Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = rotating mechanical systems (RMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3302 KB  
Article
An Autonomous Land Vehicle Navigation System Based on a Wheel-Mounted IMU
by Shuang Du, Wei Sun, Xin Wang, Yuyang Zhang, Yongxin Zhang and Qihang Li
Sensors 2026, 26(1), 328; https://doi.org/10.3390/s26010328 - 4 Jan 2026
Viewed by 460
Abstract
Navigation errors due to drifting in inertial systems using low-cost sensors are some of the main challenges for land vehicle navigation in Global Navigation Satellite System (GNSS)-denied environments. In this paper, we propose an autonomous navigation strategy with a wheel-mounted microelectromechanical system (MEMS) [...] Read more.
Navigation errors due to drifting in inertial systems using low-cost sensors are some of the main challenges for land vehicle navigation in Global Navigation Satellite System (GNSS)-denied environments. In this paper, we propose an autonomous navigation strategy with a wheel-mounted microelectromechanical system (MEMS) inertial measurement unit (IMU), referred to as the wheeled inertial navigation system (INS), to effectively suppress drifted navigation errors. The position, velocity, and attitude (PVA) of the vehicle are predicted through the inertial mechanization algorithm, while gyro outputs are utilized to derive the vehicle’s forward velocity, which is treated as an observation with non-holonomic constraints (NHCs) to estimate the inertial navigation error states. To establish a theoretical foundation for wheeled INS error characteristics, a comprehensive system observability analysis is conducted from an analytical point of view. The wheel rotation significantly improves the observability of gyro errors perpendicular to the rotation axis, which effectively suppresses azimuth errors, horizontal velocity, and position errors. This leads to the superior navigation performance of a wheeled INS over the traditional odometer (OD)/NHC/INS. Moreover, a hybrid extended particle filter (EPF), which fuses the extended Kalman filter (EKF) and PF, is proposed to update the vehicle’s navigation states. It has the advantages of (1) dealing with the system’s non-linearity and non-Gaussian noises, and (2) simultaneously achieving both a high level of accuracy in its estimation and tolerable computational complexity. Kinematic field test results indicate that the proposed wheeled INS is able to provide an accurate navigation solution in GNSS-denied environments. When a total distance of over 26 km is traveled, the maximum position drift rate is only 0.47% and the root mean square (RMS) of the heading error is 1.13°. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 5447 KB  
Article
Dynamic Responses of Harbor Seal Whisker Model in the Propeller Wake Flow
by Bingzhuang Chen, Zhimeng Zhang, Xiang Wei, Wanyan Lei, Yuting Wang, Xianghe Li, Hanghao Zhao, Muyuan Du and Chunning Ji
Fluids 2025, 10(9), 232; https://doi.org/10.3390/fluids10090232 - 1 Sep 2025
Viewed by 813
Abstract
This study experimentally investigates the wake-induced vibration (WIV) behavior of a bio-inspired harbor seal whisker model subjected to upstream propeller-generated unsteady flows. Vibration amplitudes, frequencies, and wake–whisker interactions were systematically evaluated under various flow conditions. The test matrix included propeller rotational speed N [...] Read more.
This study experimentally investigates the wake-induced vibration (WIV) behavior of a bio-inspired harbor seal whisker model subjected to upstream propeller-generated unsteady flows. Vibration amplitudes, frequencies, and wake–whisker interactions were systematically evaluated under various flow conditions. The test matrix included propeller rotational speed Np = 0~5000 r/min, propeller diameter Dp = 60~100 mm, incoming flow velocity U = 0~0.2 m/s, and separation distance between the whisker model and the propeller L/D = 10~30 (D = 16 mm, diameter of the whisker model). Results show that inline (IL) and crossflow (CF) vibration amplitudes increase significantly with propeller speed and decrease with increasing separation distance. Under combined inflow and wake excitation, non-monotonic trends emerge. Frequency analysis reveals transitions from periodic to subharmonic and broadband responses, depending on wake structure and coherence. A non-dimensional surface fit using L/D and the advance ratio (J = U/(NpDp)) yielded predictive equations for RMS responses with good accuracy. Phase trajectory analysis further distinguishes stable oscillations from chaotic-like dynamics, highlighting changes in system stability. These findings offer new insight into WIV mechanisms and provide a foundation for biomimetic flow sensing and underwater tracking applications. Full article
(This article belongs to the Special Issue Marine Hydrodynamics: Theory and Application)
Show Figures

