economic considerations further differentiate these modalities, with hydrogenated water positioned as a premium wellness product and ozonated water representing a cost-effective, scalable option for geriatric gastrointestinal care. Although preclinical and early clinical studies are promising, evidence in older adults remains limited, emphasizing the need for well-designed, age-specific trials to establish safety, dosing, and efficacy. Integrating dietary, microbiota-targeted, and emerging non-nutritional gut-centered interventions offers a multimodal framework to preserve gut integrity, immune competence, and functional health, potentially mitigating age-related decline and supporting overall health span in older populations. Full article
Show Figures

Figure 1

40 pages, 2191 KB  
Article
A Climate–Geomechanics Interface for Adaptive and Resilient Geostructures
by Tamara Bračko and Bojan Žlender
Climate 2026, 14(1), 23; https://doi.org/10.3390/cli14010023 - 19 Jan 2026
Viewed by 221
Abstract
Geostructures, such as foundations, embankments, retaining structures, bridge abutments, and both natural and engineered slopes, interact with the ground to ensure structural safety and functionality. One significant factor influencing these systems is climate, which continuously affects soil conditions through dynamic processes. Over the [...] Read more.
Geostructures, such as foundations, embankments, retaining structures, bridge abutments, and both natural and engineered slopes, interact with the ground to ensure structural safety and functionality. One significant factor influencing these systems is climate, which continuously affects soil conditions through dynamic processes. Over the past century, climate change has intensified, increasing uncertainties regarding the safety of both existing and planned geostructures. While the impacts of climate change on geostructures are evident, effective methods to address them remain uncertain. This paper presents an approach for mitigating and adapting to climate change impacts through a stepwise geomechanical analysis and geotechnical design framework that incorporates expected climatic conditions. A novel framework is introduced that systematically integrates projected climate scenarios into geomechanical modeling, enabling climate-resilient design of geostructures. The concept establishes an interface between climate effects and geomechanical data, capturing the causal chain of climate hazards, their effects, and potential consequences. The proposed interface provides a practical tool for integrating climate considerations into geotechnical design, supporting adaptive and resilient infrastructure planning. The approach is demonstrated across different geostructure types, with a detailed slope stability analysis illustrating its implementation. Results show that the interface, reflecting processes such as water infiltration, soil hydraulic conductivity, and groundwater flow, is often critical to slope stability outcomes. Furthermore, slope stability can often be maintained through simple, timely implemented nature-based solutions (NbS), whereas delayed actions typically require more complex and costly interventions. Full article
Show Figures

Figure 1

20 pages, 1050 KB  
Article
Patent-Based Prospective Life Cycle Assessment and Eco-Design of Lithium–Sulfur Batteries
by Baris Ördek and Christian Spreafico
Sustainability 2026, 18(2), 711; https://doi.org/10.3390/su18020711 - 10 Jan 2026
Viewed by 320
Abstract
Lithium–sulfur batteries (LSBs) are a promising emerging technology due to their high energy density, low-cost materials, and safety. However, their environmental sustainability is not yet well understood. This study conducted a prospective life cycle assessment (LCA) on two patented LSB models, using data [...] Read more.
Lithium–sulfur batteries (LSBs) are a promising emerging technology due to their high energy density, low-cost materials, and safety. However, their environmental sustainability is not yet well understood. This study conducted a prospective life cycle assessment (LCA) on two patented LSB models, using data from patents as the inventory: one with a standard sulfur cathode and another with a graphene–sulfur composite (GSC). The assessment is conducted for a functional unit of 1 Wh of produced electricity, adopting a cradle-to-gate system boundary and a prospective time horizon set to 2035. The LSB GSC model battery showed significantly better performance in terms of climate change and fossil depletion, with a 42% lower impact, mainly due to a reduction in the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) content from 1205 mg Wh−1 to 250 mg Wh−1. However, the GSC model also had significant drawbacks, showing a 93% higher metal depletion and 49% higher water depletion than the standard sulfur battery. Building on an established patent-based prospective LCA approach, this work applies patent-derived quantitative inventories and patent-informed eco-design analysis to support environmentally informed design decisions for emerging LSB technologies prior to large-scale commercialization. Full article
(This article belongs to the Special Issue Smart Technologies Toward Sustainable Eco-Friendly Industry)
Show Figures

