Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = rotating detonation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6331 KiB  
Article
Comprehensive Study of the Mechanical and Tribological Properties of NiCr-Al Detonation Coatings
by Zhuldyz Sagdoldina, Bauyrzhan Rakhadilov, Meruyert Maulet, Laila Sulyubayeva, Cezary Drenda and Sanzhar Bolatov
Appl. Sci. 2025, 15(13), 7513; https://doi.org/10.3390/app15137513 - 4 Jul 2025
Viewed by 275
Abstract
This article presents a comprehensive study of the mechanical and tribological properties of detonation coatings in the NiCr-Al system. Using the detonation spraying technology, NiCr-Al homogeneous (HC) and gradient coatings (GCs) were produced, and their characteristics were determined. Modern analytical instruments were used [...] Read more.
This article presents a comprehensive study of the mechanical and tribological properties of detonation coatings in the NiCr-Al system. Using the detonation spraying technology, NiCr-Al homogeneous (HC) and gradient coatings (GCs) were produced, and their characteristics were determined. Modern analytical instruments were used in the course of the study. The results showed that the microhardness of the NiCr-Al GC was approximately 30% higher compared to the NiCr-Al HC. According to nanoindentation results, the elasticity modulus and nanohardness of the NiCr-Al GC were twice as high as those of the NiCr-Al homogeneous coating. Tribological tests conducted using the rotational ball-on-disk contact geometry showed that the wear rate of the NiCr-Al GC was significantly lower, while the friction coefficients of both coatings were approximately similar. According to the adhesion strength tests, the strength of the NiCr-Al GC was recorded at 38.7 ± 6.9 MPa, while that of the NiCr-Al HC was approximately 25.4 ± 3.1 MPa. High-temperature tribological tests revealed that the wear resistance of the NiCr-Al GC was 2.5 times higher than that of the NiCr-Al HC. The conducted studies demonstrated that the coating structure, particularly the distribution of elements, has a significant influence on its mechanical and tribological properties. Overall, the NiCr-Al GC exhibited superior mechanical and tribological performance. Full article
(This article belongs to the Special Issue Corrosion and Protection with Hard Coatings)
Show Figures

Figure 1

15 pages, 8324 KiB  
Article
Impact of a Variable Blockage Ratio on the Detonation Transition in a Pre-Detonator
by Yuchang Gil, Suhyeong Lee, Sangkyu Han and Sungwoo Park
Fire 2025, 8(7), 263; https://doi.org/10.3390/fire8070263 - 30 Jun 2025
Viewed by 657
Abstract
The deflagration-to-detonation transition (DDT) is a critical process for achieving reliable ignition in detonation-based propulsion systems, such as Rotating Detonation Engines (RDEs). This study experimentally investigates the effect of spatial variations in blockage ratio (BR) on flame acceleration and detonation onset within a [...] Read more.
The deflagration-to-detonation transition (DDT) is a critical process for achieving reliable ignition in detonation-based propulsion systems, such as Rotating Detonation Engines (RDEs). This study experimentally investigates the effect of spatial variations in blockage ratio (BR) on flame acceleration and detonation onset within a modular pre-detonator. Three DDT device configurations (converging, constant, and diverging) were designed to have an identical average BR of 0.5 and were tested over equivalence ratios ranging from 0.64 to 1.6. High-speed imaging, pressure transducers, and schlieren visualization were employed to characterize flame propagation velocity, pressure evolution, and exit wave structures. The converging configuration consistently promoted earlier detonation onset and higher success rates, especially under fuel-rich conditions (ϕ = 1.6), while the diverging configuration failed to initiate detonation in all cases. Enhanced flame compression in the converging layout led to strong coupling between the shock and reaction fronts, facilitating robust detonation formation. These findings indicate that the spatial distribution of BR, rather than average BR alone, plays a decisive role in DDT performance. This work offers validated design insights for optimizing pre-detonator in RDE applications. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

