Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = rotor balancing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2150 KB  
Article
Conceptual Retrofit of a Hydrogen–Electric VTOL Rotorcraft: The Hawk Demonstrator Simulation
by Jubayer Ahmed Sajid, Seeyama Hossain, Ivan Grgić and Mirko Karakašić
Designs 2026, 10(1), 9; https://doi.org/10.3390/designs10010009 - 24 Jan 2026
Viewed by 351
Abstract
Decarbonisation of the aviation sector is essential for achieving global-climate targets, with hydrogen propulsion emerging as a viable alternative to battery–electric systems for vertical flight. Unlike previous studies focusing on clean-sheet eVTOL concepts or fixed-wing platforms, this work provides a comprehensive retrofit evaluation [...] Read more.
Decarbonisation of the aviation sector is essential for achieving global-climate targets, with hydrogen propulsion emerging as a viable alternative to battery–electric systems for vertical flight. Unlike previous studies focusing on clean-sheet eVTOL concepts or fixed-wing platforms, this work provides a comprehensive retrofit evaluation of a two-seat light helicopter (Cabri G2/Robinson R22 class) to a hydrogen–electric hybrid powertrain built around a Toyota TFCM2-B PEM fuel cell (85 kW net), a 30 kg lithium-ion buffer battery, and 700 bar Type-IV hydrogen storage totalling 5 kg, aligned with the Vertical Flight Society (VFS) mission profile. The mass breakdown, mission energy equations, and segment-wise hydrogen use for a 100 km sortie are documented using a single main rotor with a radius of R = 3.39 m, with power-by-segment calculations taken from the team’s final proposal. Screening-level simulations are used solely for architectural assessment; no experimental validation is performed. Mission analysis indicates a 100 km operational range with only 3.06 kg of hydrogen consumption (39% fuel reserve). The main contribution is a quantified demonstration of a practical retrofit pathway for light rotorcraft, showing approximately 1.8–2.2 times greater range (100 km vs. 45–55 km battery-only baseline, including respective safety reserves). The Hawk demonstrates a 28% reduction in total propulsion system mass (199 kg including PEMFC stack and balance-of-plant 109 kg, H2 storage 20 kg, battery 30 kg, and motor with gearbox 40 kg) compared to a battery-only configuration (254.5 kg battery pack, plus equivalent 40 kg motor and gearbox), representing approximately 32% system-level mass savings when thermal-management subsystems (15 kg) are included for both configurations. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

23 pages, 5074 KB  
Article
Asynchronous Tilt Transition Control of Quad Tilt Rotor UAV
by Xuebing Li, Zikang Su, Xin Chen, Changhui Jiang and Mi Hou
Drones 2026, 10(1), 76; https://doi.org/10.3390/drones10010076 - 22 Jan 2026
Viewed by 54
Abstract
To address the challenges inherent in the transition flight control of QTR UAVs, this paper proposes an asynchronous tilt transition control framework that integrates NDIC with an ESO. First, a heterogeneous control allocation strategy is introduced to coordinate the rotors and aerodynamic surfaces, [...] Read more.
To address the challenges inherent in the transition flight control of QTR UAVs, this paper proposes an asynchronous tilt transition control framework that integrates NDIC with an ESO. First, a heterogeneous control allocation strategy is introduced to coordinate the rotors and aerodynamic surfaces, thereby maintaining consistent matching between control demands and actuator capabilities. Furthermore, compared with the synchronous tilt strategy, the proposed asynchronous tilt strategy improves pitch moment balance and forward acceleration capability, thereby enhancing robustness against CG variations and extending the achievable forward acceleration range. Finally, based on the asynchronous tilt transition strategy, a transition flight control method combining NDIC with ESO is presented to achieve precise transition control performance under the lumped disturbances. The simulation results demonstrate that the proposed tilt method achieves a safe and smooth transition, satisfies dynamic performance requirements, and exhibits strong robustness and high control accuracy. Full article
Show Figures