Figure 1

29 pages, 904 KB  
Review
Risks Associated with Dietary Exposure to Contaminants from Foods Obtained from Marine and Fresh Water, Including Aquaculture
by Martin Rose
Int. J. Environ. Res. Public Health 2026, 23(1), 85; https://doi.org/10.3390/ijerph23010085 - 7 Jan 2026
Viewed by 586
Abstract
Aquatic environments have been a critical source of nutrition for millennia, with wild fisheries supplying protein and nutrients to populations worldwide. A notable shift has occurred in recent decades with the expansion of aquaculture, now representing a fast-growing sector in food production. Aquaculture [...] Read more.
Aquatic environments have been a critical source of nutrition for millennia, with wild fisheries supplying protein and nutrients to populations worldwide. A notable shift has occurred in recent decades with the expansion of aquaculture, now representing a fast-growing sector in food production. Aquaculture plays a key role in mitigating the depletion of wild fish stocks and addressing issues related to overfishing. Despite its potential benefits, the sustainability of both wild and farmed aquatic food systems is challenged by anthropogenic pollution. Contaminants from agricultural runoff, industrial discharges, and domestic effluents enter freshwater systems and eventually reach marine environments, where they may be transported globally through ocean currents. Maintaining water quality is paramount to food safety, environmental integrity, and long-term food security. In addition to conventional seafood products such as fish and shellfish, foods such as those derived from microalgae are gaining attention in Western markets for their high nutritional value and potential functional properties. These organisms have been consumed in Asia for generations and are now being explored as sustainable foods and ingredients as an alternative source of protein. Contaminants in aquatic food products include residues of agrochemicals, persistent organic pollutants (POPs) such as dioxins, polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFASs), as well as brominated flame retardants and heavy metals. Public and scientific attention has intensified around plastic pollution, particularly microplastics and nanoplastics, which are increasingly detected in aquatic organisms and are the subject of ongoing toxicological and ecological risk assessments. While the presence of these hazards necessitates robust risk assessment and regulatory oversight, it is important to balance these concerns against the health benefits of aquatic foods, which are rich in omega-3 fatty acids, high-quality proteins, vitamins, and trace elements. Furthermore, beyond direct human health implications, the environmental impact of pollutant sources must be addressed through integrated management approaches to ensure the long-term sustainability of aquatic ecosystems and the food systems they support. This review covers regulatory frameworks, risk assessments, and management issues relating to aquatic environments, including the impact of climate change. It aims to serve as a comprehensive resource for researchers, policymakers, food businesses who harvest food from aquatic systems and other stakeholders. Full article
Show Figures