18 pages, 13981 KiB  
Article
Analysis of Aerodynamic Characteristics of Rotating Detonation Turbine Based on Proper Orthogonal Decomposition Method
by Meiting Ling, Ting Zhao, Wenguo Luo, Jianfeng Zhu and Yancheng You
Aerospace 2025, 12(5), 406; https://doi.org/10.3390/aerospace12050406 - 4 May 2025
Cited by 1 | Viewed by 678
Abstract
The unsteady interactions in rotating detonation turbine engines (RDTE) remain poorly understood. To address this, a 2D numerical model integrating a rotating detonation combustor (RDC) with a first-stage turbine is established to analyze flow structures and aerodynamics under various detonation modes. Proper orthogonal [...] Read more.
The unsteady interactions in rotating detonation turbine engines (RDTE) remain poorly understood. To address this, a 2D numerical model integrating a rotating detonation combustor (RDC) with a first-stage turbine is established to analyze flow structures and aerodynamics under various detonation modes. Proper orthogonal decomposition (POD) reveals intrinsic links between flow features and performance metrics. Results show that while the RDC generates total pressure gain, it induces significant unsteady flow. Guide vanes partially suppress pressure fluctuations but cannot eliminate total pressure losses or circumferential non-uniformity, reducing rotor efficiency. Increasing detonation wave numbers decreases total pressure gain at rotor inlet but improves flow uniformity: the counterclockwise double-wave mode exhibits optimal performance (27.9% work gain, 5.0% instability, 86.4% efficiency), whereas the clockwise single-wave mode shows the poorest (20.9% work gain, 11.8% instability, 84.0% efficiency). POD analysis indicates first-order modes represent time-averaged flow characteristics, while low-order modes capture non-uniform pressure distributions and pairing phenomena, reconstructing wave propagation. The study highlights discrepancies between turbine inlet’s actual unsteady flow and conventional quasi-steady design assumptions, proposing enhancing mean flow characteristics and increasing first-mode energy proportion to improve work extraction. These findings clarify the detonation wave mode–turbine performance correlation, offering insights for RDTE engineering applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 8959 KiB  
Article
Numerical Analysis of the Characteristic Chemical Timescale of a C2H4/O2 Non-Premixed Rotating Detonation Engine
by Mohammed Niyasdeen Nejaamtheen, Bu-Kyeng Sung and Jeong-Yeol Choi
Energies 2025, 18(4), 989; https://doi.org/10.3390/en18040989 - 18 Feb 2025
Viewed by 725
Abstract
A three-dimensional numerical investigation using ethylene–oxygen was conducted to examine the characteristics of detonation waves in a non-premixed rotating detonation engine (RDE) across three equivalence ratio conditions: fuel-lean, stoichiometric, and fuel-rich. The study aims to identify the distinct timescales associated with detonation wave [...] Read more.
A three-dimensional numerical investigation using ethylene–oxygen was conducted to examine the characteristics of detonation waves in a non-premixed rotating detonation engine (RDE) across three equivalence ratio conditions: fuel-lean, stoichiometric, and fuel-rich. The study aims to identify the distinct timescales associated with detonation wave propagation within the combustor and to analyze their impact on detonation wave behavior, emphasizing the influence of equivalence ratio and injector behavior on detonation wave characteristics. The results indicate that the wave behavior varies with mixture concentration, with the ethylene injector demonstrating greater stiffness compared to the oxygen injector. In lean mixtures, characterized by excess oxidizer, waves exhibit less intensity and slower progression toward equilibrium, resulting in prolonged reaction times. Rich mixtures, with excess fuel, also show a delayed approach to equilibrium and an extended chemical reaction timescale. In contrast, the near-stoichiometric mixture achieves efficient combustion with the highest thermicity, rapidly reaching equilibrium and exhibiting the shortest chemical reaction timescale. Overall, the induction timescale is generally 2–3 times longer than its respective chemical reaction timescale, while the equilibrium timescale spans a broad range, reflecting the complex, rapid dynamics inherent in these chemical processes. This study identifies the role of the characteristic chemical timescale in influencing the progression of pre-detonation deflagration in practical RDEs. Prolonged induction times in non-ideal conditions, such as those arising from equivalence ratio variations, promote incomplete reactions, thereby contributing to pre-detonation phenomena and advancing our understanding of the underlying flow physics. Full article
Show Figures

