Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = round trip time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 787 KiB  
Article
Rethinking Modbus-UDP for Real-Time IIoT Systems
by Ivan Cibrario Bertolotti
Future Internet 2025, 17(8), 356; https://doi.org/10.3390/fi17080356 - 5 Aug 2025
Abstract
The original Modbus specification for RS-485 and RS-232 buses supported broadcast transmission. As the protocol evolved into Modbus-TCP, to use the TCP transport, this useful feature was lost, likely due to the point-to-point nature of TCP connections. Later proposals did not restore the [...] Read more.
The original Modbus specification for RS-485 and RS-232 buses supported broadcast transmission. As the protocol evolved into Modbus-TCP, to use the TCP transport, this useful feature was lost, likely due to the point-to-point nature of TCP connections. Later proposals did not restore the broadcast transmission capability, although they used UDP as transport and UDP, by itself, would have supported it. Moreover, they did not address the inherent lack of reliable delivery of UDP, leaving datagram loss detection and recovery to the application layer. This paper describes a novel redesign of Modbus-UDP that addresses the aforementioned shortcomings. It achieves a mean round-trip time of only 38% with respect to Modbus-TCP and seamlessly supports a previously published protocol based on Modbus broadcast. In addition, the built-in retransmission of Modbus-UDP reacts more efficiently than the equivalent Modbus-TCP mechanism, exhibiting 50% of its round-trip standard deviation when subject to a 1% two-way IP datagram loss probability. Combined with the lower overhead of UDP versus TCP, this makes the redesigned Modbus-UDP protocol better suited for a variety of Industrial Internet of Things systems with limited computing and communication resources. Full article
Show Figures

Figure 1

23 pages, 5644 KiB  
Article
Exploring the Performance of Transparent 5G NTN Architectures Based on Operational Mega-Constellations
by Oscar Baselga, Anna Calveras and Joan Adrià Ruiz-de-Azua
Network 2025, 5(3), 25; https://doi.org/10.3390/network5030025 - 18 Jul 2025
Viewed by 299
Abstract
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between [...] Read more.
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between mobile network operators and satellite providers, allowing the former to leverage mature space infrastructure and the latter to integrate with terrestrial mobile standards. However, integrating these technologies presents significant architectural challenges. This study investigates 5G NTN architectures using satellite mega-constellations, focusing on transparent architectures where Starlink is employed to relay the backhaul, midhaul, and new radio (NR) links. The performance of these architectures is assessed through a testbed utilizing OpenAirInterface (OAI) and Open5GS, which collects key user-experience metrics such as round-trip time (RTT) and jitter when pinging the User Plane Function (UPF) in the 5G core (5GC). Results show that backhaul and midhaul relays maintain delays of 50–60 ms, while NR relays incur delays exceeding one second due to traffic overload introduced by the RFSimulator tool, which is indispensable to transmit the NR signal over Starlink. These findings suggest that while transparent architectures provide valuable insights and utility, regenerative architectures are essential for addressing current time issues and fully realizing the capabilities of space-based broadband services. Full article
Show Figures

Figure 1

23 pages, 3316 KiB  
Article
Water–Climate Nexus: Exploring Water (In)security Risk and Climate Change Preparedness in Semi-Arid Northwestern Ghana
by Cornelius K. A. Pienaah, Mildred Naamwintome Molle, Kristonyo Blemayi-Honya, Yihan Wang and Isaac Luginaah
Water 2025, 17(13), 2014; https://doi.org/10.3390/w17132014 - 4 Jul 2025
Viewed by 454
Abstract
Water insecurity, intensified by climate change, presents a significant challenge globally, especially in arid and semi-arid regions of Africa. In northern Ghana, where agriculture heavily depends on seasonal rainfall, prolonged dry seasons exacerbate water and food insecurity. Despite efforts to improve water access, [...] Read more.
Water insecurity, intensified by climate change, presents a significant challenge globally, especially in arid and semi-arid regions of Africa. In northern Ghana, where agriculture heavily depends on seasonal rainfall, prolonged dry seasons exacerbate water and food insecurity. Despite efforts to improve water access, there is limited understanding of how climate change preparedness affects water insecurity risk in rural contexts. This study investigates the relationship between climate preparedness and water insecurity in semi-arid northwestern Ghana. Grounded in the Sustainable Livelihoods Framework, data was collected through a cross-sectional survey of 517 smallholder households. Nested ordered logistic regression was used to analyze how preparedness measures and related socio-environmental factors influence severe water insecurity. The findings reveal that higher levels of climate change preparedness significantly reduce water insecurity risk at individual [odds ratio (OR) = 0.35, p < 0.001], household (OR = 0.037, p < 0.001), and community (OR = 0.103, p < 0.01) levels. In contrast, longer round-trip water-fetching times (OR = 1.036, p < 0.001), water-fetching injuries (OR = 1.054, p < 0.01), reliance on water borrowing (OR = 1.310, p < 0.01), untreated water use (OR = 2.919, p < 0.001), and exposure to climatic stressors like droughts (OR = 1.086, p < 0.001) and floods (OR = 1.196, p < 0.01) significantly increase insecurity. Community interventions, such as early warning systems (OR = 0.218, p < 0.001) and access to climate knowledge (OR = 0.228, p < 0.001), and long-term residency further reduce water insecurity risk. These results underscore the importance of integrating climate preparedness into rural water management strategies to enhance resilience in climate-vulnerable regions. Full article
Show Figures