Figure 1

30 pages, 4357 KB  
Article
Development of a pH-Responsive Delivery System Suitable for Naringenin and Other Hydrophobic Flavonoids Using the Interactions Between Basil Seed Gum and Milk Protein Complexes
by Ruwanthi Premathilaka, Matt Golding, Jaspreet Singh and Ali Rashidinejad
Foods 2026, 15(2), 201; https://doi.org/10.3390/foods15020201 - 7 Jan 2026
Viewed by 287
Abstract
Incorporating hydrophobic flavonoids such as naringenin into food systems is challenging due to their poor water solubility and instability. Effective delivery systems are essential to improve solubility, dispersibility, and controlled release during digestion. This study developed a food-grade encapsulation system using basil seed [...] Read more.
Incorporating hydrophobic flavonoids such as naringenin into food systems is challenging due to their poor water solubility and instability. Effective delivery systems are essential to improve solubility, dispersibility, and controlled release during digestion. This study developed a food-grade encapsulation system using basil seed gum water-soluble extract (BSG-WSE) combined with proteins, sodium caseinate (NaCas) and whey protein isolate (WPI), via pH-driven and mild heat treatments in aqueous media, without the use of organic solvents, to ensure safety and sustainability. BSG-WSE and NaCas were tested at mass ratios of 1:1, 1:3, and 1:5 under pH conditions of 4, 5, and 7, followed by heat treatments at 60 °C or 80 °C for 30 min. The total biopolymer concentrations were 0.15%, 0.3%, and 0.45% (w/v). The most stable colloidal system was obtained at a 1:1 ratio, pH 4, and 60 °C, which was further evaluated for two additional flavonoids (rutin and quercetin) and with WPI as an alternative protein source. The highest loading capacity (11.18 ± 0.17%) and encapsulation efficiency (72.50 ± 0.85%) were achieved for naringenin under these conditions. Quercetin exhibited superior performance, with a loading capacity of 14.1 ± 3.12% and an encapsulation efficiency of 94.36 ± 5.81%, indicating a stronger affinity for the delivery system. WPI showed lower encapsulation efficiency than NaCas. Ternary systems (BSG-WSE, NaCas, and naringenin) formed under different pH and heat treatments displayed distinct morphologies and interactions. The pH 4 system demonstrated good dispersion and pH-responsive release of naringenin, highlighting its potential as a delivery vehicle for hydrophobic flavonoids. BSG-WSE significantly improved the stability of protein-based complexes formed via pH-driven assembly. Physicochemical characterization, rheological analysis, and release studies suggest that this system is particularly suitable for semi-solid food products such as yogurt or emulsions, supporting its application in functional food development. Full article
Show Figures

Figure 1

25 pages, 2104 KB  
Review
Management and Genetic Approaches for Enhancing Meat Quality in Poultry Production Systems: A Comprehensive Review
by Muhammad Naeem, Arjmand Fatima, Rabin Raut, Rishav Kumar, Zahidul Tushar, Farazi Rahman and Dianna Bourassa
Poultry 2026, 5(1), 4; https://doi.org/10.3390/poultry5010004 - 1 Jan 2026
Viewed by 477
Abstract
This review explores strategies to enhance meat quality in poultry, focusing on both management and genetic methods. Poultry meat quality is influenced by many factors, including rearing conditions, nutrition, animal welfare, and post-slaughter processing. Key management factors such as stocking density, ventilation, temperature, [...] Read more.
This review explores strategies to enhance meat quality in poultry, focusing on both management and genetic methods. Poultry meat quality is influenced by many factors, including rearing conditions, nutrition, animal welfare, and post-slaughter processing. Key management factors such as stocking density, ventilation, temperature, and humidity are emphasized for their significant impact on bird welfare and the resulting meat texture, color, and microbial stability. Welfare-enhancing practices like gentle handling, environmental enrichment, and thermal comfort are highlighted for their direct effects on stress levels and meat properties such as water-holding capacity and pH. Innovations in slaughtering and chilling techniques, including electrical and gas stunning and rapid chilling, are shown to preserve meat quality and prevent common defects like pale, soft, and exudative (PSE) or dark, firm, and dry (DFD) meat. The review also underscores the importance of hygiene protocols, hazard analysis and critical control points (HACCP) systems, and traceability technologies to ensure food safety and foster consumer trust. On the genetic front, it discusses conventional selection, marker-assisted selection (MAS), and genomic selection (GS) as tools for breeding birds with better meat quality traits, including tenderness, intramuscular fat, and resistance to conditions like woody breast. Functional genomics and gene editing are identified as the leading edge of future advances. Ultimately, the review advocates for an integrated approach that balances productivity, quality, animal welfare, and sustainability. As consumer expectations increase, the poultry industry must adopt precise, science-based strategies across the entire production process to reliably deliver high-quality meat products. Full article
Show Figures

