Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = rubber particle gradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2165 KB  
Article
Improvement of Mechanical Properties of Rubberized Cement-Stabilized Macadam by Optimization of Rubber Particle Gradation
by Donghai Wang, Shuxing Mao, Chaochao Liu and Jie Chen
Materials 2025, 18(22), 5106; https://doi.org/10.3390/ma18225106 - 10 Nov 2025
Viewed by 351
Abstract
Replacing natural aggregates in cement-stabilized macadam (CSM) with waste rubber particles reduces mineral resource consumption, manages solid waste, and enhances the long-term performance of cementitious materials, addressing environmental challenges. An optimized gradation of rubber particles was proposed based on different combinations of particle [...] Read more.
Replacing natural aggregates in cement-stabilized macadam (CSM) with waste rubber particles reduces mineral resource consumption, manages solid waste, and enhances the long-term performance of cementitious materials, addressing environmental challenges. An optimized gradation of rubber particles was proposed based on different combinations of particle sizes. Five rubber particle combinations with different gradations were incorporated into CSM to create a rubberized cement-stabilized macadam (RCSM). The strength of RCSM was verified through compressive and flexural tensile tests. The toughness of RCSM was evaluated using the flexural ultimate failure strain and flexural tensile resilient modulus. Crack resistance was evaluated through freeze–thaw, fatigue, and shrinkage tests. The results indicate that the compressive and flexural strengths of RCSM with 1.18–4.75 mm rubber particles are closest to those of CSM. The ultimate strain of CSM increased by up to 1.83 times with optimized rubber gradation, while its modulus decreased by more than half. Furthermore, RCSM with 1.18–4.75 mm rubber particles exhibited the best performance in fatigue life under high stress ratio, frost resistance, and shrinkage behavior. Comprehensive test results showed that rubber particles ranging from 1.18 to 2.36 mm were most effective in improving the road performance of RCSM. Full article
Show Figures

Figure 1

26 pages, 5306 KB  
Article
Interfacial Shear Strength of Sand–Recycled Rubber Mixtures Against Steel: Ring-Shear Testing and Machine Learning Prediction
by Rayed Almasoudi, Hossam Abuel-Naga and Abolfazl Baghbani
Buildings 2025, 15(18), 3276; https://doi.org/10.3390/buildings15183276 - 10 Sep 2025
Viewed by 748
Abstract
Soil–structure contacts often govern deformation and stability in foundations and buried infrastructure. Rubber waste is used in soil mixtures to enhance geotechnical performance and promote environmental sustainability. This study investigates the peak and residual shear strength of sand–steel interfaces, where the sand is [...] Read more.
Soil–structure contacts often govern deformation and stability in foundations and buried infrastructure. Rubber waste is used in soil mixtures to enhance geotechnical performance and promote environmental sustainability. This study investigates the peak and residual shear strength of sand–steel interfaces, where the sand is mixed with recycled rubber. It also develops predictive machine learning (ML) models based on the experimental data. Two silica sands, medium and coarse, were mixed with two rubber gradations; however, Rubber B was included only in limited comparative tests at a fixed content. Ring-shear tests were performed against smooth and rough steel plates under normal stresses of 25 to 200 kPa to capture the full τ–δ response. Nine input variables were considered: median particle size (D50), regularity index (RI), porosity (n), coefficients of uniformity (Cu) and curvature (Cc), rubber content (RC), applied normal stress (σn), normalised roughness (Rn), and surface hardness (HD). These variables were used to train multiple linear regression (MLR) and random forest regression (RFR) models. The models were trained and validated on 96 experimental data points derived from ring-shear tests across varied material and loading conditions. The machine learning models facilitated the exploration of complex, non-linear relationships between the input variables and both peak and residual interfacial shear strength. Experimental findings demonstrated that particle size compatibility, rubber content, and surface roughness significantly influence interface behaviour, with optimal conditions varying depending on the surface type. Moderate inclusion of rubber was found to enhance strength under certain conditions, while excessive content could lead to performance reduction. The MLR model demonstrated superior generalisation in predicting peak strength, whereas the RFR model yielded higher accuracy for residual strength. Feature importance analyses from both models identified the most influential parameters governing the shear response at the sand–steel interface. Full article
Show Figures