Figure 1

22 pages, 5391 KB  
Article
Rotor–Stator Configuration in Gas-Inducing Reactors: Effects of Blade Number and Thickness on Gas Holdup
by Ehsan Zamani Abyaneh, Farhad Ein-Mozaffari and Ali Lohi
Processes 2026, 14(2), 354; https://doi.org/10.3390/pr14020354 - 19 Jan 2026
Viewed by 156
Abstract
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade [...] Read more.
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade number and blade thickness on gas holdup in a double-impeller GIR using a three-dimensional Euler–Euler CFD framework. Stator configurations with 12–48 blades and blade thicknesses of 1.5–45 mm were examined and validated against experimental data, with gas holdup predictions agreeing within 5–10%. The results show that the stator open-area fraction (ϕA) is the dominant geometric parameter governing the balance between radial dispersion and axial confinement. High-ϕA stators (fewer, thinner blades) enhance bulk recirculation and bubble residence time, increasing gas holdup by up to ~20% relative to dense stator designs, whereas low-ϕA stators suppress macro-circulation, promote axial gas transport, and reduce holdup despite higher local dissipation near the rotor–stator gap. A modified gas-holdup correlation incorporating ϕA is proposed, yielding strong agreement with CFD and experimental data (R2 = 0.96). Torque analysis further reveals competing effects between impeller gassing, which lowers hydraulic loading, and increased flow resistance at low ϕA, which elevates torque. Overall, the results provide quantitative guidance on how stator blade number and thickness influence gas holdup, enabling informed stator design and optimization in GIRs to improve gas dispersion through rational geometric selection rather than trial and error approaches. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

9 pages, 1725 KB  
Proceeding Paper
An Analysis of Nonlinear Differential Equations Describing the Dynamic Behavior of an Unbalanced Rotor
by Petko Sinapov
Eng. Proc. 2026, 121(1), 5; https://doi.org/10.3390/engproc2025121005 - 12 Jan 2026
Viewed by 148
Abstract
The present paper investigates the dynamic behavior of an unbalanced rotor mounted in a balancing machine. Differential equations of motion are derived without linearization using Lagrange equations of the second kind to determine the nonlinear nature of the system. This study proposes a [...] Read more.
The present paper investigates the dynamic behavior of an unbalanced rotor mounted in a balancing machine. Differential equations of motion are derived without linearization using Lagrange equations of the second kind to determine the nonlinear nature of the system. This study proposes a method for using differential equations in balancing to determine important parameters, such as the coordinates of the center of mass and the products of inertia of the rotor. An analysis of the interactions between the periodicities of the individual terms in the differential equations is carried out in order to eliminate terms with difficult-to-determine moments of inertia. Full article
Show Figures