Figure 1

42 pages, 2703 KB  
Review
Surfactant–Particle Engineering Hybrids: Emerging Strategies for Enhancing Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs
by Kyeong-Soo Kim, Hyuk Jun Cho, Fakhar Ud Din, Jung Hyun Cho and Han-Gon Choi
Pharmaceutics 2026, 18(1), 37; https://doi.org/10.3390/pharmaceutics18010037 - 26 Dec 2025
Cited by 1 | Viewed by 768
Abstract
Background/Objectives: The poor aqueous solubility of many therapeutic compounds remains a key barrier to achieving optimal oral bioavailability. While traditional formulation strategies—such as surfactant-based solubilization, nanocrystals, and amorphous solid dispersions—have yielded varying degrees of success, they are often limited by poor physical stability, [...] Read more.
Background/Objectives: The poor aqueous solubility of many therapeutic compounds remains a key barrier to achieving optimal oral bioavailability. While traditional formulation strategies—such as surfactant-based solubilization, nanocrystals, and amorphous solid dispersions—have yielded varying degrees of success, they are often limited by poor physical stability, high excipient loads, inconsistent absorption, and safety concerns associated with long-term surfactant exposure. To address these challenges, this review evaluates surfactant–particle hybrid drug delivery systems as a next-generation platform for enhancing the oral delivery of poorly water-soluble drugs. Methods: A comprehensive literature analysis was conducted to examine the mechanistic foundations, formulation techniques, and translational hurdles associated with these hybrid systems. Representative in vitro and in vivo case studies were critically reviewed to assess performance consistency, particularly with respect to dissolution enhancement, supersaturation stabilization, and permeability modulation. Consideration was also given to manufacturing feasibility, excipient safety, scalability, and regulatory constraints. Results: Findings indicate that surfactant–particle hybrids provide synergistic benefits by integrating solubilization and stabilization functions with tailored particle design. These systems have shown consistent improvements in pharmacokinetic profiles and drug absorption across diverse drug candidates. However, limitations remain, including challenges in long-term physical stability and excipient compatibility that must be addressed for broader application. Conclusions: Surfactant–particle hybrid systems offer a versatile and promising approach to overcoming the limitations of poorly soluble drugs. With careful attention to formulation optimization and regulatory compliance, they have the potential to serve as a transformative platform in future oral drug delivery strategies. Full article
Show Figures

Figure 1

19 pages, 1828 KB  
Article
HPMC-ZnO Nanorods Enhance Hydrophilicity and Contact-Killing Activity on Polypropylene Meshes and Sutures
by Sangita Jana, Akshit Malhotra, Honey Mittal, Sambuddha Chakraborty, Manika Khanuja, Gyanendra Singh, Ram Karan, Elvira Rozhina and Ashwini Chauhan
Pharmaceuticals 2026, 19(1), 55; https://doi.org/10.3390/ph19010055 - 26 Dec 2025
Viewed by 406
Abstract
Background: Biomedical device-associated infections pose major challenges in surgical care, particularly in hernia repair where polypropylene (PP) meshes and sutures are prone to bacterial colonization and biofilm formation. The limitations of antibiotic resistance and toxicity warrants the need of developing innovative antibacterial strategies. [...] Read more.
Background: Biomedical device-associated infections pose major challenges in surgical care, particularly in hernia repair where polypropylene (PP) meshes and sutures are prone to bacterial colonization and biofilm formation. The limitations of antibiotic resistance and toxicity warrants the need of developing innovative antibacterial strategies. Methods: We developed a composite coating of hydroxypropyl methylcellulose (HPMC) and zinc oxide nanorods (ZnO NP) synthesized via thermal decomposition. This coating was applied to PP meshes and sutures to enhance anti-adhesive properties. The study evaluated surface hydrophilicity through water contact angles, estimation of Zn2+ ions using inductively coupled plasma–mass spectrometry (ICP-MS), and long-term efficacy over six months. Safety was assessed via systemic toxicity studies in murine models. Results: The ZnO NPs exhibited potent antibacterial efficacy, achieving up to 99.999% killing against Klebsiella pneumoniae. When applied as an HPMC-ZnO coating, PP meshes and sutures demonstrated enhanced hydrophilicity, reducing water contact angles by ~41° and facilitating prevention of bacterial adhesion. The coated meshes inhibited bacterial attachment by 83% (Escherichia coli), 60% (Pseudomonas aeruginosa), 99.6% (K. pneumoniae), and 99% (Staphylococcus aureus). Similarly, coated sutures reduced adhesion by 67–96% across these strains. Long-term storage studies showed retained antibiofilm efficacy for up to six months. In vivo assessments indicated negligible systemic toxicity of ZnO NPs in murine models. Conclusions: Collectively, these findings highlight HPMC-ZnO NPs coatings as a safe, durable, and effective strategy to functionalize PP-based meshes and sutures, reducing the risk of surgical site infections and demonstrating the potential for broader biomedical applications. Full article
Show Figures