Figure 1

20 pages, 5670 KB  
Article
Performance Evaluation of Waste Rubber-Modified Asphalt Mixtures: A Comparative Study of Asphalt Concrete and Stone Mastic Asphalt Gradings
by Ivana Ban, Ivana Barišić, Marijana Cuculić and Matija Zvonarić
Infrastructures 2025, 10(5), 107; https://doi.org/10.3390/infrastructures10050107 - 25 Apr 2025
Cited by 3 | Viewed by 2764
Abstract
Crumb rubber (CR) obtained from end-of-life tyres (ELT) has gained significant attention in the sustainable design of asphalt pavements in recent years, showing a promising perspective in the enhancement of pavement performance related to its structural and functional properties. Existing research on CR [...] Read more.
Crumb rubber (CR) obtained from end-of-life tyres (ELT) has gained significant attention in the sustainable design of asphalt pavements in recent years, showing a promising perspective in the enhancement of pavement performance related to its structural and functional properties. Existing research on CR influence on pavement performance mostly focused on peculiarities of asphalt mixture modification procedures—dry and wet processes, CR content in the mixture and CR particle size. In this study, a laboratory-based experimental investigation of CR effect on two different mixture gradations, namely dense-graded and gap-graded mixtures with three different binder contents, was performed. CR was added in mixtures through binder modification, with a constant CR content of 18% by binder weight in all mixtures. Volumetric properties—maximum mixture density, bulk density and void characteristics, alongside mechanical properties determined by the Marshall test method—were determined on unmodified and modified mixtures. The goal was to evaluate the influence of CR modification with respect to three different binder contents. The results showed that gap-graded mixtures are more sensitive to change in CR modified binder content in comparison to dense-graded mixtures in terms of air voids content. Furthermore, the mechanical properties of CR-modified mixtures were slightly enhanced in gap-graded mixtures, showing a promising potential of CR modification for pavement performance. However, the choice of optimal binder content in CR-modified mixtures was shown to be a critical mixture design parameter due to the increased sensitivity of binder content change to the analysed voids properties and permanent deformations. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

16 pages, 2946 KB  
Article
Temperature Distribution in Asphalt Concrete Layers: Impact of Thickness and Cement-Treated Bases with Different Aggregate Sizes and Crumb Rubber
by Thao T. T. Tran, Phuong N. Pham, Hai H. Nguyen, Phuc Q. Nguyen, Yan Zhuge and Yue Liu
Buildings 2024, 14(8), 2470; https://doi.org/10.3390/buildings14082470 - 10 Aug 2024
Viewed by 1978
Abstract
The temperature estimation within asphalt concrete (AC) overlaid on cement-stabilized bases (CSB) is necessary for pavement analysis and design. However, the impact of different CSB gradations and rubberized CSB on AC temperature has not been thoroughly investigated. This study aims to clarify this [...] Read more.
The temperature estimation within asphalt concrete (AC) overlaid on cement-stabilized bases (CSB) is necessary for pavement analysis and design. However, the impact of different CSB gradations and rubberized CSB on AC temperature has not been thoroughly investigated. This study aims to clarify this effect by examining two types of CSB with nominal particle aggregate sizes of 25 mm and 31.5 mm, as well as the substitution of 5%, 10%, and 20% graded aggregates with rubber aggregates (RA) in CSB Dmax 25 using Ansys-based numerical simulations. The modelling also investigated 11 scenarios with different AC thicknesses (hAC) ranging from 6 to 26 cm. The results indicated that CSB Dmax 31.5 reduced the daily maximum temperature fluctuation at the bottom of the AC (∆TbottomAC) by approximately 8% compared to CSB Dmax 25. The inclusion of 5% RA in CSB Dmax 25 decreased ∆TbottomAC by up to 20%. Additionally, the rubberized CSB increased the maximum temperature gradient between the top and bottom of the AC (ΔTmaxAC) by 9.5% with 5% RA and a 6 cm AC thickness; however, this increase was insignificant when hAC exceeded 12 cm. This study also proposed the use of artificial neural network (ANN) models to predict the AC’s temperature distribution based on depth, the time of day, surface paving temperatures, and hAC. The proposed ANN model demonstrated high accuracy (R2 = 0.996 and MSE = 0.000685),which was confirmed by the numerical simulations, with an acceptable RMSE ranging from 0.28 °C to 0.67 °C. Full article
(This article belongs to the Special Issue Materials Engineering in Sustainable Buildings)
Show Figures