Figure 1

18 pages, 19256 KiB  
Article
Numerical Investigation of the Effect of Equivalent Ratio on Detonation Characteristics and Performance of CH4/O2 Rotating Detonation Rocket Engine
by Xiao Xu, Qixiang Han and Yining Zhang
Aerospace 2025, 12(1), 68; https://doi.org/10.3390/aerospace12010068 - 18 Jan 2025
Cited by 2 | Viewed by 1353
Abstract
Equivalent ratio (ER) is an important factor affecting detonation characteristics and propulsion performance of rotating detonation rocket engine (RDRE). In this paper, the effects of different equivalent ratios detonation characteristics and thrust performance of methane-oxygen RDRE were studied by 2D numerical simulation. The [...] Read more.
Equivalent ratio (ER) is an important factor affecting detonation characteristics and propulsion performance of rotating detonation rocket engine (RDRE). In this paper, the effects of different equivalent ratios detonation characteristics and thrust performance of methane-oxygen RDRE were studied by 2D numerical simulation. The premixed reactants were injected through the injection holes to simulate the discrete injection of reactants on the injection panel in actual RDRE, the number of injection holes was 60 and 120. The results show that there is hybrid detonation mode (HDM), co-direction multi-wave detonation mode (CMM) and unstable detonation mode (UDM) in detonation combustion due to the influence of equivalent ratio and the number of injection holes, and the co-directional multi-wave detonation mode is beneficial to the thrust stability of RDRE. At the last, the number of detonation waves in RDRE decreases with the increase in the equivalent ratio, and the specific impulse (Isp) increases with the increase of the equivalent ratio. Full article
Show Figures

Figure 1

21 pages, 4270 KiB  
Article
Shape Optimization of a Diffusive High-Pressure Turbine Vane Using Machine Learning Tools
by Rosario Nastasi, Giovanni Labrini, Simone Salvadori and Daniela Anna Misul
Energies 2024, 17(22), 5642; https://doi.org/10.3390/en17225642 - 11 Nov 2024
Viewed by 1907
Abstract
Machine learning tools represent a key methodology for the shape optimization of complex geometries in the turbomachinery field. One of the current challenges is to redesign High-Pressure Turbine (HPT) stages to couple them with innovative combustion technologies. In fact, recent developments in the [...] Read more.
Machine learning tools represent a key methodology for the shape optimization of complex geometries in the turbomachinery field. One of the current challenges is to redesign High-Pressure Turbine (HPT) stages to couple them with innovative combustion technologies. In fact, recent developments in the gas turbine field have led to the introduction of pioneering solutions such as Rotating Detonation Combustors (RDCs) aimed at improving the overall efficiency of the thermodynamic cycle at low overall pressure ratios. In this study, a HPT vane equipped with diffusive endwalls is optimized to allow for ingesting a high-subsonic flow (Ma=0.6) delivered by a RDC. The main purpose of this paper is to investigate the prediction ability of machine learning tools in case of multiple input parameters and different objective functions. Moreover, the model predictions are used to identify the optimal solutions in terms of vane efficiency and operating conditions. A new solution that combines optimal vane efficiency with target values for both the exit flow angle and the inlet Mach number is also presented. The impact of the newly designed geometrical features on the development of secondary flows is analyzed through numerical simulations. The optimized geometry achieved strong mitigation of the intensity of the secondary flows induced by the main flow separation from the diffusive endwalls. As a consequence, the overall vane aerodynamic efficiency increased with respect to the baseline design. Full article
Show Figures