Figure 1

29 pages, 10646 KB  
Article
A CPO-Optimized Enhanced Linear Active Disturbance Rejection Control for Rotor Vibration Suppression in Magnetic Bearing Systems
by Ting Li, Jie Wen, Tianyi Ma, Nan Wei, Yanping Du and Huijuan Bai
Sensors 2026, 26(2), 456; https://doi.org/10.3390/s26020456 - 9 Jan 2026
Viewed by 226
Abstract
To mitigate rotor vibrations in magnetic bearing systems arising from mass imbalance, this study proposes a novel suppression strategy that integrates the crested porcupine optimizer (CPO) with an enhanced linear active disturbance rejection control (ELADRC) framework. The approach introduces a disturbance estimation and [...] Read more.
To mitigate rotor vibrations in magnetic bearing systems arising from mass imbalance, this study proposes a novel suppression strategy that integrates the crested porcupine optimizer (CPO) with an enhanced linear active disturbance rejection control (ELADRC) framework. The approach introduces a disturbance estimation and compensation scheme based on a linear extended state observer (LESO), wherein both the LESO bandwidth ω0 and the LADRC controller parameter ωc are adaptively tuned using the CPO algorithm to enable decoupled control and real-time disturbance rejection in complex multi-degree-of-freedom (DOF) systems. Drawing inspiration from the crested porcupine’s layered defensive behavior, the CPO algorithm constructs a state-space model incorporating rotor displacement, rotational speed, and control current, while leveraging a reward function that balances vibration suppression performance against control energy consumption. The optimized parameters guide a real-time LESO-based compensation model, achieving accurate disturbance cancelation via amplitude-phase coordination between the generated electromagnetic force and the total disturbance. Concurrently, the LADRC feedback structure adjusts the system’s stiffness and damping matrices to improve closed-loop robustness under time-varying operating conditions. Simulation studies over a wide speed range (0~45,000 rpm) reveal that the proposed CPO-ELADRC scheme significantly outperforms conventional control methods: it shortens regulation time by 66.7% and reduces peak displacement by 86.8% under step disturbances, while achieving a 79.8% improvement in adjustment speed and an 86.4% reduction in peak control current under sinusoidal excitation. Overall, the strategy offers enhanced vibration attenuation, prevents current saturation, and improves dynamic stability across diverse operating scenarios. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 2586 KB  
Article
Design and Multi-Mode Operational Analysis of a Hybrid Wind Energy Storage System Integrated with CVT and Electromechanical Flywheel
by Tao Liu, Sung-Ki Lyu, Zhen Qin, Dongseok Oh and Yu-Ting Wu
Machines 2026, 14(1), 81; https://doi.org/10.3390/machines14010081 - 9 Jan 2026
Viewed by 216
Abstract
To address the lack of inertia in full-power converter wind turbines and the inability of existing mechanical speed regulation technologies to achieve power smoothing without converters, this paper proposes a novel hybrid wind energy storage system integrating a Continuously Variable Transmission (CVT) and [...] Read more.
To address the lack of inertia in full-power converter wind turbines and the inability of existing mechanical speed regulation technologies to achieve power smoothing without converters, this paper proposes a novel hybrid wind energy storage system integrating a Continuously Variable Transmission (CVT) and an electromechanical flywheel. This system establishes a cascaded topology featuring “CVT-based source-side speed regulation and electromechanical flywheel-based terminal power stabilization.” By utilizing the CVT for speed decoupling and introducing the flywheel via a planetary differential branch, the system retains physical inertia by eliminating large-capacity converters and overcomes the bottleneck of traditional mechanical transmissions, which struggle to balance constant frequency with stable power output. Simulation results demonstrate that the proposed system reduces the active power fluctuation range by 47.60% compared to the raw wind power capture. Moreover, the required capacity of the auxiliary motor is only about 15% of the rated power, reducing the reliance on power electronic converters by approximately 85% compared to full-power converter systems. Furthermore, during a grid voltage dip of 0.6 p.u., the system restricts rotor speed fluctuations to within 0.5%, significantly enhancing Low Voltage Ride-Through (LVRT) capability. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