Graphical abstract

12 pages, 1899 KB  
Article
A Highly Hydrophobic and Flame-Retardant Melamine Sponge for Emergency Oil Spill Response
by Chengyong Zheng, Bo Wang, Wei Xie and Shuilai Qiu
Nanomaterials 2025, 15(24), 1897; https://doi.org/10.3390/nano15241897 - 17 Dec 2025
Viewed by 347
Abstract
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies [...] Read more.
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies have been developed to overcome the inherent limitations of conventional remediation methods. In this study, a flame-retardant protective coating was fabricated on melamine sponge (MS) through precipitation polymerization of octa-aminopropyl polyhedral oligomeric silsesquioxane (POSS) and hexachlorocyclotriphosphazene (HCCP), endowing the MS@PPOS-PDMS-Si composite with exceptional char-forming capability. Secondary functional layer: By coupling the complementary physicochemical properties of polydimethylsiloxane (PDMS) and SiO2 nanofibers, we enabled them to function jointly, achieving superior performance in the material systems; this conferred enhanced hydrophobicity and structural stability to the MS matrix. Characterization results demonstrated a progressive reduction in peak heat release rate (PHRR) from 137.66 kW/m2 to118.35 kW/m2, 91.92 kW/m2, and ultimately 46.23 kW/m2, accompanied by a decrease in total smoke production (TSP) from 1.62 m2 to 0.76 m2, indicating significant smoke suppression. Furthermore, the water contact angle (WCA) exhibited substantial improvement from 0° (superhydrophilic) to 140.7° (highly hydrophobic). Cyclic sorption–desorption testing revealed maintained oil–water separation efficiency exceeding 95% after 10 operational cycles. These findings position the MS@PPOS-PDMS-Si composite as a promising candidate for emergency oil spill response and marine pollution remediation applications, demonstrating superior performance in fire safety, environmental durability, and operational reusability. Full article
Show Figures

Graphical abstract

19 pages, 7066 KB  
Article
Improvement and Validation of Transient Analysis Code FRTAC for Liquid Metal-Cooled Fast Reactors
by Jian Hong, Bo Kuang, Lixia Ren, Yuping Zhou, Xintong Zhao, Xiaochen Xu, Shirui Li and Wenjun Hu
Energies 2025, 18(24), 6503; https://doi.org/10.3390/en18246503 - 11 Dec 2025
Viewed by 305
Abstract
Transient safety analysis is a critical aspect of ensuring the safe design of Liquid Metal-cooled Fast Reactors (LMRs), relying heavily on advanced system analysis programs. To this end, the China Institute of Atomic Energy (CIAE) independently developed the Fast Reactor Transient Analysis Code [...] Read more.
Transient safety analysis is a critical aspect of ensuring the safe design of Liquid Metal-cooled Fast Reactors (LMRs), relying heavily on advanced system analysis programs. To this end, the China Institute of Atomic Energy (CIAE) independently developed the Fast Reactor Transient Analysis Code (FRTAC) system analysis code for LMRs, which has been applied to the safety analysis of several reactor types. However, long-term use has revealed certain limitations, such as complex control system modeling and numerical dissipation from the first-order numerical scheme. This study analyzes the current limitations of the code and carries out systematic improvements and validation. The main improvements include enhancing the system compilation architecture and refactoring functional modules to improve computational efficiency, scalability, and usability; introducing a second-order accurate numerical scheme based on a limiter to reduce numerical dissipation in the convection term while ensuring computational stability; and optimizing the solution procedure to accommodate the new architecture and algorithms. The improved code’s computational stability and accuracy were validated using the Edwards blowdown experiment and the Energy Technology Engineering Center (ETEC) once-through steam generator steady-state test, respectively. The validation results show that the improved code maintains excellent numerical stability in problems with rapid transient pressure changes. In steady-state convective heat transfer problems, the computational accuracy and grid convergence are significantly improved, with the relative deviation of the water-side outlet temperature reduced from −3.56% to −0.59%. Under the same computational conditions, the computational efficiency was increased by up to 36.1%. The results of this study will provide a more accurate and efficient system analysis code for the transient safety analysis of LMRs. Full article
(This article belongs to the Special Issue Thermal Hydraulics and Safety Research for Nuclear Reactors)
Show Figures