Figure 1

17 pages, 7100 KiB  
Article
Effects of Fuel Penetration on the RDE Performance with JISC Injector Configuration
by Gyeong-Ui Mo, In-Hoi Koo, Keon-Hyeong Lee, Su-Wan Choi and Jeong-Yeol Choi
Aerospace 2024, 11(9), 752; https://doi.org/10.3390/aerospace11090752 - 13 Sep 2024
Viewed by 1960
Abstract
This study investigates the operational characteristics of the Rotating Detonation Engine (RDE), with a focus on fuel injector design. Inspired by the similarity between the fuel injection structure of RDE and the Jet in Supersonic Crossflow (JISC) of a scramjet, experimental research on [...] Read more.
This study investigates the operational characteristics of the Rotating Detonation Engine (RDE), with a focus on fuel injector design. Inspired by the similarity between the fuel injection structure of RDE and the Jet in Supersonic Crossflow (JISC) of a scramjet, experimental research on fuel injectors with jet penetration was conducted. Five injectors were designed, each with a fixed fuel injection area or injection hole diameter. Experiments determined practical injection areas, and an empirical correlation was used to calculate jet penetration heights. Under conditions of a total mass flow rate of 105 ± 5 g/s and an equivalence ratio of 1.05 ± 0.1, combustion modes were analyzed. Initial detonation occurrence was assessed through pressure history, with a detailed analysis via image post-processing. The results indicated that the injector D4N15, with the highest jet penetration height, exhibited deflagration, while D4N23 showed chaotic propagation. The injector D2N60 demonstrated relatively unstable behavior in sustained detonation cases. Thrust comparisons revealed that D4N30, with wider hole spacing and higher jet penetration height, exhibited approximately 12.5% higher specific impulse compared to D1N240. These outcomes confirm the significant impact of jet penetration height and hole spacing on detonation propagation and engine performance. Full article
(This article belongs to the Special Issue Aerospace Combustion Engineering (2nd Edition))
Show Figures

Figure 1

29 pages, 16100 KiB  
Review
Analysis of Development Trends for Rotating Detonation Engines Based on Experimental Studies
by Min-Sik Yun, Tae-Seong Roh and Hyoung Jin Lee
Aerospace 2024, 11(7), 570; https://doi.org/10.3390/aerospace11070570 - 11 Jul 2024
Cited by 2 | Viewed by 6014
Abstract
Rotating detonation engines (RDEs), which are Humphrey cycle-based constant-volume combustion engines, utilize detonation waves to attain higher efficiencies compared with conventional constant-pressure combustion engines through pressure gain. Such engines have garnered significant interest as future propulsion technologies, and thus, numerous research and development [...] Read more.
Rotating detonation engines (RDEs), which are Humphrey cycle-based constant-volume combustion engines, utilize detonation waves to attain higher efficiencies compared with conventional constant-pressure combustion engines through pressure gain. Such engines have garnered significant interest as future propulsion technologies, and thus, numerous research and development initiatives have been launched specific to RDEs in various forms. This paper presents a survey of research and development trends in RDE operating systems, based on experimental studies conducted worldwide since the 2010s. Additionally, a performance comparison of RDEs developed to date is presented. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion)
Show Figures