Figure 1

19 pages, 2177 KB  
Article
Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
by Angela Navarro-Navarro, Vicente Biot-Monterde, Jose E. Ruiz-Sarrio and Jose A. Antonino-Daviu
Machines 2025, 13(4), 319; https://doi.org/10.3390/machines13040319 - 14 Apr 2025
Cited by 2 | Viewed by 2775
Abstract
Misalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniques [...] Read more.
Misalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniques rely on vibration monitoring, which provides insights into both mechanical and electromagnetic fault signatures. However, its main drawback is the need for external sensors, which may not be feasible in certain applications. Alternatively, motor current signature analysis (MCSA) has proven effective in detecting faults without requiring additional sensors. This study investigates misalignment faults in synchronous reluctance motors (SynRMs) by analyzing both vibration and current signals under different load conditions and operating speeds. Fast Fourier transform (FFT) is applied to extract characteristic frequency components linked to misalignment. Experimental results reveal that the amplitudes of rotational frequency harmonics (1xfr, 2xfr, and 3xfr) increase in the presence of misalignment, with 1xfr exhibiting the most stable progression. Additionally, acceleration-based vibration analysis proves to be a more reliable diagnostic tool compared to velocity measurements. These findings highlight the potential of combining current and vibration analysis to enhance misalignment detection in SynRMs, improving predictive maintenance strategies in industrial applications. Full article
(This article belongs to the Special Issue New Advances in Synchronous Reluctance Motors)
Show Figures

Figure 1

15 pages, 4186 KB  
Article
Structural Optimization Design of Spaceborne Microwave Probe Antenna
by Damiao Wang, Chang Yan, Peiyuan Kan, Jieying He, Shengwei Zhang and Wenjie Fan
Appl. Sci. 2025, 15(5), 2493; https://doi.org/10.3390/app15052493 - 26 Feb 2025
Viewed by 934
Abstract
The scanning drive mechanism of the spaceborne microwave-sounding antenna has two working modes of constant speed and variable speed, and the special structural form and layout of the reflecting surface lead to a large perturbation moment in the constant speed and variable speed [...] Read more.
The scanning drive mechanism of the spaceborne microwave-sounding antenna has two working modes of constant speed and variable speed, and the special structural form and layout of the reflecting surface lead to a large perturbation moment in the constant speed and variable speed scanning modes. The optimized design of the reflecting surface reinforcement structure of the antenna’s scanning drive mechanism is of great significance for the adjustment of the dynamic stiffness and rotational moment of inertia of the system, which helps to reduce the influence of the moment perturbation. In this paper, a design method combining topology optimization and size optimization is adopted to optimize the design of the reflecting surface reinforcement structure of the planar antenna. The topology optimization constrains the volume, and the objective function is the first-order frequency maximum. The topology optimization results show that the reinforcement is arranged along the center in a “palm” shape. The size optimization is based on the objective of minimizing the rotational inertia of the structure, and the constraints are the dynamic stiffness and the RMS of the structural stress values. The dynamic stiffness of the structure is improved after size optimization, the mass of the reinforcing bar is reduced by 26% compared with the original structure, the rotational inertia of the planar antenna is reduced by 39% compared with the original structure, and the perturbation moments are decreased by 52% at uniform speeds and by 39% at variable speeds. Full article
Show Figures