Figure 1

10 pages, 1694 KiB  
Article
Long-Distance FBG Sensor Networks Multiplexed in Asymmetric Tree Topology
by Keiji Kuroda
Sensors 2025, 25(13), 4158; https://doi.org/10.3390/s25134158 - 3 Jul 2025
Viewed by 495
Abstract
This article reports on the interrogation of fiber Bragg grating (FBG)-based sensors that are multiplexed in an asymmetric tree topology. At each stage in the topology, FBGs are connected at one output port of a 50:50 coupler with fibers of different lengths. This [...] Read more.
This article reports on the interrogation of fiber Bragg grating (FBG)-based sensors that are multiplexed in an asymmetric tree topology. At each stage in the topology, FBGs are connected at one output port of a 50:50 coupler with fibers of different lengths. This asymmetric structure allows the simultaneous interrogation of long-distance and parallel sensor networks to be realized. Time- and wavelength-division multiplexing techniques are used to multiplex the FBGs. Using the heterodyne detection technique, high-sensitivity detection of reflection signals that have been weakened by losses induced by a round-trip transmission through the couplers and long-distance propagation is performed. Quasi-distributed FBGs are interrogated simultaneously, over distances ranging from 15 m to 80 km. Full article
(This article belongs to the Special Issue Advances and Innovations in Optical Fiber Sensors)
Show Figures

Figure 1

32 pages, 2945 KiB  
Article
SelfLoc: Robust Self-Supervised Indoor Localization with IEEE 802.11az Wi-Fi for Smart Environments
by Hamada Rizk and Ahmed Elmogy
Electronics 2025, 14(13), 2675; https://doi.org/10.3390/electronics14132675 - 2 Jul 2025
Viewed by 522
Abstract
Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator [...] Read more.
Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator (RSSI) data to achieve fine-grained positioning using commodity Wi-Fi infrastructure. Unlike conventional methods that depend heavily on labeled data, SelfLoc adopts a contrastive learning framework to extract spatially discriminative and temporally consistent representations from unlabeled wireless measurements. The system integrates a dual-contrastive strategy: temporal contrasting captures sequential signal dynamics essential for tracking mobile agents, while contextual contrasting promotes spatial separability by ensuring that signal representations from distinct locations remain well-differentiated, even under similar signal conditions or environmental symmetry. To this end, we design signal-specific augmentation techniques for the physical properties of RTT and RSSI, enabling the model to generalize across environments. SelfLoc also adapts effectively to new deployment scenarios with minimal labeled data, making it suitable for dynamic and collaborative industrial applications. We validate the effectiveness of SelfLoc through experiments conducted in two realistic indoor testbeds using commercial Android devices and seven Wi-Fi access points. The results demonstrate that SelfLoc achieves high localization precision, with a median error of only 0.55 m, and surpasses state-of-the-art baselines by at least 63.3% with limited supervision. These findings affirm the potential of SelfLoc to support spatial intelligence and collaborative automation, aligning with the goals of Industry 4.0 and Society 5.0, where seamless human–machine interactions and intelligent infrastructure are key enablers of next-generation smart environments. Full article
(This article belongs to the Special Issue Collaborative Intelligent Automation System for Smart Industry)
Show Figures