38 pages, 8689 KB  
Article
Numerical Investigation of Rim Seal Flow in a Single-Stage Axial Turbine
by Tuong Linh Nha, Duc Anh Nguyen, Phan Anh Trinh, Gia-Diem Pham and Cong Truong Dinh
Eng 2026, 7(1), 31; https://doi.org/10.3390/eng7010031 - 7 Jan 2026
Viewed by 168
Abstract
This study investigates rim seal flow in axial turbine configurations through a combined experimental–numerical approach, with the objective of identifying sealing-flow conditions that minimize ingestion while limiting aerodynamic losses. Experimental measurements from the University of BATH are used to validate computational methodology, ensuring [...] Read more.
This study investigates rim seal flow in axial turbine configurations through a combined experimental–numerical approach, with the objective of identifying sealing-flow conditions that minimize ingestion while limiting aerodynamic losses. Experimental measurements from the University of BATH are used to validate computational methodology, ensuring consistency with established sealing-effectiveness trends. The work places particular emphasis on the influence of computational domain selection and interface treatment, which is shown to strongly affect the prediction of ingestion mechanisms. A key contribution of this study is the systematic assessment of multiple domain configurations, demonstrating that a frozen rotor MRF formulation provides the most reliable steady-state representation of pressure-driven ingress, whereas stationary and non-interface domains tend to overpredict sealing effectiveness. A simplified thin-seal model is also evaluated and found to offer an efficient alternative for global performance predictions. Furthermore, a statistical orifice-based model is introduced to estimate minimum sealing flow for different rim seal geometries, providing a practical engineering tool for purge-flow scaling. The effects of pre-swirl injection are examined and shown to substantially reduce rotor wall shear and moment coefficient, contributing to lower windage losses without significantly modifying sealing characteristics. Unsteady flow features are explored using a harmonic balance method, revealing Kelvin–Helmholtz-type instabilities that drive large-scale structures within the rim seal cavity, particularly near design-speed operation. Finally, results highlight a clear trade-off between sealing-flow rate and turbine isentropic efficiency, underlining the importance of optimized purge-flow management. Full article
Show Figures

Figure 1

35 pages, 4724 KB  
Article
Vibration and Optimal Control of a Composite Helicopter Rotor Blade
by Pratik Sarker, M. Shafiqur Rahman and Uttam K. Chakravarty
Vibration 2026, 9(1), 4; https://doi.org/10.3390/vibration9010004 - 1 Jan 2026
Viewed by 300
Abstract
Helicopter vibration is an inherent characteristic of rotorcraft operations, arising from transmission dynamics and unsteady aerodynamic loading, posing challenges to flight control and longevity of structural components. Excessive vibration elevates pilot workload and accelerates fatigue damage in critical components. Leveraging advances in optimal [...] Read more.
Helicopter vibration is an inherent characteristic of rotorcraft operations, arising from transmission dynamics and unsteady aerodynamic loading, posing challenges to flight control and longevity of structural components. Excessive vibration elevates pilot workload and accelerates fatigue damage in critical components. Leveraging advances in optimal control and microelectronics, the active vibration control methods offer superior adaptability compared to the passive techniques, which are limited by added weight and narrow bandwidth. In this study, a comprehensive vibration analysis and optimal control framework are developed for the Bo 105 helicopter rotor blade exhibiting flapping, lead-lag, and torsional (triply coupled) motions, where a Linear Quadratic Regulator (LQR) is employed to suppress vibratory responses. An analytical formulation is constructed to estimate the blade’s sectional properties, used to compute the coupled natural frequencies of vibration by the modified Galerkin method. An orthogonality condition for the coupled flap–lag–torsion dynamics is established to derive the corresponding state-space equations for both hovering and forward-flight conditions. The LQR controller is tuned through systematic variation of the weighting parameter Q, revealing an optimal range of 102–104 that balances vibration attenuation and control responsiveness. The predicted frequencies of the vibrating rotor blade are compared with the finite element modeling results and published experimental data. The proposed framework captures the triply coupled rotor blade dynamics with optimal control, achieves modal vibration reductions of approximately 60–90%, and provides a clear theoretical benchmark for future actuator-integrated computational and experimental studies. Full article
Show Figures