Figure 1

16 pages, 6457 KB  
Article
Intelligent Fault Diagnosis for Rotating Mechanical Systems: An Improved Multiscale Fuzzy Entropy and Support Vector Machine Algorithm
by Yuxin Pan, Yinsheng Chen, Xihong Fei, Kang Wang, Tian Fang and Jing Wang
Algorithms 2024, 17(12), 588; https://doi.org/10.3390/a17120588 - 20 Dec 2024
Cited by 3 | Viewed by 1642
Abstract
Rotating mechanical systems (RMSs) are widely applied in various industrial fields. Intelligent fault diagnosis technology plays a significant role in improving the reliability and safety of industrial equipment. A new algorithm based on improved multiscale fuzzy entropy and support vector machine (IMFE-SVM) is [...] Read more.
Rotating mechanical systems (RMSs) are widely applied in various industrial fields. Intelligent fault diagnosis technology plays a significant role in improving the reliability and safety of industrial equipment. A new algorithm based on improved multiscale fuzzy entropy and support vector machine (IMFE-SVM) is proposed for the automatic diagnosis of various fault types in elevator rotating mechanical systems. First, the empirical mode decomposition (EMD) method is utilized to construct a decomposition model of the vibration data for the extraction of relevant parameters related to the fault feature. Secondly, the improved multiscale fuzzy entropy (IMFE) model is employed, where the scale factor of the multiscale fuzzy entropy (MFE) is extended to multiple subsequences to resolve the problem of insufficient coarse granularity in the traditional MFE. Subsequently, linear discriminant analysis (LDA) is applied to reduce the dimensionality of the extracted features in order to overcome the problem of feature redundancy. Finally, a support vector machine (SVM) model is utilized to construct the optimal hyperplane for the diagnosis of fault types. Experimental results indicate that the proposed method outperforms other state-of-the-art methods in the fault diagnosis of elevator systems. Full article
Show Figures

Figure 1

46 pages, 8536 KB  
Review
A Comprehensive Review of Remaining Useful Life Estimation Approaches for Rotating Machinery
by Shahil Kumar, Krish Kumar Raj, Maurizio Cirrincione, Giansalvo Cirrincione, Vincenzo Franzitta and Rahul Ranjeev Kumar
Energies 2024, 17(22), 5538; https://doi.org/10.3390/en17225538 - 6 Nov 2024
Cited by 21 | Viewed by 8225
Abstract
This review paper comprehensively analyzes the prognosis of rotating machines (RMs), focusing on mechanical-flaw and remaining-useful-life (RUL) estimation in industrial and renewable energy applications. It introduces common mechanical faults in rotating machinery, their causes, and their potential impacts on RM performance and longevity, [...] Read more.
This review paper comprehensively analyzes the prognosis of rotating machines (RMs), focusing on mechanical-flaw and remaining-useful-life (RUL) estimation in industrial and renewable energy applications. It introduces common mechanical faults in rotating machinery, their causes, and their potential impacts on RM performance and longevity, particularly in wind, wave, and tidal energy systems, where reliability is crucial. The study outlines the primary procedures for RUL estimation, including data acquisition, health indicator (HI) construction, failure threshold (FT) determination, RUL estimation approaches, and evaluation metrics, through a detailed review of published work from the past six years. A detailed investigation of HI design using mechanical-signal-based, model-based, and artificial intelligence (AI)-based techniques is presented, emphasizing their relevance to condition monitoring and fault detection in offshore and hybrid renewable energy systems. The paper thoroughly explores the use of physics-based, data-driven, and hybrid models for prognosis. Additionally, the review delves into the application of advanced methods such as transfer learning and physics-informed neural networks for RUL estimation. The advantages and disadvantages of each method are discussed in detail, providing a foundation for optimizing condition-monitoring strategies. Finally, the paper identifies open challenges in prognostics of RMs and concludes with critical suggestions for future research to enhance the reliability of these technologies. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