Figure 1

25 pages, 2065 KiB  
Article
Lower-Latency Screen Updates over QUIC with Forward Error Correction
by Nooshin Eghbal and Paul Lu
Future Internet 2025, 17(7), 297; https://doi.org/10.3390/fi17070297 - 30 Jun 2025
Viewed by 297
Abstract
There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over [...] Read more.
There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over the TCP and can have higher latency due to unnecessary blocking to ensure total ordering. By using Quick UDP Internet Connections (QUIC) as the underlying protocol, we are able to implement a partial order delivery approach, which can be combined with Forward Error Correction (FEC) to reduce data latency. Our earlier work on consistency fences provides a mechanism and semantic foundation for partial ordering. Our new evaluation on the Emulab testbed, with two different synthetic workloads for streaming and non-streaming updates, shows that our partial order and FEC strategy can reduce the blocking time and inter-delivery time of rectangles compared to total delivery. For one workload, partially ordered data with FEC can reduce the 99-percentile message-blocking time to 0.4 ms versus 230 ms with totally ordered data. That workload was with 0.5% packet loss, 100 ms Round-Trip Time (RTT), and 100 Mbps bandwidth. We study the impact of varying the packet-loss rate, RTT, bandwidth, and CCA and demonstrate that partial order and FEC latency improvements grow as we increase packet loss and RTT, especially with the emerging Bottleneck Bandwidth and Round-Trip propagation time (BBR) congestion control algorithm. Full article
Show Figures

Figure 1

23 pages, 678 KiB  
Article
Unified Probabilistic and Similarity-Based Position Estimation from Radio Observations
by Max Werner, Markus Bullmann, Toni Fetzer and Frank Deinzer
Sensors 2025, 25(13), 4092; https://doi.org/10.3390/s25134092 - 30 Jun 2025
Viewed by 260
Abstract
We propose a modeling approach for position estimation based on the observed radio propagation in an environment. The approach is purely similarity-based and therefore free of explicit physical assumptions. What distinguishes it from classical related methods are probabilistic position estimates. Instead of just [...] Read more.
We propose a modeling approach for position estimation based on the observed radio propagation in an environment. The approach is purely similarity-based and therefore free of explicit physical assumptions. What distinguishes it from classical related methods are probabilistic position estimates. Instead of just providing a point estimate for a given signal sequence, our model returns the distribution of possible positions as continuous probability density function, which allows for appropriate integration into recursive state estimation systems. The estimation procedure starts by using a kernel to compare incoming data with reference recordings from known positions. Based on the obtained similarities, weights are assigned to the reference positions. An arbitrarily chosen density estimation method is then applied given this assignment. Thus, a continuous representation of the distribution of possible positions in the environment is provided. We apply the solution in a Particle Filter (PF) system for smartphone-based indoor localization. The approach is tested both with radio signal strength (RSS) measurements (Wi-Fi and Bluetooth Low Energy RSSI) and round-trip time (RTT) measurements, given by Wi-Fi Fine Timing Measurement. Compared to distance-based models, which are dedicated to the specific physical properties of each measurement type, our similarity-based model achieved overall higher accuracy at tracking pedestrians under realistic conditions. Since it does not explicitly consider the physics of radio propagation, the proposed model has also been shown to work flexibly with either RSS or RTT observations. Full article
Show Figures

Figure 1

25 pages, 6723 KiB  
Article
Parametric Modeling and Evaluation of Departure and Arrival Air Routes for Urban Logistics UAVs
by Zhongming Li, Yifei Zhao and Xinhui Ren
Drones 2025, 9(7), 454; https://doi.org/10.3390/drones9070454 - 23 Jun 2025
Viewed by 374
Abstract
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have [...] Read more.
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have established fixed departure and arrival air routes above vertiports and designed fixed flight air routes between vertiports to guide UAVs to fly along predefined paths. In the complex and constrained low-altitude urban environment, the design of safe and efficient air routes has undoubtedly become a key enabler for successful operations. This research, grounded in both current theoretical research and real-world logistics UAV operations, defines the concept of UAV logistics air routes and presents a comprehensive description of their structure. A parametric model for one-way round-trip logistics air routes is proposed, along with an air route evaluation model and optimization method. Based on this framework, the research identifies four basic configurations that are commonly adopted for one-way round-trip operations. These configurations can be further improved into two optimized configurations with more balanced performance across multiple metrics. Simulation results reveal that Configuration 1 is only suitable for small-scale transport; as the number of delivery tasks increases, delays grow linearly. When the task volume exceeds 100 operations per 30 min, Configurations 2, 3, and 4 reduce average delay by 88.9%, 89.2%, and 93.3%, respectively, compared with Configuration 1. The research also finds that flight speed along segments and the cruise segment capacity have the most significant influence on delays. Properly increasing these two parameters can lead to a 28.4% reduction in the average delay. The two optimized configurations, derived through further refinement, show better trade-offs between average delay and flight time than any of the fundamental configurations. This research not only provides practical guidance for the planning and design of UAV logistics air routes but also lays a methodological foundation for future developments in UAV scheduling and air route network design. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

