Experimental Investigation of Thermal Prediction and Heat Transfer Characteristics of Two-Phase RDE during Long-Duration Operation
Abstract
:1. Introduction
2. Experimental Methods
2.1. RDC Experimental Facilities
2.2. Water-Cooling Experiment Facilities
2.3. Thermal Environment Measurement of RDC
2.4. Pressure Measurement of Detonation Wave
2.5. Experimental Procedure
3. Results and Discussion
3.1. The Confirmation of Mode
3.2. Long-Duration Operation of RDC
3.3. Thermal Distribution along Axial Direction of RDC
3.4. Average Heat Flux of Inner and Outer Cylinders
4. Conclusions
- (1)
- For the 40 mm-wide two-phase RDC with a Tesla valve intake structure used in this study, a stable rotating detonation mode is observed with an ER between 0.5 and 1 (oxidizer 2 kg/s). Additionally, the combustion chamber reaches thermal equilibrium after continuous detonation for 40 s when the water flow rate is 1.271 m3/h.
- (2)
- The heat flux in the upstream region of the RDW location ranges from 2.40 × 105 W/m2 to 3.17 × 105 W/m2, and the heat flux in the downstream area of the RDW location ranges from 1.05 × 106 W/m2 to 1.28 × 106 W/m2. Therefore, the thrust performance of an RDC can be improved by making the RDW move forward along the RDC axis with a better fuel injection scheme and air intake mixing.
- (3)
- The average heat flux of the inner cylinder (around 1.02 × 106 W/m2) is about three times that of the outer cylinder (around 3.42 × 105 W/m2) for the RDC with a Tesla valve intake structure, so more thermal protection should be allocated to the inner cylinder. In addition, compared with the local heat flux, improving the overall fuel heat release in the RDC is more efficient for the thrust performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeldovich, Y.B. On the theory of the propagation of detonation in gaseous systems. Tech. Rep. Arch. Image Libr. 1950, 10, 542–568. [Google Scholar]
- Assad, M.; Tunik, Y. Restrictions on the thermodynamic efficiency of the detonation cycle. Appl. Therm. Eng. 2023, 219, 119548. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Y.; Xiao, Q.; Ding, C.; Xia, Y.; Li, Q.; Weng, C. Characterization of wave modes in a kerosene-fueled rotating detonation combustor with varied injection area ratios. Appl. Therm. Eng. 2022, 212, 118607. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Y.; Kang, C.; Lei, T.; Qui, Y.; Ding, C.; Weng, C. Propagation behaviors of kerosene-fueled rotating detonation wave with varied atomizer locations. Aerosp. Sci. Technol. 2023, 142, 108676. [Google Scholar] [CrossRef]
- Liu, H.; Song, F.; Jin, D.; Xu, S.; Yang, X. Experimental investigation on spray and detonation initiation characteristics of premixed/non-premixed RDE. Fuel 2023, 331, 125949. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Wen, H.; Wang, B. Experimental study on the influence of the wall cavity on stability of kerosene two-phase rotating detonation combustion. Aerosp. Sci. Technol. 2024, 147, 109025. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Qin, Q.; Jin, W.; Yuan, L. Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engine. Acta Astronaut. 2024, 215, 124–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, Z.; Rong, G.; Shen, D.; Wu, K.; Wang, J. Experimental research on the performance of hollow and annular rotating detonation engines with nozzles. Appl. Therm. Eng. 2023, 218, 119339. [Google Scholar] [CrossRef]
- Yang, X.; Song, F.; Wu, Y.; Guo, S.; Xu, S.; Zhou, J.; Liu, H. Suppression of pressure feedback of the rotating detonation combustor by a Tesla inlet configuration. Appl. Therm. Eng. 2022, 216, 119123. [Google Scholar] [CrossRef]
- Yao, S.; Wang, J. Multiple ignitions and the stability of rotating detonation waves. Appl. Therm. Eng. 2016, 108, 927–936. [Google Scholar] [CrossRef]