25 pages, 20721 KB  
Article
Experimental Verification of a Compressor Drive Simulation Model to Minimize Dangerous Vibrations
by Marek Moravič, Daniela Marasová, Peter Kaššay, Maksymilian Ozdoba, František Lopot and Piotr Bortnowski
Appl. Sci. 2024, 14(22), 10164; https://doi.org/10.3390/app142210164 - 6 Nov 2024
Cited by 1 | Viewed by 1400
Abstract
The article highlights the importance of analytical computational models of torsionally oscillating systems and their simulation for estimating the lowest resonance frequencies. It also identifies the pitfalls of the application of these models in terms of the accuracy of their outputs. The aim [...] Read more.
The article highlights the importance of analytical computational models of torsionally oscillating systems and their simulation for estimating the lowest resonance frequencies. It also identifies the pitfalls of the application of these models in terms of the accuracy of their outputs. The aim of the paper is to control the dangerous vibration of a mechanical system actuator using a pneumatic elastic coupling using different approaches such as analytical calculations, experimental measurement results, and simulation models. Based on the known mechanical properties of the laboratory system, its dynamic model in the form of a twelve-mass chain torsionally oscillating mechanical system is developed. Subsequently, the model is reduced to a two-mass system using the method of partial frequencies according to Rivin. The total load torque of the piston compressor under fault-free and fault conditions is simulated to obtain the amplitudes and phases of the harmonic components of the dynamic torque. After calculating the natural frequency and the natural shape of the oscillation, the Campbell diagram is processed to determine the critical revolutions. There is a pneumatic flexible coupling between the rotating masses, which changes the dynamic torsional stiffness. The dynamic torque curves transmitted by the coupling are compared with different dynamic torsional stiffnesses during steady-state operation and one cylinder failure. The monitored values are the position of the critical revolutions, the natural frequency, the natural shape of the oscillation, and the RMS of the dynamic load torque. The experimental model is verified by the simulation model. The accuracy of the developed simulation model with the experimental data are apparently very good (even more than 99% of the critical revolutions value obtained by calculation); however, it depends on the dynamic stiffness of the coupling. In this study, a detailed, comprehensive approach combining analytical procedures with simulation models is presented. Experimental data are verified with simulation results, which show a good agreement in the case of 700 kPa coupling pressure. The inaccuracy of some of the experiments (at 300 and 500 kPa pressures) is due to the interaction of the coupling’s apparent stiffness and the level of the damped vibration energy in the coupling, which is manifested by its different heating. Based on further experiments, a solution to these problems will be proposed by introducing this phenomenon effectively into the simulation model. Full article
Show Figures

Figure 1

24 pages, 8221 KB  
Article
Design, Simulation, Implementation, and Comparison of Advanced Control Strategies Applied to a 6-DoF Planar Robot
by Claudio Urrea and Daniel Saa
Symmetry 2023, 15(5), 1070; https://doi.org/10.3390/sym15051070 - 12 May 2023
Cited by 10 | Viewed by 3260
Abstract
In general, structures with rotational joints and linearized dynamic equations are used to facilitate the control of manipulator robots. However, in some cases, the workspace is limited, which reduces the accuracy and performance of this type of robot, especially when uncertainties are considered. [...] Read more.
In general, structures with rotational joints and linearized dynamic equations are used to facilitate the control of manipulator robots. However, in some cases, the workspace is limited, which reduces the accuracy and performance of this type of robot, especially when uncertainties are considered. To counter this problem, this work presents a redundant planar manipulator robot with Six-Degree-of-Freedom (6-DoF), which has an innovative structural configuration that includes rotary and prismatic joints. Three control strategies are designed for the monitoring and regulation of the joint trajectory tracking problem of this robot under the action of variable loads. Two advanced control strategies—predictive and Fuzzy-Logic Control (FLC)—were simulated and compared with the classical Proportional–Integral–Derivative (PID) controller. The graphic simulator was implemented using tools from the MATLAB/Simulink software to model the behavior of the redundant planar manipulator in a virtual environment before its physical construction, in order to conduct performance tests for its controllers and to anticipate possible damages/faults in the system mechanics before the implementation of control strategies in a real robot. The inverse dynamics were obtained through the Lagrange–Euler (L-E) formulation. According to the property of symmetry, this model was obtained in a simplified way based on the main diagonal of the inertia matrix of the robot. Additionally, the model includes the dynamics of the actuators and the estimation of the friction forces, both with central symmetry present in the joints. The effectiveness of these three control strategies was validated through qualitative comparisons—performance graphs of trajectory tracking—and quantitative comparisons—the Common Mode Rejection Ratio (CMRR) performance indicator and joint error indexes such as the Residual Mean Square (RMS), Residual Standard Deviation (RSD), and Index of Agreement (IA). In this regard, FLC based on the dynamic model was the most-suitable control strategy. Full article
Show Figures