Figure 1

21 pages, 20516 KB  
Article
Sensorless Sector Determination of Brushless DC Motors Using Maximum Likelihood Estimation
by Abdulkerim Ahmet Kaplan, Mehmet Onur Gulbahce and Derya Ahmet Kocabas
Machines 2026, 14(1), 42; https://doi.org/10.3390/machines14010042 - 29 Dec 2025
Viewed by 362
Abstract
Brushless DC motors are widely used for their high power density and efficiency. However, sensorless control remains challenging due to the difficulty of accurate rotor position detection, especially at low speeds. This paper proposes a novel sensorless trapezoidal control method based on Maximum [...] Read more.
Brushless DC motors are widely used for their high power density and efficiency. However, sensorless control remains challenging due to the difficulty of accurate rotor position detection, especially at low speeds. This paper proposes a novel sensorless trapezoidal control method based on Maximum Likelihood Estimation (MLE) for rotor sector detection. Unlike conventional back-EMF zero-crossing techniques, the proposed method uses a statistical algorithm to generate a probability map from prior motor state data, enabling accurate rotor position estimation without sensors. The MLE method operates with a typical computation time of 50–100 μs, offering a balanced tradeoff between speed and accuracy. It is significantly faster than Kalman filter-based approaches (200–1000 μs) and comparable to observer-based methods (20–80 μs), while being more robust than zero-crossing techniques (<5 μs). This makes it a practical and cost-effective solution for applications demanding high efficiency and reliability, such as electric mobility systems. Full article
(This article belongs to the Special Issue Advanced Sensorless Control of Electrical Machines)
Show Figures

Figure 1

31 pages, 4638 KB  
Article
Improvement in DFIG-Based Wind Energy Conversion System LVRT Capability in Compliance with Algerian Grid Code
by Brahim Djidel, Lakhdar Mokrani, Abdellah Kouzou, Mohamed Machmoum, Jose Rodriguez and Mohamed Abdelrahem
Machines 2026, 14(1), 22; https://doi.org/10.3390/machines14010022 - 23 Dec 2025
Viewed by 274
Abstract
During voltage dips, wind turbines must remain connected to the electrical grid and contribute to voltage stabilization. This study analyzes the impact of voltage dips arising from grid faults on Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion Systems (WECSs). This paper [...] Read more.
During voltage dips, wind turbines must remain connected to the electrical grid and contribute to voltage stabilization. This study analyzes the impact of voltage dips arising from grid faults on Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion Systems (WECSs). This paper presents a review of the technical regulations for integrating the Algerian electricity grid with the Low Voltage Ride Through (LVRT) system, along with specific requirements for renewable power generation installations. Additionally, the modeling and control strategy of DFIG based WECS has been outlined. Voltage dips can induce excessive currents that threaten the DFIG rotor and may cause harmful peak oscillations in the DC-link voltage, and can lead to turbine speed increase due to the sudden imbalance between the mechanical input torque and the reduced electromagnetic torque. To counter this, a modified vector control and crowbar protection mechanism were integrated. Its role is to mitigate these risks, thereby ensuring the system remains stable and operational through grid faults. The proposed system successfully meets the stringent Algerian LVRT requirements, with voltage dipping to zero for 0.3 s and recovering gradually. Simulations confirm that rotor and stator currents remain within safe limits (peak rotor current at 0.93 pu, and peak stator current at 1.36 pu). The DC-link voltage, despite a transient rise due to the continued power conversion from the rotor-side converter during the grid fault, was effectively stabilized and maintained within safe operating margins (with less than 14% overshoot). This stability was achieved as the crowbar ensured power balance by managing active and reactive power. Notably, the turbine rotor speed demonstrated stability, peaking at 1.28 pu within mechanical limits. Full article
Show Figures

Figure 1

19 pages, 6049 KB  
Article
Optimized Design of a Permanent Magnet Machine for Golf Carts Under Multiple Operating Conditions
by Wenye Wu, Donghui Li and Weifeng Wang
World Electr. Veh. J. 2025, 16(12), 680; https://doi.org/10.3390/wevj16120680 - 18 Dec 2025
Viewed by 270
Abstract
In response to the growing demand for efficient and eco-friendly golf carts, this paper presents an optimized design of a permanent magnet synchronous machine (PMSM) for multiple operating conditions. The application scenarios of the golf cart were first analyzed, identifying the power requirements [...] Read more.
In response to the growing demand for efficient and eco-friendly golf carts, this paper presents an optimized design of a permanent magnet synchronous machine (PMSM) for multiple operating conditions. The application scenarios of the golf cart were first analyzed, identifying the power requirements under three driving conditions such as unloaded on flat roads, fully loaded on flat roads, and fully loaded on slopes. Then, a 36-slot 8-pole interior PMSM is developed, and a systematic two-stage optimization strategy using a Multi-Objective Genetic Algorithm (MOGA) is applied to enhance both no-load and rated-load performance. By adjusting key rotor parameters to balance competing objectives, the optimized machine demonstrates notable improvements in cogging torque reduction, output torque, torque ripple minimization, and operational efficiency. Specifically, the results show that the optimized machine achieves a cogging torque reduction of over 60%, an increase in maximum output torque by 7.3%, and a peak efficiency improvement of 1.2 percentage points under high-load conditions. Experimental results validate the effectiveness of the design and confirm its suitability for the complex operating conditions of golf carts. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