Figure 1

18 pages, 5240 KiB  
Article
Experimental Investigation of Thermal Prediction and Heat Transfer Characteristics of Two-Phase RDE during Long-Duration Operation
by Jiaojiao Wang, Feilong Song, Qi Chen, Jinhui Kang and Yun Wu
Energies 2024, 17(11), 2584; https://doi.org/10.3390/en17112584 - 27 May 2024
Cited by 1 | Viewed by 1931
Abstract
Accurately predicting the thermal characteristics and heat transfer distribution of the rotating detonation engine (RDE) and acquiring a clear understanding of the performance and mechanism of the rotating detonation are of great significance for achieving the safe and reliable long-duration operation of RDEs. [...] Read more.
Accurately predicting the thermal characteristics and heat transfer distribution of the rotating detonation engine (RDE) and acquiring a clear understanding of the performance and mechanism of the rotating detonation are of great significance for achieving the safe and reliable long-duration operation of RDEs. Using RP-3 as fuel, a long-duration experimental study is performed on a 220 mm-diameter RDC to investigate the details with respect to the thermal environment. The heat flux at the typical location and the average heat flux of both the inner and outer cylinders are measured, respectively. Meanwhile, the peak pressure of the rotating detonation wave (RDW) and specific thrust are analyzed. When the ER is between 0.5 and 1 (oxidizer 2 kg/s), the stable rotating detonation mode is obtained, and the detonation duration is set as 40 s to accurately calculate the heat released by the detonation combustion. The heat flux in the upstream region of the RDW location ranges from 2.40 × 105 W/m2 to 3.17 × 105 W/m2, and the heat flux in the downstream area of the RDW location ranges from 1.05 × 106 W/m2 to 1.28 × 106 W/m2. The results demonstrate the important role of the detonation combustion zone, and the thrust performance of RDC can be improved by making the RDW move forward along the RDC axis, which is the optimal direction of detonation combustion. Through a comparison of average heat flux under different conditions, it is found that the heat released by the RDC is directly related to its thrust. In addition, the average heat flux of the inner cylinder is about three times that of the outer cylinder for the two-phase RDC with a Tesla valve intake structure, indicating that the high-temperature combustion product is closer to the inner wall. Therefore, more thermal protection should be allocated to the inner cylinder, and a more systematic analysis of the two-phase flow field distribution in the annular combustion chamber should be carried out to improve the thrust performance. In this paper, the average heat flux of the inner and outer cylinders of the RDC as well as the typical local heat flux of the outer cylinders is quantitatively measured by means of experiments, which not only deepens the understanding of RDC flow field distribution, but also provides quantitative boundary conditions for the thermal protection design of RDCs. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 11401 KiB  
Article
Design and Characterization of Highly Diffusive Turbine Vanes Suitable for Transonic Rotating Detonation Combustors
by Sergio Grasa and Guillermo Paniagua
Int. J. Turbomach. Propuls. Power 2024, 9(2), 18; https://doi.org/10.3390/ijtpp9020018 - 9 May 2024
Cited by 2 | Viewed by 2424
Abstract
In rotating detonation engines the turbine inlet conditions may be transonic with unprecedented unsteady fluctuations. To ensure an acceptable engine performance, the turbine passages must be suited to these conditions. This article focuses on designing and characterizing highly diffusive turbine vanes to operate [...] Read more.
In rotating detonation engines the turbine inlet conditions may be transonic with unprecedented unsteady fluctuations. To ensure an acceptable engine performance, the turbine passages must be suited to these conditions. This article focuses on designing and characterizing highly diffusive turbine vanes to operate at any inlet Mach number up to Mach 1. First, the effect of pressure loss on the starting limit is presented. Afterward, a multi-objective optimization with steady RANS simulations, including the endwall and 3D vane design is performed. Compared to previous research, significant reductions in pressure loss and stator-induced rotor forcing are obtained, with an extended operating range and preserving high flow turning. Finally, the influence of the inlet boundary layer thickness on the vane performance is evaluated, inducing remarkable increases in pressure loss and downstream pressure distortion. Employing an optimization with a thicker inlet boundary layer, specific endwall design recommendations are found, providing a notable improvement in both objective functions. Full article
Show Figures