Figure 1

21 pages, 4834 KB  
Article
Research on Algorithm of Airborne Dual-Antenna GNSS/MINS Integrated Navigation System
by Ming Xia, Pengfei Sun, Lianwu Guan and Zhonghua Zhang
Sensors 2023, 23(3), 1691; https://doi.org/10.3390/s23031691 - 3 Feb 2023
Cited by 4 | Viewed by 3097
Abstract
In view of the difficulties regarding that airborne navigation equipment relies on imports and the expensive domestic high-precision navigation equipment in the manufacturing field of Chinese navigable aircraft, a dual-antenna GNSS (global navigation satellite system)/MINS (micro-inertial navigation system) integrated navigation system was developed [...] Read more.
In view of the difficulties regarding that airborne navigation equipment relies on imports and the expensive domestic high-precision navigation equipment in the manufacturing field of Chinese navigable aircraft, a dual-antenna GNSS (global navigation satellite system)/MINS (micro-inertial navigation system) integrated navigation system was developed to implement high-precision and high-reliability airborne integrated navigation equipment. First, the state equation and measurement equation of the system were established based on the classical discrete Kalman filter principle. Second, according to the characteristics of the MEMS (micro-electric-mechanical system), the IMU (inertial measurement unit) is not sensitive to Earth rotation to realize self-alignment; the magnetometer, accelerometer and dual-antenna GNSS are utilized for reliable attitude initial alignment. Finally, flight status identification was implemented by the different satellite data, accelerometer and gyroscope parameters of the aircraft in different states. The test results shown that the RMS (root mean square) of the pitch angle and roll angle error of the testing system are less than 0.05° and the heading angle error RMS is less than 0.15° under the indoor static condition. A UAV flight test was carried out to test the navigation effect of the equipment upon aircraft take-off, climbing, turning, cruising and other states, and to verify the effectiveness of the system algorithm. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 78622 KB  
Article
Influence of the Composition on the Compressive Behaviour of a Semi-Metallic Brake-Pad Material
by Itziar Serrano-Munoz, Vincent Magnier, Florent Brunel and Philippe Dufrenoy
Materials 2022, 15(22), 7911; https://doi.org/10.3390/ma15227911 - 9 Nov 2022
Cited by 7 | Viewed by 2668
Abstract
The contact interface between the rotation and static part of a friction brake is central to the optimal functioning of the brake system due to the occurrence of heat dissipation, mechanical interaction and thermal exchanges. Generally, braking performances are evaluated by the energetic [...] Read more.
The contact interface between the rotation and static part of a friction brake is central to the optimal functioning of the brake system due to the occurrence of heat dissipation, mechanical interaction and thermal exchanges. Generally, braking performances are evaluated by the energetic efficiency and wear rates of the contact surface. However, the compressive behaviour of the contact materials has also a significant contribution to the overall performances. In this work, the meso- and microscopic compressive behaviour of a sintered semi-metallic brake-pad material is investigated mainly via compression testing coupled with Digital Image Correlation (DIC) technique, as well as optical and scanning electron microscopy (SEM) analysis. The composition of a reference material (RM) is simplified to a selection of nine components, as opposed to up to thirty components typically used in commercial brake-pad materials. The retained components are considered as the most crucial for safe-operating performances. At the studied stress levels, the RM material is flexible (E = 5330 MPa), deformable (Ezz-plastic = −0.21%), and exhibits hysteresis loops. Subsequently, the contribution to the mechanical response of each individual component is investigated by producing the so-called dissociated materials, where the number of components is, at a time, further reduced. It is observed that the macroscopic behaviour is mainly controlled by the content (i.e., size distribution, shape and nature) of graphite particles, and that the hysteresis is only related to one of the two types of graphite used (G2 particles). Moreover, RM containing 13 wt% of G2 particles embedded in a relatively soft matrix (10.86 GPa) is able to increase the hysteresis (by 35%) when compared to the dissociated material containing 20 wt% of G2 particles which is embedded in a stiffer matrix (E = 106 GPa). Full article
(This article belongs to the Special Issue Linear and Non-linear Mechanical Behavior of Brittle Materials)
Show Figures