- Fotia, M.L.; Hoke, J.; Schauer, F. Study of the ignition process in a laboratory scale rotating detonation engine. Exp. Therm. Fluid Sci. 2018, 94, 345–354. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Luan, M.; Yao, S.; Xia, Z.; Wang, J. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine. Int. J. Hydrogen Energy 2018, 43, 18521–18529. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, L.; Liu, S.; Hong, W.; Wang, S. The influence of component parameters on cycle characteristic in rotating detonation gas turbine. Appl. Therm. Eng. 2023, 220, 119716. [Google Scholar] [CrossRef]
- Buyakofu, V.; Matsuoka, K.; Matsuyama, K.; Kawasaki, A.; Watanabe, H.; Itouyama, N.; Goto, K.; Ishihara, K.; Noda, T.; Kasahara, J.; et al. Flight Demonstration of Pulse Detonation Engine Using Sounding Rocket S-520-31 in Space. J. Spacecr. Rocket. 2023, 60, 181–189. [Google Scholar] [CrossRef]
- Frolov, S.; Aksenov, V.; Ivanov, V.; Shamshin, I. Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrogen Energy 2015, 40, 1616–1623. [Google Scholar] [CrossRef]
- Liu, S.; Liu, W.; Wang, Y.; Lin, Z. Free jet test of continuous rotating detonation ramjet engine. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017; p. 2282. [Google Scholar]
- Frolov, S.; Zvegintsev, V.; Ivanov, V.; Aksenov, V.; Shamshin, I.; Vnuchkov, D.; Nalivaichenko, D.; Berlin, A.; Fomin, V.; Shiplyuk, A.; et al. Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K. Int. J. Hydrogen Energy 2018, 43, 7515–7524. [Google Scholar] [CrossRef]
- Ivanov, V.; Frolov, S.; Zangiev, A.; Zvegintsev, V.; Shamshin, I. Hydrogen fueled detonation ramjet: Conceptual design and test fires at Mach 1.5 and 2.0. Aerosp. Sci. Technol. 2021, 109, 106459. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, H.; Ma, Y.; Zhou, C.; Hu, N. Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine. Aerosp. Sci. Technol. 2021, 111, 106559. [Google Scholar] [CrossRef]
- Wolański, P.; Kalina, P.; Balicki, W.; Rowiński, A.; Perkowski, W.; Kawalec, M.; Łukasik, B. Development of gasturbine with det-onation chamber. In Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–37. [Google Scholar]
- Bykovskii, F.A. Thermal fluxes in combustion chamber walls in the detonation and turbulent combustion modes. Combust. Explos. Shock. Waves 1991, 27, 66–71. [Google Scholar] [CrossRef]
- Bykovskii, F.A.; Vedernikov, E.F. Heat fluxes to combustor walls during continuous spin detonation of fuel-air mixtures. Combust. Explos. Shock. Waves 2009, 45, 70–77. [Google Scholar] [CrossRef]
- Theuerkauf, S.W.; Schauer, F.; Anthony, R.; Hoke, J. Average and Instantaneous Heat Release to the Walls of an RDE. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014; p. 1503. [Google Scholar]
- Theuerkauf, S.W.; Schauer, F.; Anthony, R.J.; Paxson, D.E.; Stevens, C.A.; Hoke, J. Comparison of simulated and measured in-stantaneous heat flux in a rotating detonation engine. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 1200. [Google Scholar]
- Theuerkauf, S.; King, P.; Schauer, F.; Hoke, J. Thermal management for a modular rotating detonation engine. In Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013; p. 1176. [Google Scholar]
- Meyer, S.J.; Polanka, M.D.; Schauer, F.R.; Hoke, J.L. Parameter impact on heat flux in a rotating detonation engine. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 0400. [Google Scholar]
- Meyer, S.J.; Polanka, M.D.; Schauer, F.; Anthony, R.J.; Stevens, C.A.; Hoke, J.; Rein, K.D. Experimental characterization of heat transfer coefficients in a rotating detonation engine. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 1285. [Google Scholar]