Figure 1

29 pages, 7520 KB  
Article
Internal Friction Angle of Cohesionless Binary Mixture Sand–Granular Rubber Using Experimental Study and Machine Learning
by Firas Daghistani, Abolfazl Baghbani, Hossam Abuel Naga and Roohollah Shirani Faradonbeh
Geosciences 2023, 13(7), 197; https://doi.org/10.3390/geosciences13070197 - 28 Jun 2023
Cited by 16 | Viewed by 6024
Abstract
This study aimed to examine the shear strength characteristics of sand–granular rubber mixtures in direct shear tests. Two different sizes of rubber and one of sand were used in the experiment, with the sand being mixed with various percentages of rubber (0%, 10%, [...] Read more.
This study aimed to examine the shear strength characteristics of sand–granular rubber mixtures in direct shear tests. Two different sizes of rubber and one of sand were used in the experiment, with the sand being mixed with various percentages of rubber (0%, 10%, 20%, 30%, and 50%). The mixtures were prepared at three different densities (loose, slightly dense, and dense), and shear stress was tested at four normal stresses (30, 55, 105, and 200 kPa). The results of 80 direct shear tests were used to calculate the peak and residual internal friction angles of the mixtures, and it was found that the normal stress had a significant effect on the internal friction angle, with an increase in normal stress leading to a decrease in the internal friction angle. These results indicated that the Mohr–Coulomb theory, which applies to rigid particles only, is not applicable in sand–rubber mixtures, where stiff particles (sand) and soft particles (rubber) are mixed. The shear strength of the mixtures was also influenced by multiple factors, including particle morphology (size ratio, shape, and gradation), mixture density, and normal stress. For the first time in the literature, genetic programming, classification and regression random forests, and multiple linear regression were used to predict the peak and residual internal friction angles. The genetic programming resulted in the creation of two new equations based on mixture unit weight, normal stress, and rubber content. Both artificial intelligence models were found to be capable of accurately predicting the peak and residual internal friction angles of sand–rubber mixtures. Full article
(This article belongs to the Collection New Advances in Geotechnical Engineering)
Show Figures

Figure 1

10 pages, 1650 KB  
Article
Low Temperature Crack Resistance of Stone Mastic Asphalt Affected by Its Nominal Maximum Size and Asphalt Binders
by Yongming Gu, Can Ding, Junan Shen and Wei Wang
Appl. Sci. 2022, 12(15), 7444; https://doi.org/10.3390/app12157444 - 25 Jul 2022
Cited by 2 | Viewed by 2084
Abstract
To study the effect of nominal maximum particle size (NMS) of stone mastic asphalt (SMA) gradation and a mixed modified asphalt binder on the low temperature crack resistance of SMA, SMA asphalt mixtures with three different NMS, two styrene-butadiene-styrene (SBS) and crumb rubber [...] Read more.
To study the effect of nominal maximum particle size (NMS) of stone mastic asphalt (SMA) gradation and a mixed modified asphalt binder on the low temperature crack resistance of SMA, SMA asphalt mixtures with three different NMS, two styrene-butadiene-styrene (SBS) and crumb rubber modifier (CRM) hybrid-modified asphalt binders were designed.Thermal strength restrained specimen test (TSRST) and bending beam test (BBT) were performed on the mixtures. The freezing-fracture temperature and strength from TSRST, bending tensile strain and stiffness from BBT at low temperature were evaluated. Finally, an intrinsic relationship was established between these properties obtained from the two tests. The results showed that the following: (1) the SMA-5, the best of all the three NMS, has a freezing-fracture temperature of −31.5 °C, which is 18.9% and 48.6% lower than those of SMA-10 and SMA-13, respectively, while its freezing fracture strength is 6.15 MPa, which is 95.2% and 243.6% higher than those of SMA-10 and SMA-13, respectively; (2) the bending failure strain of SMA-5 is 4649 με, which is higher than those of SMA-10 and SMA-13 by 11.3% and 21.9%, respectively; (3) increased CRM dose in the SBS-modified SMA improves the crack resistance at low temperature; (4) the bending failure strain of the SMA has the best correlation with the freezing-fracture temperature, with a correlation coefficient of about 0.8. Full article
(This article belongs to the Special Issue Advanced Technologies in Asphalt Materials)
Show Figures

Figure 1

20 pages, 3622 KB  
Article
Composition Optimization and Damping Performance Evaluation of Porous Asphalt Mixture Containing Recycled Crumb Rubber
by Enmao Quan, Hongke Xu and Zhongyang Sun
Sustainability 2022, 14(5), 2696; https://doi.org/10.3390/su14052696 - 25 Feb 2022
Cited by 14 | Viewed by 3084
Abstract
Composition optimization of the asphalt mixture of pavement is one effective measures to reduce the harm of traffic noise. To improve the noise reduction effect of porous asphalt mixture (PAM) and promote the recycling of crumb rubber in highway engineering, the preparation parameters [...] Read more.
Composition optimization of the asphalt mixture of pavement is one effective measures to reduce the harm of traffic noise. To improve the noise reduction effect of porous asphalt mixture (PAM) and promote the recycling of crumb rubber in highway engineering, the preparation parameters of high-viscosity modified asphalt for PAM were optimized in this study, and the mixture gradation was optimized based on the unbalance force and contact force of mixed aggregate. The effects of crumb rubber content and particle size on the damping performance and dynamic shear modulus of the mixture were studied. The effects of different preparation parameters on the performance of the PAM were comprehensively evaluated based on the orthogonal test, and preparation parameters of PAM were recommended. The results show that with the increase of crumb rubber content, the damping ratio of the mixed aggregate increases gradually. The addition of crumb rubber is conducive to improving the damping performance and toughness of the PAM, but it has an adverse impact on the bearing capacity. Under the condition of low strain, the damping ratio of the mixed aggregate containing 2–5 mm crumb rubber is 1.2–5 times that of the mixed aggregate containing 0.6–1 mm crumb rubber. The recommended optimum content of crumb rubber in PAM is 4%, and the optimum particle size of alternative aggregate is 2.36–4.75 mm. The significant factors affecting Marshall stability are rubber particle content, asphalt aggregate ratio, mixing temperature, compaction times, and forming temperature. The rational utilization of crumb rubber in PAM is of positive significance to promoting the green development of highway construction and the harmless treatment of waste resources. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