Figure 1

23 pages, 8600 KB  
Article
Fully Integrated High-Performance MEMS Energy Harvester for Mechanical and Contactless Magnetic Excitation in Resonance and at Low Frequencies
by Mani Teja Bodduluri, Torben Dankwort, Thomas Lisec, Sven Grünzig, Anmol Khare, Minhaz Ahmed and Björn Gojdka
Micromachines 2022, 13(6), 863; https://doi.org/10.3390/mi13060863 - 30 May 2022
Cited by 19 | Viewed by 4987
Abstract
Energy harvesting and storage is highly demanded to enhance the lifetime of autonomous systems, such as IoT sensor nodes, avoiding costly and time-consuming battery replacement. However, cost efficient and small-scale energy harvesting systems with reasonable power output are still subjects of current development. [...] Read more.
Energy harvesting and storage is highly demanded to enhance the lifetime of autonomous systems, such as IoT sensor nodes, avoiding costly and time-consuming battery replacement. However, cost efficient and small-scale energy harvesting systems with reasonable power output are still subjects of current development. In this work, we present a mechanically and magnetically excitable MEMS vibrational piezoelectric energy harvester featuring wafer-level integrated rare-earth micromagnets. The latter enable harvesting of energy efficiently both in resonance and from low-g, low-frequency mechanical energy sources. Under rotational magnetic excitation at frequencies below 50 Hz, RMS power output up to 74.11 µW is demonstrated in frequency up-conversion. Magnetic excitation in resonance results in open-circuit voltages > 9 V and RMS power output up to 139.39 µW. For purely mechanical excitation, the powder-based integration process allows the realization of high-density and thus compact proof masses in the cantilever design. Accordingly, the device achieves 24.75 µW power output under mechanical excitation of 0.75 g at resonance. The ability to load a capacitance of 2.8 µF at 2.5 V within 30 s is demonstrated, facilitating a custom design low-power ASIC. Full article
Show Figures