14 pages, 5086 KB  
Article
Brushless Operation of Axial-Flux Wound-Rotor Synchronous Machine Utilizing Third Harmonic
by Syed Mehdi Abbas, Junaid Ikram, Zafar Ayub, Tanveer Yazdan and Mudassir Raza Siddiqi
Mathematics 2025, 13(24), 3936; https://doi.org/10.3390/math13243936 - 10 Dec 2025
Viewed by 284
Abstract
The brushless operation presented in this study is of an axial-flux wound-rotor synchronous machine (AFWRSM) which uses the third harmonic and the fundamental components of current. The proposed brushless AFWRSM utilizes a single inverter configuration; there are two windings on the rotor surface, [...] Read more.
The brushless operation presented in this study is of an axial-flux wound-rotor synchronous machine (AFWRSM) which uses the third harmonic and the fundamental components of current. The proposed brushless AFWRSM utilizes a single inverter configuration; there are two windings on the rotor surface, i.e., field and harmonic windings, connected using a diode rectifier. The harmonic winding holds twelve poles, and the field winding consists of four poles, whereas the stator consists of a balanced three-phase, four-pole winding designed using 36 slots. A current source inverter (CSI) is utilized to inject both the fundamental and third-harmonic currents in the stator winding. This arrangement generates a third harmonic in the air-gap of the machine, which is used to induce voltages in the harmonic winding. The proposed AFWRSM brushless operation is validated using 3D finite element analysis (FEA). Full article
Show Figures

Figure 1

21 pages, 3127 KB  
Article
Design of Low-Power Vertical-Axis Wind Turbine Based on Parametric Method
by F. Díaz-Canul, J. O. Aguilar, N. Rosado-Hau, E. Simá and O. A. Jaramillo
Wind 2025, 5(4), 35; https://doi.org/10.3390/wind5040035 - 10 Dec 2025
Viewed by 765
Abstract
The parametric design of a low-power (<1 kW) H-type vertical-axis wind turbine tailored to the wind conditions of the Yucatán Peninsula is presented. Nine airfoils were evaluated using the Double Multiple Streamtube method and Qblade Lifting-Line Theory numerical simulations, considering variations in solidity [...] Read more.
The parametric design of a low-power (<1 kW) H-type vertical-axis wind turbine tailored to the wind conditions of the Yucatán Peninsula is presented. Nine airfoils were evaluated using the Double Multiple Streamtube method and Qblade Lifting-Line Theory numerical simulations, considering variations in solidity (σ = 0.20–0.30), aspect ratio (Ar = H/R = 2.6–3.0), number of blades (2–5), and a swept-area constraint of 4 m2. The parametric study shows that fewer blades increase Cp, although a three-blade rotor improves start-up torque, vibration mitigation, and load smoothing. The recommended configuration—three blades, Ar = 2.6, σ = 0.30 and S1046 (or NACA 0018) operated near λ ≈ 3.75—balances efficiency and start-up performance. For the representative mean wind velocity of 5 m/s, typical of the Yucatán Peninsula, the VAWT achieves a maximum output of 136 W at 220 rpm. Under higher-wind conditions observed in specific sites within the region, the predicted maximum output increases to 932 W at 380 rpm. Full article
Show Figures