17 pages, 4827 KB  
Article
Study on Mechanical and Viscoelastic Properties of Asphalt Mixture Modified by Diatomite and Crumb Rubber Particles
by Chunyu Liang, Hao Zhang, Zhengwei Gu, Xin Xu and Jinxin Hao
Appl. Sci. 2020, 10(23), 8748; https://doi.org/10.3390/app10238748 - 7 Dec 2020
Cited by 15 | Viewed by 3352
Abstract
To optimize the properties of asphalt mixtures and make full use of waste rubber tires, diatomite and crumb rubber particles were applied to reinforce the asphalt mixtures in this study. The rutting tests, the three-point bending tests, the freeze-thaw splitting tests, and the [...] Read more.
To optimize the properties of asphalt mixtures and make full use of waste rubber tires, diatomite and crumb rubber particles were applied to reinforce the asphalt mixtures in this study. The rutting tests, the three-point bending tests, the freeze-thaw splitting tests, and the uniaxial compression creep tests were performed to analyze the effects of asphalt types and aggregate gradation on the pavement properties of diatomite and crumb rubber particles reinforced asphalt mixtures (DRPAM). Subsequently, the creep and relaxation characteristics of DRPAM were analyzed by the Burgers model, the modified Burgers model, the second-order extensive Maxwell model, and the Scott–Blair model. The results show that rubber particles and diatomite can reinforce the high temperature, low temperature, and viscoelastic properties of asphalt mixtures, although the improvement effect is weaker than styrene-butadiene-styrene (SBS). Consequently, it is concluded that rubber particle and diatomite compound modified asphalt mixture with suspension dense gradation and SBS binder will have better performance. Full article
Show Figures

Figure 1

22 pages, 3909 KB  
Article
A Study on the Design Method for the Material Composition of Small Particle-Size Asphalt Mixture for Controlling Cracks in Asphalt Pavement
by Jiyu Xin, Jianzhong Pei, Mitsuyoshi Akiyama, Rui Li, Jiupeng Zhang and Libo Shao
Appl. Sci. 2019, 9(10), 1988; https://doi.org/10.3390/app9101988 - 15 May 2019
Cited by 13 | Viewed by 4659
Abstract
Generally, various kinds of cracks are the main type of distresses during the service period of asphalt pavements. To save maintenance costs and improve the crack resistance of asphalt pavements effectively, this paper presents a unique design method for the material composition of [...] Read more.
Generally, various kinds of cracks are the main type of distresses during the service period of asphalt pavements. To save maintenance costs and improve the crack resistance of asphalt pavements effectively, this paper presents a unique design method for the material composition of small particle-size (SPS) asphalt mixture for controlling cracks in asphalt pavement. First, Stone Mastic Asphalt (SMA)-II was designed as a basic gradation according to the A.N. Talbot curve and SMA-II-1, SMA-II-2 and SMA-II-3 were designed according to the Superpave mix design method, the Bailey method and the Particle interference theory, respectively. Second, based on Marshall test results, the optimal fiber content and optimal asphalt content of three gradations were determined. Then, the influence of the passing rate of 1.18-mm sieve and 0.075-mm sieve on the air voids of SMA-II and the influence of the filler-asphalt ratio on the performance of SMA-II were investigated, and an appropriate range of filler-asphalt ratio was obtained. Finally, a high-temperature performance test, a water stability test, and a skid resistance test demonstrate that the overall performance of SMA-II can satisfy the specifications. A low-temperature bend test and analysis of bending strain energy density show that SMA-II with a crumb rubber modifier and a polymer fiber has better crack resistance performance than SMA-I (SBS-modified mixture). Life-cycle cost analysis shows the economic advantage of SPS asphalt thin overlays over traditional AC-13 thin overlays. Full article
(This article belongs to the Special Issue Asphalt Materials)
Show Figures

Figure 1

Back to TopTop