Figure 1

14 pages, 755 KB  
Review
The Effects of Kefir on the Human Oral and Gut Microbiome
by Eleni Grace Black, Andrea Bugarcic, Romy Lauche, Emad El-Omar and Fatima El-Assaad
Nutrients 2025, 17(24), 3861; https://doi.org/10.3390/nu17243861 - 11 Dec 2025
Viewed by 11313
Abstract
Kefir, a fermented probiotic drink made from milk, water, or plant-based ingredients, has gained significant attention as a dietary supplement. Originating from the Caucasus Mountains over three thousand years ago, kefir is believed to harbor a range of health benefits through its ability [...] Read more.
Kefir, a fermented probiotic drink made from milk, water, or plant-based ingredients, has gained significant attention as a dietary supplement. Originating from the Caucasus Mountains over three thousand years ago, kefir is believed to harbor a range of health benefits through its ability to alter the composition of microbial niches within the human body. These microbial niches are called microbiomes and encompass the collective community of microbial organisms, their genomes and environment. The modern commercialization of kefir has driven the need for high-quality research into its impact on the human microbiome and associated health outcomes; however, there is currently very limited scientific evidence supporting effects of kefir consumption on the human oral and gut microbiome. High-quality human clinical trials are essential to establish the safety and effectiveness of kefir before it can be advised for use in treating conditions linked to the oral and gut microbiota or metabolic health. This literature review aims to critically analyze recent studies investigating the effect of kefir consumption on the oral and gut microbiome, as well as its potential implications for human health. By examining kefir’s effects on these interconnected microbial ecosystems, we can better understand its potential and limitations as a functional food for promoting systemic health. Full article
Show Figures