13 pages, 4115 KiB  
Article
Modeling of Cr2+-Doped Saturable-Absorber Q-Switched Tm:CaF2 Lasers
by Mofan Yang, Ziyi Wu and Jinhe Yuan
Crystals 2025, 15(7), 591; https://doi.org/10.3390/cryst15070591 - 23 Jun 2025
Viewed by 292
Abstract
We present a model of a Cr2+-doped saturable absorber (SA), which is employed in passively Q-switched (PQS) Tm:CaF2 lasers. The overall round-trip loss, the time evolution of the intracavity photon density, and the effective population inversion density can all be [...] Read more.
We present a model of a Cr2+-doped saturable absorber (SA), which is employed in passively Q-switched (PQS) Tm:CaF2 lasers. The overall round-trip loss, the time evolution of the intracavity photon density, and the effective population inversion density can all be obtained through numerical solutions. Under the mode-matching condition, this model can be used to easily determine the PQS laser’s main output parameters, including the average output power, repetition frequency, peak power, pulse energy, and pulse width. This concept is also applicable to a range of thulium-doped solid-state lasers (SSLs) operating on the transition from the 3F4 level to the 3H6 level, which are Q-switched by a Cr2+-doped SA. This model is helpful for the design and optimization of this kind of laser. Full article
(This article belongs to the Special Issue Research Progress of Laser Crystals)
Show Figures

Figure 1

26 pages, 5373 KiB  
Article
A Comprehensive Analysis of the Loss Mechanism and Thermal Behavior of a High-Speed Magnetic Field-Modulated Motor for a Flywheel Energy Storage System
by Qianli Mai, Qingchun Hu and Xingbin Chen
Machines 2025, 13(6), 465; https://doi.org/10.3390/machines13060465 - 28 May 2025
Viewed by 447
Abstract
This paper presents a comprehensive analytical framework for investigating loss mechanisms and thermal behavior in high-speed magnetic field-modulated motors for flywheel energy storage systems. Through systematic classification of electromagnetic, mechanical, and additional losses, we reveal that modulator components constitute approximately 45% of total [...] Read more.
This paper presents a comprehensive analytical framework for investigating loss mechanisms and thermal behavior in high-speed magnetic field-modulated motors for flywheel energy storage systems. Through systematic classification of electromagnetic, mechanical, and additional losses, we reveal that modulator components constitute approximately 45% of total system losses at rated speed. Finite element analysis demonstrates significant spatial non-uniformity in loss distribution, with peak loss densities of 5.5 × 105 W/m3 occurring in the modulator region, while end-region losses exceed central-region values by 42% due to three-dimensional field effects. Our optimized design, implementing composite rotor structures, dual-material permanent magnets, and integrated thermal management solutions, achieves a 43.2% reduction in total electromagnetic losses, with permanent magnet eddy current losses decreasing by 68.7%. The maximum temperature hotspots decrease from 143 °C to 98 °C under identical operating conditions, with temperature gradients reduced by 58%. Peak efficiency increases from 92.3% to 95.8%, with the η > 90% region expanding by 42% in the speed–torque plane. Experimental validation confirms model accuracy with mean absolute percentage errors below 4.2%. The optimized design demonstrates 24.8% faster response times during charging transients while maintaining 41.7% smaller speed oscillations during sudden load changes. These quantitative improvements address critical limitations in existing systems, providing a viable pathway toward high-reliability, grid-scale energy storage solutions with extended operational lifetimes and improved round-trip efficiency. Full article
Show Figures