Figure 1

11 pages, 1580 KiB  
Article
The Mechanism of Resonant Amplification of One-Dimensional Detonation Propagating in a Non-Uniform Mixture
by Alexander Lopato and Pavel Utkin
Computation 2024, 12(2), 37; https://doi.org/10.3390/computation12020037 - 17 Feb 2024
Cited by 2 | Viewed by 1933
Abstract
The propagation of detonation waves (i.e., supersonic combustion waves) in non-uniform gaseous mixtures has become a matter of interest over the past several years due to the development of rotating detonation engines. It was shown in a number of recent theoretical studies of [...] Read more.
The propagation of detonation waves (i.e., supersonic combustion waves) in non-uniform gaseous mixtures has become a matter of interest over the past several years due to the development of rotating detonation engines. It was shown in a number of recent theoretical studies of one-dimensional pulsating detonation that perturbation of the parameters in front of the detonation wave can lead to a resonant amplification of intrinsic pulsations for a certain range of perturbation wavelengths. This work is dedicated to the clarification of the mechanism of this effect. One-dimensional reactive Euler equations with single-step Arrhenius kinetics were solved. Detonation propagation in a gas with sine waves in density was simulated in a shock-attached frame of reference. We carried out a series of simulations, varying the wavelength of the disturbances. We obtained a non-linear dependence of the amplitude of these pulsations on the wavelength of disturbances with resonant amplification for a certain range of wavelengths. The gain in velocity was about 25% of the Chapman–Jouguet velocity of the stable detonation wave. The effect is explained using the characteristic analysis in the x-t diagram. For the resonant case, we correlated the pulsation period with the time it takes for the C+ and C characteristics to travel through the effective reaction zone. A similar pulsation mechanism is realized when a detonation wave propagates in a homogeneous medium. Full article
(This article belongs to the Special Issue Recent Advances in Numerical Simulation of Compressible Flows)
Show Figures

Figure 1

20 pages, 2463 KiB  
Article
BYCFoam: An Improved Solver for Rotating Detonation Engines Based on OpenFOAM
by Miao Cheng, Zhaohua Sheng and Jian-Ping Wang
Energies 2024, 17(4), 769; https://doi.org/10.3390/en17040769 - 6 Feb 2024
Cited by 4 | Viewed by 2996
Abstract
A rotating detonation engine (RDE) is a highly promising detonation-based propulsion system and has been widely researched in recent decades. In this study, BYCFoam, the latest gaseous version of the BYRFoam family, is developed specifically for RDE simulations. It is based on the [...] Read more.
A rotating detonation engine (RDE) is a highly promising detonation-based propulsion system and has been widely researched in recent decades. In this study, BYCFoam, the latest gaseous version of the BYRFoam family, is developed specifically for RDE simulations. It is based on the standard compressible flow solver rhoCentralFoam in OpenFOAM and incorporates several enhancements: improved reconstruction variables and flux schemes; detailed chemistry and transport properties; the utilization of an adaptive mesh refinement (AMR) and dynamic load balancing (DLB). A series of comprehensive numerical tests are conducted, including the shock-tube problem, shock-wave diffraction, homogeneous ignition delay, premixed flame, planar detonation, detonation cellular structure and rotating detonation combustor (RDC). The results demonstrate that BYCFoam can accurately and efficiently simulate the deflagration and detonation processes. This solver enhances the capability of the BYRFoam family for the in-depth exploration of RDE in future research. Full article
(This article belongs to the Special Issue Steady and Unsteady Shock Waves—Expansion Waves Energy Converters)
Show Figures

Figure 1

28 pages, 11361 KiB  
Article
Mild Detonation Initiation in Rotating Detonation Engines: An Experimental Study of the Deflagration-to-Detonation Transition in a Semiconfined Flat Slit Combustor with Separate Supplies of Fuel and Oxidizer
by Igor O. Shamshin, Vladislav S. Ivanov, Viktor S. Aksenov, Pavel A. Gusev, Konstantin A. Avdeev and Sergey M. Frolov
Aerospace 2023, 10(12), 988; https://doi.org/10.3390/aerospace10120988 - 23 Nov 2023
Cited by 2 | Viewed by 2188
Abstract
Rotating detonation engines (RDEs) are considered to be promising thrusters for aerospace propulsion. Detonation initiation in RDEs can be accompanied by a destructive explosion of an excess volume of the fuel mixture in the combustor. To exclude this phenomenon, a “mild” rather than [...] Read more.
Rotating detonation engines (RDEs) are considered to be promising thrusters for aerospace propulsion. Detonation initiation in RDEs can be accompanied by a destructive explosion of an excess volume of the fuel mixture in the combustor. To exclude this phenomenon, a “mild” rather than “strong” initiation of detonation is required. For the mild initiation of detonation in RDEs, it is necessary to ignite a mixture of a certain minimum volume sufficient for deflagration-to-detonation transition (DDT). In this study, the critical conditions for detonation initiation through DDT in a semiconfined slit combustor simulating the RDE combustor with a separate supply of ethylene and oxygen diluted with nitrogen (from 0 to 40%) were obtained experimentally. It turned out that for the mild initiation of detonation, it is necessary to ignite the mixture upon reaching the critical (minimum) height of the combustible mixture layer. Thus, for the mild initiation of detonation in the undiluted C2H4 + 3O2 mixture filling such a slit combustor, the height of the mixture layer must exceed the slit width by approximately a factor of 12. In terms of the transverse size of the detonation cell λ the minimum layer height of such mixtures in experiments is ~150λ. Compared to the experiments with the premixed composition, the critical height of the layer is 20% larger, which is explained by the finite rate of mixing. As the degree of oxygen dilution with nitrogen increases, the critical height of the layer increases, and the role of finite rate mixing decreases: the results no longer depend on the method of combustible mixture formation. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion)
Show Figures