- Stevens, C.A.; Fotia, M.; Hoke, J.; Schauer, F. Quasi Steady Heat Transfer Measuments in an RDE. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 1884. [Google Scholar]
- Stevens, C.A.; Fotia, M.; Hoke, J.; Schauer, F. An experimental comparison of the inner and outer wall heat flux in an rde. In Proceedings of the AIAA SciTech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. p. 1252. [Google Scholar]
- Micka, D.J.; Daines, G.; Sosa, J.; Burke, R.F.; Ahmed, K.A.; Paulson, E.; Bennewitz, J.W.; Danczyk, S.; Hargus, W.A. Heat transfer measurements in an elevated pressure RDRE combustor. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Online, 9–11 August 2021; p. 3685. [Google Scholar]
- Lim, D.; Humble, J.; Heister, S.D. Experimental testing of an RP-2-GOX rotating detonation rocket engine. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 0195. [Google Scholar]
- Rein, K.D.; Roy, S.; Hoke, J.; Caswell, A.W.; Schauer, F.; Gord, J.R. Multi-beam temperature measurements in a rotating detonation engine using H2O absorption spectroscopy. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 1064. [Google Scholar]
- Rein, K.D.; Roy, S.; Sell, B.; Caswell, A.W.; Hoke, J.; Schauer, F.; Gord, J.R. Time-resolved in-situ absorption spectroscopy of a hydrocarbon-air rotating detonation engine using a fiber-coupled tunable laser system. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 1199. [Google Scholar]
- Aliakbari, R.; Michalski, Q.; Mason-Smith, N.; Pudsey, A.; Wenzel, M.; Paull, N. Heat flux measurements of a methane-oxygen rotating detonation rocket engine. In International Workshop on Detonation Propulsion; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zhou, S.; Ma, H.; Liu, C.; Zhou, C.; Liu, D. Experimental investigation on the temperature and heat-transfer characteristics of rotating-detonation-combustor outer wall. Int. J. Hydrogen Energy 2018, 43, 21079–21089. [Google Scholar] [CrossRef]
- Ishihara, K.; Nishimura, J.; Goto, K.; Nakagami, S.; Matsuoka, K.; Kasahara, J.; Matsuo, A.; Funaki, I.; Moriai, H.; Mukae, H.; et al. Study on a long-time operation towards rotating detonation rocket engine flight demonstration. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 1062. [Google Scholar]
- Goto, K.; Nishimura, J.; Higashi, J.; Taki, H.; Ukai, T.; Hayamizu, Y.; Yamada, T.; Watanabe, S.; Hotta, K.; Inakawa, T.; et al. Preliminary experiments on rotating detonation rocket engine for flight demonstration using sounding rocket. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 0157. [Google Scholar]
- Goto, K.; Nishimura, J.; Kawasaki, A.; Matsuoka, K.; Kasahara, J.; Matsuo, A.; Funaki, I.; Nakata, D.; Uchiumi, M.; Higashino, K. Propulsive Performance and Heating Environment of Rotating Detonation Engine with Various Nozzles. J. Propuls. Power 2019, 35, 213–223. [Google Scholar] [CrossRef]
- Goto, K.; Ota, K.; Kawasaki, A.; Watanabe, H.; Itouyama, N.; Matsuoka, K.; Kasahara, J.; Matsuo, A.; Funaki, I. Cylindrical rotating detonation engine cooling by means of propellant injection. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Online, 24–28 August 2020; p. 3855. [Google Scholar]
- Shi, Y.; Zhang, Y.; Wen, H.; Wang, B. Comprehensive analysis method of acquiring wall heat fluxes in rotating detonation combustors. Exp. Therm. Fluid Sci. 2024, 152, 111120. [Google Scholar] [CrossRef]
- Frolov, S.M.; Dubrovskii, A.V.; Ivanov, V.S. Three-dimensional numerical simulation of operation process in rotating detonation engine. Prog. Propuls. Phys. 2013, 4, 467–488. [Google Scholar]
- Frolov, S.M.; Aksenov, V.S.; Gusev, P.A.; Ivanov, V.S.; Medvedev, S.N.; Shamshin, I.O. Experimental proof of the energy efficiency of the Zel’dovich thermodynamic cycle. Dokl. Phys. Chem. 2014, 459, 207–211. [Google Scholar] [CrossRef]