Figure 1

24 pages, 4089 KiB  
Article
An Empirical Evaluation of Communication Technologies and Quality of Delivery Measurement in Networked MicroGrids
by Yasin Emir Kutlu and Ruairí de Fréin
Sustainability 2025, 17(9), 4013; https://doi.org/10.3390/su17094013 - 29 Apr 2025
Viewed by 474
Abstract
Networked microgrids (NMG) are gaining popularity as an example of smart grids (SG), where power networks are integrated with communication technologies. Communication technologies enable NMGs to be monitored and controlled via communication networks. However, ensuring that communication networks in NMGs satisfy quality of [...] Read more.
Networked microgrids (NMG) are gaining popularity as an example of smart grids (SG), where power networks are integrated with communication technologies. Communication technologies enable NMGs to be monitored and controlled via communication networks. However, ensuring that communication networks in NMGs satisfy quality of delivery (QoD) metrics such as the round trip time (RTT) of NMG control data is necessary. This paper addresses the communication network types and communication technologies used in NMGs. We present various NMG deployments to demonstrate real-life applicability in different contexts. We develop a real-time NMG testbed using real hardware, such as Cisco 4331 Integrated Services Routers (ISR). We evaluate QoD in NMG control data by measuring RTT under varying relative network congestion levels. The results reveal that high-variance background traffic leads to greater RTTs, surpassing the industrial communication response time requirement specified by the European Telecommunications Standards Institute (ETSI) by over 25 times. Full article
Show Figures

Graphical abstract

23 pages, 5845 KiB  
Article
Ad-BBR: Enhancing Round-Trip Time Fairness and Transmission Stability in TCP-BBR
by Mingjun Wang, Xuezhi Zhang, Feng Jing and Mei Gao
Future Internet 2025, 17(5), 189; https://doi.org/10.3390/fi17050189 - 22 Apr 2025
Viewed by 675
Abstract
The rapid development of wireless network technology and the continuous evolution of network service demands have raised higher requirements for congestion control algorithms. In 2016, Google proposed the Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control algorithm based on the Transmission Control [...] Read more.
The rapid development of wireless network technology and the continuous evolution of network service demands have raised higher requirements for congestion control algorithms. In 2016, Google proposed the Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control algorithm based on the Transmission Control Protocol (TCP) protocol. While BBR offers lower latency and higher throughput compared to traditional congestion control algorithms, it still faces challenges. These include the periodic triggering of the ProbeRTT phase, which impairs data transmission efficiency, data over-injection caused by the congestion window (CWND) value-setting policy, and the difficulty of coordinating resource allocation across multiple concurrent flows. These limitations make BBR less effective in multi-stream competition scenarios in high-speed wireless networks. This paper analyzes the design limitations of the BBR algorithm from a theoretical perspective and proposes the Adaptive-BBR (Ad-BBR) algorithm. The Ad-BBR algorithm incorporates real-time RTT and link queue-state information, introduces a new RTprop determination mechanism, and implements a finer-grained, RTT-based adaptive transmission rate adjustment mechanism to reduce data over-injection and improve RTT fairness. Additionally, the ProbeRTT phase-triggering mechanism is updated to ensure more stable and smoother data transmission. In the NS3, 5G, and Wi-Fi simulation experiments, Ad-BBR outperformed all comparison algorithms by effectively mitigating data over-injection and minimizing unnecessary entries into the ProbeRTT phase. Compared to the BBRv1 algorithm, Ad-BBR achieved a 17% increase in throughput and a 30% improvement in RTT fairness, along with a 13% reduction in the retransmission rate and an approximate 20% decrease in latency. Full article
Show Figures