Figure 1

15 pages, 56056 KiB  
Article
Effects of Injector Configuration on the Detonation Characteristics and Propulsion Performance of Rotating Detonation Engine (RDE)
by In-Hoi Koo, Keon-Hyeong Lee, Min-Su Kim, Hyung-Seok Han, Holak Kim and Jeong-Yeol Choi
Aerospace 2023, 10(11), 949; https://doi.org/10.3390/aerospace10110949 - 8 Nov 2023
Cited by 5 | Viewed by 4106
Abstract
Fuel injection and mixing affect the characteristics of detonation initiation and propagation, as well as the propulsion performance of rotating detonation engine (RDE). A study on the injector is carried out in the present investigation. A rectangular-shaped hole-type fuel injector (RHFI) and slit-type [...] Read more.
Fuel injection and mixing affect the characteristics of detonation initiation and propagation, as well as the propulsion performance of rotating detonation engine (RDE). A study on the injector is carried out in the present investigation. A rectangular-shaped hole-type fuel injector (RHFI) and slit-type fuel injector (SFI) were designed and compared experimentally at equivalent conditions. The investigation of the detonation propagation modes and the analysis of propulsion performance were carried out using fast Fourier transform (FFT), short-time Fourier transform (STFT), and unwrapped image post-processing. Under 50, 75, and 100 g/s flow rate conditions at an equivalence ratio of 1.0 ± 0.05, the RHFI has relatively stable detonation propagation characteristics, higher thrust, and specific impulse performance. Additionally, the results of the experiment indicate that the number of detonation waves affects performance. Full article
Show Figures

Figure 1

14 pages, 10278 KiB  
Article
The Characteristic of {101¯2}<101¯1¯> Twin of Ti-10V-2Fe-3Al under Planar Wave Detonation
by Tong Wang, Ping Yang, Jin Zhang and Xin-Fu Gu
Materials 2023, 16(20), 6739; https://doi.org/10.3390/ma16206739 - 18 Oct 2023
Cited by 1 | Viewed by 1536
Abstract
The microstructure evolution of the twin of TB6 (Ti-10V-2Fe-3Al) under planar wave detonation was studied. The initial microstructure of the alloy consists of an α and β phase. It is found that twin deformation is operated in only the α phase due to [...] Read more.
The microstructure evolution of the twin of TB6 (Ti-10V-2Fe-3Al) under planar wave detonation was studied. The initial microstructure of the alloy consists of an α and β phase. It is found that twin deformation is operated in only the α phase due to the limited slip system in this phase. α grains are mainly rotated from {101¯0} to {0002} during the deformation due to the {101¯2}<101¯1¯> twin. Twin variant selection is found in this study, and the orientation of all {101¯2} twins is oriented at {0002} in different α grains with different deformation degrees. The twin variant selection is well explained based on the strain relaxation along the loading axis and the Schmid factor for twinning shear. Full article
Show Figures

Figure 1

Back to TopTop