- Braun, J.; Sousa, J.; Paniagua, G. Numerical Assessment of the Convective Heat Transfer in Rotating Detonation Combustors Using a Reduced-Order Model. Appl. Sci. 2018, 8, 893. [Google Scholar] [CrossRef]
- Roy, A.; Strakey, P.; Sidwell, T.; Ferguson, D.; Sisler, A.; Nix, A. Development of a three-dimensional transient wall heat transfer model of a rotating detonation combustor. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 0902. [Google Scholar]
- Roy, A.; Strakey, P.; Sidwell, T.; Ferguson, D.H. Unsteady heat transfer analysis to predict combustor wall temperature in rotating detonation engine. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015; p. 4191. [Google Scholar]
- Randall, S.; George, A.S.; Driscoll, R.; Anand, V.; Gutmark, E.J. Numerical and experimental study of heat transfer in a rotating detonation engine. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; pp. 1–12. [Google Scholar] [CrossRef]
- Yelken, U.; Tuncer, O.; Saracoglu, B.H. Conjugate heat transfer analysis of rotating detonation engines. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019; p. 4448. [Google Scholar]
- Ladeinde, F.; Oh, H.; Jacobs, S. Supersonic combustion heat flux in a rotating detonation engine. Acta Astronaut. 2023, 203, 226–245. [Google Scholar] [CrossRef]
- Hou, Y.; Cheng, M.; Sheng, Z.; Wang, J. Unsteady conjugate heat transfer simulation of wall heat loads for rotating detonation combustor. Int. J. Heat Mass Transf. 2024, 221, 125081. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Qiao, W. Effects of thermal wall conditions on rotating detonation. Comput. Fluids 2016, 140, 59–71. [Google Scholar] [CrossRef]
- Jorgensen, E.; Cordero, Z.; Vaccaro, D. Structural Optimization of Regeneratively Cooled Rotating Detonation Rocket Engines. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 7 January 2022; p. 0092. [Google Scholar]
- Darr, S.R.; Hu, H.; Glikin, N.G.; Hartwig, J.W.; Majumdar, A.K.; Leclair, A.C.; Chung, J.N. An experimental study on terrestrial cryogenic transfer line chilldown I. Effect of mass flux, equilibrium quality, and inlet subcooling. Int. J. Heat Mass Transf. 2016, 103, 1225–1242. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Huang, X.; Shangguan, S.; Mao, H.; Li, Y.; Lei, G. Experimental investigation on cryogenic chilldown performance under high-Reynolds number condition and using interior micro-fin structure. Int. J. Heat Mass Transf. 2022, 182, 121979. [Google Scholar] [CrossRef]
Measuring Instrument | Range | Accuracy | Instrumental Error |
---|---|---|---|
T-type thermocouple | −200~+350 °C | ±1 K | 1 K |
Flowmeter | 15–200 m3·h−1 | 1.5% | 3 m3·h−1 |
Heat flux sensor | 0–3 × 106 W/m2 | 1% | 3 × 104 W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Song, F.; Chen, Q.; Kang, J.; Wu, Y. Experimental Investigation of Thermal Prediction and Heat Transfer Characteristics of Two-Phase RDE during Long-Duration Operation. Energies 2024, 17, 2584. https://doi.org/10.3390/en17112584
Wang J, Song F, Chen Q, Kang J, Wu Y. Experimental Investigation of Thermal Prediction and Heat Transfer Characteristics of Two-Phase RDE during Long-Duration Operation. Energies. 2024; 17(11):2584. https://doi.org/10.3390/en17112584
Chicago/Turabian StyleWang, Jiaojiao, Feilong Song, Qi Chen, Jinhui Kang, and Yun Wu. 2024. "Experimental Investigation of Thermal Prediction and Heat Transfer Characteristics of Two-Phase RDE during Long-Duration Operation" Energies 17, no. 11: 2584. https://doi.org/10.3390/en17112584
APA StyleWang, J., Song, F., Chen, Q., Kang, J., & Wu, Y. (2024). Experimental Investigation of Thermal Prediction and Heat Transfer Characteristics of Two-Phase RDE during Long-Duration Operation. Energies, 17(11), 2584. https://doi.org/10.3390/en17112584