Figure 1

9 pages, 2383 KiB  
Proceeding Paper
WiFi–Round-Trip Timing (WiFi–RTT) Simultaneous Localisation and Mapping: Pedestrian Navigation in Unmapped Environments Using WiFi–RTT and Smartphone Inertial Sensors
by Khalil J. Raja and Paul D. Groves
Eng. Proc. 2025, 88(1), 16; https://doi.org/10.3390/engproc2025088016 - 24 Mar 2025
Viewed by 707
Abstract
A core problem relating to indoor positioning is a lack of prior knowledge of the environment. To date, most WiFi–RTT research assumes knowledge of the access points in an indoor environment. This paper provides a solution to this problem by using a simultaneous [...] Read more.
A core problem relating to indoor positioning is a lack of prior knowledge of the environment. To date, most WiFi–RTT research assumes knowledge of the access points in an indoor environment. This paper provides a solution to this problem by using a simultaneous localisation and mapping (SLAM) algorithm, using WiFi–RTT and pedestrian dead reckoning, which uses the inertial sensors in a smartphone. A WiFi–RTT SLAM algorithm has only been researched in one instance at the time of writing; this paper aims to expand the exploration of this problem, particularly in relation to the use of outlier detection and motion models. For the trials, which were 35 steps long, the final mobile device horizontal positioning error was 1.01 m and 1.7 m for the forward and reverse trials, respectively. The results of this paper show that unmapped indoor positioning using WiFi–RTT is feasible for metre-level indoor positioning, given correct access point calibration. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

15 pages, 5513 KiB  
Article
Exploration of Travel Patterns of Intercity Metro Passengers—A Case Study in Changsha–Zhuzhou–Xiangtan Metropolitan Area, China
by Yao Xie, Biao Cheng, Wei Ren, Cuizhu Zhou and Chenhui Liu
Appl. Sci. 2025, 15(6), 2947; https://doi.org/10.3390/app15062947 - 9 Mar 2025
Viewed by 833
Abstract
(1) Background: Rapid urban growth in China has extended rail systems to neighboring cities to meet intercity travel needs, making it important to understand intercity travel patterns. (2) Methods: Taking the Changsha–Zhuzhou–Xiangtan Intercity Metro Xihuan Line as an example, intercity ridership patterns are [...] Read more.
(1) Background: Rapid urban growth in China has extended rail systems to neighboring cities to meet intercity travel needs, making it important to understand intercity travel patterns. (2) Methods: Taking the Changsha–Zhuzhou–Xiangtan Intercity Metro Xihuan Line as an example, intercity ridership patterns are analyzed. A Gaussian mixture model is applied to cluster ridership into groups based on travel time and stay time, respectively, and their travel patterns are examined. (3) Results: Weekdays display distinct commuting patterns with morning and evening peaks. On weekends, peak travel times are quite different. Based on travel time, intercity ridership is divided into two groups. The short-travel-time group primarily travels for residential demand, while the long-travel-time group is mainly for leisure. No significant differences were found in weekday and weekend patterns. Based on stay time, ridership is categorized into two groups. Most trips are round trips on the same day, but overnight ridership is higher on weekends. On weekends, the intercity ridership groups with tourism as their travel purpose on weekends have different stay modes, but their main travel destinations are similar. On weekdays, there are large differences in the distribution of main travel destinations between the short-stay-time group and the long-stay-time group, and their travel purposes are more diverse. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

9 pages, 2797 KiB  
Proceeding Paper
Improved Control Mechanism of Bottleneck Bandwidth and Round-Trip Propagation Time v3 Congestion with Enhanced Fairness and Efficiency
by Hung-Chi Chu and Hao-Chu Chiang
Eng. Proc. 2025, 89(1), 11; https://doi.org/10.3390/engproc2025089011 - 24 Feb 2025
Viewed by 644
Abstract
The widespread adoption and popularity of various applications have led to large and frequent data transmissions, resulting in network congestion, high packet delays, and packet loss. In 2016, Google proposed the Bottleneck Bandwidth and Round-trip propagation time (BBR) algorithm to mitigate network congestion. [...] Read more.
The widespread adoption and popularity of various applications have led to large and frequent data transmissions, resulting in network congestion, high packet delays, and packet loss. In 2016, Google proposed the Bottleneck Bandwidth and Round-trip propagation time (BBR) algorithm to mitigate network congestion. However, its network fairness is poor. Consequently, BBRv2 and BBRv3 were introduced in 2018 and 2023 as improved versions. Although BBRv2 exhibited enhanced fairness, its bandwidth utilization rate was lower than that of other existing methods. Meanwhile, BBRv3 still lacked bandwidth fairness in its initial transmission. Therefore, we have improved the fairness based on BBRv3 by considering the maximum sending rate and utilizing connections at different times. Good fairness and bandwidth utilization are maintained on the bottleneck bandwidth with the improved method. The method outperforms Cubic Binary Increase Congestion Control (CUBIC) and BBRv3 in terms of bandwidth utilization and network usage fairness. Full article
Show Figures

Figure 1

Back to TopTop