Graphical abstract

21 pages, 5702 KB  
Article
An Adaptive Command Scaling Method for Incremental Flight Control Allocation
by Zhidong Lu, Jiannan Zhang, Hangxu Li and Florian Holzapfel
Actuators 2025, 14(12), 579; https://doi.org/10.3390/act14120579 - 29 Nov 2025
Viewed by 436
Abstract
Modern aircraft usually employ control allocation to distribute virtual control commands among redundant effectors. Infeasible virtual command can occur frequently due to aggressive maneuvers and limited control authority. This paper proposes a lightweight command scaling law for incremental flight control allocation. The method [...] Read more.
Modern aircraft usually employ control allocation to distribute virtual control commands among redundant effectors. Infeasible virtual command can occur frequently due to aggressive maneuvers and limited control authority. This paper proposes a lightweight command scaling law for incremental flight control allocation. The method scales the raw incremental virtual command by a direction-preserving gain K [0,1]. It is updated via gradient descent on a Lyapunov function that balances allocation error against deviation from unity gain. The proposed adaptive update law ensures the convergence of K to a value that corresponds to the attainable portion of infeasible commands, independent of the specific allocator used. At the same time, feasible virtual commands will be preserved. Its performance was evaluated through open-loop ray sweeps of the attainable moment set and closed-loop INDI simulations for a yaw-limited eVTOL. The results demonstrate that the adaptive scaling gain closely approximates the linear programming ground truth while offering significantly higher computational efficiency. Furthermore, it effectively mitigates cross-axis coupling, reduces peak excursions, and alleviates rotor saturation. These findings highlight the method’s effectiveness, modularity, and suitability for real-time implementation in aerospace applications. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

30 pages, 6918 KB  
Article
Design, Optimization, and Validation of a Dual Three-Phase YASA Axial Flux Machine with SMC Stator for Aerospace Electromechanical Actuators
by Mehmet C. Kulan, Farshid Mahmouditabar, Abdulrahman A. M. Alharbi, Bortecene Yildirim and Nick J. Baker
Energies 2025, 18(23), 6274; https://doi.org/10.3390/en18236274 - 28 Nov 2025
Viewed by 625
Abstract
This paper presents the design, optimization, and validation of a dual three-phase yokeless and segmented armature (YASA) axial flux permanent magnet (AFPM) machine for aerospace actuators. The proposed 12-slot, 10-pole topology employs segmented soft magnetic composite (SMC) stator teeth integrated into an additively [...] Read more.
This paper presents the design, optimization, and validation of a dual three-phase yokeless and segmented armature (YASA) axial flux permanent magnet (AFPM) machine for aerospace actuators. The proposed 12-slot, 10-pole topology employs segmented soft magnetic composite (SMC) stator teeth integrated into an additively manufactured aluminium holder, combining modularity, weight reduction, and improved thermal conduction. A multi-objective optimization process based on 3D finite element analysis (FEA) was applied to balance torque capability and losses. The manufacturable design achieved a peak torque of 28.3 Nm at 1400 rpm and a peak output power of 3.5 kW with an efficiency of 81.6%, while limiting short-circuit currents to 14 Arms. Transient structural simulations revealed that three-phase short circuits induce unbalanced axial forces, exciting rotor wobbling—a phenomenon not previously reported for YASA machines. A prototype was fabricated and tested, with static torque measurements deviating by 8.6% from FEA predictions. By contrast, line-to-line back-EMF and generator-mode power output exhibited larger discrepancies (up to 20%), attributed to the frequency-dependent permeability and localized eddy currents of the SMC stator material introduced during EDM machining. These results demonstrate both the feasibility and the limitations of YASA AFPM machines for aerospace applications. Full article
(This article belongs to the Special Issue Advanced Technology in Permanent Magnet Motors)
Show Figures

Figure 1

Back to TopTop