Figure 1

37 pages, 5097 KB  
Systematic Review
Zeolites and Activated Carbons in Hydroponics: A Systematic Review of Mechanisms, Performance Metrics, Techno-Economic Analysis and Life-Cycle Assessment
by Dana Akhmetzhanova, Aitugan Sabitov, Yerlan Doszhanov, Meiram Atamanov, Karina Saurykova, Arman Zhumazhanov, Tolganay Atamanova, Almagul Kerimkulova, Leticia F. Velasco, Assem Zhumagalieva, Jakpar Jandosov and Ospan Doszhanov
Sustainability 2025, 17(24), 10977; https://doi.org/10.3390/su172410977 - 8 Dec 2025
Cited by 1 | Viewed by 602
Abstract
The sustainable operation of hydroponic systems depends on maintaining the chemical stability of circulating nutrient solutions and preventing the accumulation of toxic compounds. The accumulation of phytotoxic ammonium, heavy metals, and organic metabolites in recirculating nutrient solutions remains one of the key challenges [...] Read more.
The sustainable operation of hydroponic systems depends on maintaining the chemical stability of circulating nutrient solutions and preventing the accumulation of toxic compounds. The accumulation of phytotoxic ammonium, heavy metals, and organic metabolites in recirculating nutrient solutions remains one of the key challenges limiting the efficiency, sustainability, and scalability of hydroponic cultivation. This review provides a comprehensive comparative analysis of zeolites, activated carbons (ACs), and their functionalized and composite forms as key sorbents for nutrient management, contaminant removal, and environmental safety in hydroponic cultivation. Natural zeolites, with their well-defined crystalline structure and high ion-exchange selectivity toward ammonium and heavy metal cations, enable effective NH4+/K+ balance regulation and phytotoxicity mitigation. ACs, characterized by high specific surface area and tunable surface chemistry, complement zeolites by offering extensive adsorption capacity for organic compounds, root exudates, and pesticide residues, thereby extending the operational lifespan of nutrient solutions and improving overall system performance. Further advancements include the integration of zeolites and ACs with two-dimensional (graphene, g-C3N4) and three-dimensional (MOF, COF) frameworks, yielding multifunctional materials that combine adsorption, ion exchange, photocatalysis, and nutrient regulation. Transition-metal modification, particularly with Fe, Mn, Cu, Ni, and Co, introduces redox-active centers that enhance sorption, catalysis, and phosphate stabilization. The comparative synthesis reveals that the combined application of zeolite- and carbon-based composites offers a synergistic strategy for developing adaptive and low-waste hydroponic systems. From a techno-economic and environmental standpoint, the judicious application of these materials paves the way for more resilient, efficient, and circular hydroponic systems, reducing fertilizer and water consumption, lowering contaminant discharge, and enhancing food security. This systematic review was conducted according to the PRISMA 2020 guidelines. Relevant studies were identified through Scopus, Web of Science, and Google Scholar databases using specific inclusion and exclusion criteria. Full article
Show Figures

Figure 1

16 pages, 2100 KB  
Article
Novel Core–Shell Nanostructure of ε-Poly-L-lysine and Polyamide-6 Polymers for Reusable and Durable Antimicrobial Function
by Saloni Purandare, Rui Li, Chunhui Xiang and Guowen Song
Polymers 2025, 17(23), 3195; https://doi.org/10.3390/polym17233195 - 30 Nov 2025
Viewed by 518
Abstract
Antimicrobial function in protective and medical textiles is an essential safety feature since textiles can become breeding grounds for microorganisms. Ideally, the antimicrobial function in textiles should be non-toxic, stable, and durable. This study explores a core–shell nanofiber with a core of the [...] Read more.
Antimicrobial function in protective and medical textiles is an essential safety feature since textiles can become breeding grounds for microorganisms. Ideally, the antimicrobial function in textiles should be non-toxic, stable, and durable. This study explores a core–shell nanofiber with a core of the cationic biopolymer ε-poly-L-lysine (PL) and shell of structurally similar and biocompatible polyamide-6 (PA). The core–shell structure is expected to have a more stable antimicrobial function than its monolithic counterpart. Further, thermal crosslinking is expected to prevent rapid diffusion of the water-soluble PL. Therefore, this study establishes a comparison between a monolithic (control), a core–shell (CS), and a thermally crosslinked core–shell (CL-CS) nanofiber of PL and PA. Morphological analysis confirmed the successful generation of the core–shell nanofibers. All the samples exhibited hydrophilic behavior and antimicrobial function. However, the control sample showcased significantly reduced zones of inhibition in antimicrobial testing with 21 days of bacterial exposure (1.027 ± 0.072 cm2), as compared to 24 h bacterial exposure (1.347 ± 0.151 cm2). On the other hand, the zones of inhibition for 24 h vs. 21 days for CS (1.265 ± 0.042 cm2 vs. 1.052 ± 0.235 cm2) and CL-CS (1.128 ± 0.161 cm2 vs. 1.106 ± 0.047 cm2) showed no significant differences. Therefore, the core–shell structure allowed for sustainable and durable antimicrobial action. Lastly, the CL-CS sample exhibited reusable antimicrobial function owing to the core–shell structure paired with thermal crosslinking. This study showcases a fiber system with non-toxic, durable, and reusable antimicrobial function. This study builds grounds for the development and multifaceted holistic characterization of safe, stable, and scalable antimicrobial textiles. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

Back to TopTop