Figure 1

14 pages, 2551 KB  
Article
Noisy Galvanic Vestibular Stimulation (Stochastic Resonance) Changes Electroencephalography Activities and Postural Control in Patients with Bilateral Vestibular Hypofunction
by Li-Wei Ko, Rupesh Kumar Chikara, Po-Yin Chen, Ying-Chun Jheng, Chien-Chih Wang, Yi-Chiang Yang, Lieber Po-Hung Li, Kwong-Kum Liao, Li-Wei Chou and Chung-Lan Kao
Brain Sci. 2020, 10(10), 740; https://doi.org/10.3390/brainsci10100740 - 15 Oct 2020
Cited by 28 | Viewed by 6463
Abstract
Patients with bilateral vestibular hypofunction (BVH) often suffer from imbalance, gait problems, and oscillopsia. Noisy galvanic vestibular stimulation (GVS), a technique that non-invasively stimulates the vestibular afferents, has been shown to enhance postural and walking stability. However, no study has investigated how it [...] Read more.
Patients with bilateral vestibular hypofunction (BVH) often suffer from imbalance, gait problems, and oscillopsia. Noisy galvanic vestibular stimulation (GVS), a technique that non-invasively stimulates the vestibular afferents, has been shown to enhance postural and walking stability. However, no study has investigated how it affects stability and neural activities while standing and walking with a 2 Hz head yaw turning. Herein, we investigated this issue by comparing differences in neural activities during standing and walking with a 2 Hz head turning, before and after noisy GVS. We applied zero-mean gaussian white noise signal stimulations in the mastoid processes of 10 healthy individuals and seven patients with BVH, and simultaneously recorded electroencephalography (EEG) signals with 32 channels. We analyzed the root mean square (RMS) of the center of pressure (COP) sway during 30 s of standing, utilizing AMTI force plates (Advanced Mechanical Technology Inc., Watertown, MA, USA). Head rotation quality when walking with a 2 Hz head yaw, with and without GVS, was analyzed using a VICON system (Vicon Motion Systems Ltd., Oxford, UK) to evaluate GVS effects on static and dynamic postural control. The RMS of COP sway was significantly reduced during GVS while standing, for both patients and healthy subjects. During walking, 2 Hz head yaw movements was significantly improved by noisy GVS in both groups. Accordingly, the EEG power of theta, alpha, beta, and gamma bands significantly increased in the left parietal lobe after noisy GVS during walking and standing in both groups. GVS post-stimulation effect changed EEG activities in the left and right precentral gyrus, and the right parietal lobe. After stimulation, EEG activity changes were greater in healthy subjects than in patients. Our findings reveal noisy GVS as a non-invasive therapeutic alternative to improve postural stability in patients with BVH. This novel approach provides insight to clinicians and researchers on brain activities during noisy GVS in standing and walking conditions in both healthy and BVH patients. Full article
(This article belongs to the Special Issue Brain Stimulation and Neuroplasticity)
Show Figures

Figure 1

19 pages, 12853 KB  
Article
Power Transfer Efficiency Analysis for Omnidirectional Wireless Power Transfer System Using Three-Phase-Shifted Drive
by Zhaohong Ye, Yue Sun, Xiufang Liu, Peiyue Wang, Chunsen Tang and Hailin Tian
Energies 2018, 11(8), 2159; https://doi.org/10.3390/en11082159 - 18 Aug 2018
Cited by 29 | Viewed by 4903
Abstract
In order to implement the omnidirectional wireless power transfer (WPT), a novel three-phase-shifted drive omnidirectional WPT system is proposed. This system is comprised of three independent phase-adjusted excitation sources, three orthogonal transmitting coils, and one planar receiving coil. Based on the mutual coupling [...] Read more.
In order to implement the omnidirectional wireless power transfer (WPT), a novel three-phase-shifted drive omnidirectional WPT system is proposed. This system is comprised of three independent phase-adjusted excitation sources, three orthogonal transmitting coils, and one planar receiving coil. Based on the mutual coupling theory, the power transfer efficiency is derived and the corresponding control mechanism for maximizing this efficiency is presented. This control mechanism only depends on the currents’ root-mean-square (RMS) values of the three transmitting coils and simple calculations after each location and/or posture change of the receiving coil, which provides the real-time possibility to design an omnidirectional WPT system comparing with the other omnidirectional systems. In aid of computer emulation technique, the efficiency characteristic versus the omnidirectional location and posture of the receiving coil is analyzed, and the analytical results verify the validity of the control mechanism. Lastly, a hardware prototype has been set up, and its omnidirectional power transmission capacity has been successfully verified. The experimental results show that the wireless power is omnidirectional and it can be effectively transmitted to a load even though its receiving coil moves and/or rotates in a 3-D energy region. Full article
Show Figures

Figure 1

22 pages, 10259 KB  
Article
A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique
by Yongjian Zhang, Bin Zhou, Mingliang Song, Bo Hou, Haifeng Xing and Rong Zhang
Sensors 2017, 17(5), 973; https://doi.org/10.3390/s17050973 - 28 Apr 2017
Cited by 48 | Viewed by 12432
Abstract
Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are [...] Read more.
Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop