Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = rotary motors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7459 KiB  
Article
Design and Analysis of a Bearing-Integrated Rotary Transformer
by Xiaoou Fan, Shaohua Ma, Dezhi Chen and Chaoqun Liu
Energies 2025, 18(15), 3991; https://doi.org/10.3390/en18153991 - 25 Jul 2025
Viewed by 232
Abstract
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure [...] Read more.
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure and electromagnetism of the bearing-integrated rotary transformer are designed through the processes and principles of pole slot matching, stator/rotor size, winding, and the magnetic regulating needle. Thirdly, the bearing-integrated rotary transformer undergoes an electromagnetic–thermal simulation. Finally, a prototype of the bearing-integrated rotary transformer is manufactured, and the electromagnetic and transmission characteristics are tested, verifying the correctness of the proposed scheme and providing additional ideas for the improvement of synchronous motor excitation systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

24 pages, 3638 KiB  
Article
Digital Control of an Inverted Pendulum Using a Velocity-Controlled Robot
by Marco Costanzo, Raffaele Mazza and Ciro Natale
Machines 2025, 13(6), 528; https://doi.org/10.3390/machines13060528 - 17 Jun 2025
Viewed by 402
Abstract
This research article tackles the control problem of an inverted pendulum, also known as the Furuta pendulum, mounted on a velocity-controlled robot manipulator in two configurations: the rotary pendulum and the translational pendulum. Differently from most of the existing control architectures where the [...] Read more.
This research article tackles the control problem of an inverted pendulum, also known as the Furuta pendulum, mounted on a velocity-controlled robot manipulator in two configurations: the rotary pendulum and the translational pendulum. Differently from most of the existing control architectures where the motor actuating the pendulum motion is torque-controlled, the proposed control architecture exploits the inner velocity loop usually available on industrial robots, thus easing the implementation of an inverted pendulum. Another aspect investigated in this paper and mostly overlooked in the literature is the digital implementation of the control and, specifically, the latency introduced by the digital controller. The proposed control solution explicitly models such effects in the control design phase, improving the closed-loop performance. The additional novelty introduced by this paper is the friction compensation that is essential in the swing-up phase of the inverted pendulum, whereas classical control strategies for the nonlinear swing-up usually neglect this effect, and their solutions lead to control failures in practical systems. This paper presents detailed modeling and experimental identification phases followed by the control design of both the nonlinear swing-up algorithm and the linear stabilization controller, both experimentally validated on a Meca500 robotic arm controlled via an EtherCAT communication protocol by a mini PC featuring a Xenomai real-time operating system. The overall system showcases the potential of high-performance digital control systems in industrial robotic applications. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

19 pages, 6633 KiB  
Article
The Design and Testing of a Cross-Scale Compliant Rotary Actuator with Minimum Actuation Redundancy and Sub-Microradian Resolution
by Yingjie Jia, Jinyuan Cao, Zhishen Liao, Wei Wu, Hui Tang, Yanling Tian and Yuzhang Wei
Actuators 2025, 14(6), 284; https://doi.org/10.3390/act14060284 - 10 Jun 2025
Viewed by 818
Abstract
Solving the common paradoxical problem between sub-micro-arc level resolution and a wide range of rotation angles in rotary actuators, this paper designs a single-drive compliant rotary mechanism (CRM) and develops a cross-scale compliant rotary actuator (CCRA). Specially, the proposed CRM employs a single-input–four-output [...] Read more.
Solving the common paradoxical problem between sub-micro-arc level resolution and a wide range of rotation angles in rotary actuators, this paper designs a single-drive compliant rotary mechanism (CRM) and develops a cross-scale compliant rotary actuator (CCRA). Specially, the proposed CRM employs a single-input–four-output divergent parallel configuration to transform a unidirectional input force into a rotational moment around the rotational center, effectively avoiding asynchronous motion and rotational center shift caused by the multiple actuation. Moreover, the CCRA is developed based on the CRM and a direct-drive rotary (DDR) motor, and adaptive switching between the macro- and micro-combination can simultaneously achieve large rotary range and sub-µrad resolution. After a series of modeling, mechanism optimization, and simulation, a prototype experimental system was built to further test the performance of proposed CCRA. The open-loop and closed-loop characterization experiments showed that the CRM can achieve a rotational resolution of 0.05 μrad and a driving force of 0.78 N·m. In addition, the cross-scale switching experimental results show that the CCRA is able to achieve a static positioning accuracy of 3.5 μrad within a ±5 rotational range. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

6 pages, 5351 KiB  
Communication
A 3D Printed, Time-Resolved, Settle-Plate Air Sampler
by Jonathan E. Thompson
Hardware 2025, 3(2), 4; https://doi.org/10.3390/hardware3020004 - 16 May 2025
Viewed by 386
Abstract
A novel temporally resolved settle-plate air sampler was developed using 3D printing technology to improve upon traditional passive air sampling methods. Conventional settle plates provide cumulative measurements of particle or microbial loads over an entire sampling period, lacking the temporal resolution necessary to [...] Read more.
A novel temporally resolved settle-plate air sampler was developed using 3D printing technology to improve upon traditional passive air sampling methods. Conventional settle plates provide cumulative measurements of particle or microbial loads over an entire sampling period, lacking the temporal resolution necessary to identify specific contamination events. The described device integrates a petri plate within a 3D-printed housing featuring a narrow slit that exposes only a small portion of the plate to incoming particles. A rotary mechanism, driven by a mechanical clock motor, rotates the petri plate over 12 h, allowing for time-segmented sampling. Validation experiments demonstrated the device’s ability to accurately encode the temporal history of particle deposition using both aerosolized dyes and viable microbial spores. The device effectively correlated bioaerosol deposition with ambient wind conditions during outdoor sampling. The system is inexpensive (under USD 10), requires no specialized skills to assemble, and is compatible with existing settle plate methodologies. This innovation enhances the ability to conduct air quality assessments in critical environments, enabling data-driven decisions to mitigate contamination risks. Full article
Show Figures

Figure 1

21 pages, 7387 KiB  
Article
Transient High-Frequency Electromagnetic Force Calculation for Linear Induction Motors Under Pulse Width Modulation Current Excitation
by Mingke Li, Jin Xu, Junjie Zhu, Yuhu Wang and Tairan Chen
Machines 2025, 13(5), 409; https://doi.org/10.3390/machines13050409 - 14 May 2025
Viewed by 498
Abstract
Because of their transient working mode and end effects, it is particularly difficult to compute high-frequency electromagnetic forces on linear induction motors under PWM current simulation. The current methods for computing high-frequency electromagnetic forces in transient operating conditions are computationally expensive and have [...] Read more.
Because of their transient working mode and end effects, it is particularly difficult to compute high-frequency electromagnetic forces on linear induction motors under PWM current simulation. The current methods for computing high-frequency electromagnetic forces in transient operating conditions are computationally expensive and have limited practicality. To deal with these issues, this paper introduces a non-periodic transient high-frequency electromagnetic force calculation model. Firstly, an examination of a linear induction motor under PWM currents demonstrates that the transient magnetic field calculation issue in a linear induction motor can be simplified to a periodic boundary steady-state magnetic field calculation problem. Based on this, a 2D magnetic field analytical model is established for high-frequency magnetic field calculation. Subsequently, a hybrid approach employing both finite element analysis and analytical methods is employed to compute the transient magnetic field. Finally, electromagnetic forces are calculated across the entire frequency spectrum, and the correctness of the model is validated indirectly through motor vibration experiments. This model offers faster and more accurate results than finite element analysis, making it suitable for application in the iterative stages of motor optimization design and applicable to rotary induction motors. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

40 pages, 19053 KiB  
Article
MOIRA-UNIMORE Bearing Data Set for Independent Cart Systems
by Abdul Jabbar, Marco Cocconcelli, Gianluca D’Elia, Davide Borghi, Luca Capelli, Jacopo Cavalaglio Camargo Molano, Matteo Strozzi and Riccardo Rubini
Appl. Sci. 2025, 15(7), 3691; https://doi.org/10.3390/app15073691 - 27 Mar 2025
Viewed by 697
Abstract
This paper introduces a comprehensive and publicly accessible data set from an experimental study on an independent cart system powered by linear motors. The primary objective is to advance research in machine health monitoring, predictive maintenance, and stochastic modeling by providing the first [...] Read more.
This paper introduces a comprehensive and publicly accessible data set from an experimental study on an independent cart system powered by linear motors. The primary objective is to advance research in machine health monitoring, predictive maintenance, and stochastic modeling by providing the first data set of its kind. Vibration signals were collected using sensors placed along the track, alongside key system variables such as cart position, following error, speed, and set current. Experiments were conducted under a wide range of operating conditions, including different fault types, fault severities, cart speeds, and fault orientations, for both single-cart and multi-cart configurations. The data set captures the relationship between vibration signatures, system variables, and fault characteristics across diverse speed profiles. The data set includes inner race (IR) and outer race (OR) faults in both the top and bottom bearings, with fault severities of 0.25 mm, 0.5 mm, 1.0 mm, and 1.5 mm in width. Eight different types of experiments were performed, classified based on the number of carts used, the section of the guide rail traversed, and the type of movement exhibited. Each experiment was conducted at two distinct nominal speeds of 1000 mm/s and 2000 mm/s, with acquisition durations ranging from 30 s to 2 min. Many experiments included multiple realizations to ensure statistical reliability. Data were recorded at a sampling frequency of 50 kHz with a resolution of 24 bits. For single-cart experiments, 5 system variables were captured, while for three-cart experiments, 15 system variables were recorded along with nine vibration channels. The total data set is approximately 400 GB, offering an extensive resource for data-driven research. Independent cart systems present unique challenges such as non-synchronous operation, speed reversals, and modularity, with each cart containing multiple bearings. In industrial applications where hundreds of carts may operate simultaneously, monitoring a large number of bearings becomes highly complex, making fault identification and localization particularly difficult. Unlike conventional rotary systems, where bearings are fixed around a rotating shaft, independent cart systems involve bearings that both rotate and translate along the track. This fundamental difference makes existing data sets and methodologies inadequate, emphasizing the need for specialized research. By addressing this gap, this work provides a critical resource for benchmarking and developing novel algorithms for fault diagnosis, signal processing, and machine learning in industrial transport applications. The outcomes of this study lay the foundation for future research in the condition monitoring of linear motor-driven transport systems. Full article
(This article belongs to the Special Issue Fault Diagnosis and Detection of Machinery)
Show Figures

Figure 1

19 pages, 5679 KiB  
Article
Three-Level All-SiC High-Frequency High-Voltage Plasma Power Supply System
by Kaida Cai, Jing Xiao, Zhe Yang and Ranghao Hu
Energies 2025, 18(7), 1617; https://doi.org/10.3390/en18071617 - 24 Mar 2025
Cited by 2 | Viewed by 783
Abstract
Plasma power supplies are extensively utilized in various manufacturing and medical industries. Addressing the challenges of high-voltage and high-temperature resistance in current plasma power supply systems under high-frequency conditions, this study proposes a novel design method for an all-SiC high-frequency high-voltage plasma power [...] Read more.
Plasma power supplies are extensively utilized in various manufacturing and medical industries. Addressing the challenges of high-voltage and high-temperature resistance in current plasma power supply systems under high-frequency conditions, this study proposes a novel design method for an all-SiC high-frequency high-voltage plasma power supply system based on a three-level topology. Firstly, the design encompasses a three-level high-frequency inverter main circuit, a three-level high-frequency control main circuit, and a high-frequency high-voltage transformer. Subsequently, a high-frequency high-voltage plasma power supply system, equipped with a rotary motor, was developed and experimentally validated. Finally, the system achieved a stable power output with a frequency of 25 kHz, an output voltage of 21.03 kV, and an output power of 13.42 kW. The experimental results demonstrate that the plasma power supply system exhibits stable output voltage and maintains an operating temperature under high-frequency and high-voltage conditions. Full article
(This article belongs to the Special Issue High-Power Electronic Device Technologies and Its Applications)
Show Figures

Figure 1

12 pages, 974 KiB  
Review
How Does the Archaellum Work?
by Morgan Beeby and Bertram Daum
Biomolecules 2025, 15(4), 465; https://doi.org/10.3390/biom15040465 - 21 Mar 2025
Viewed by 649
Abstract
The archaellum is the simplest known molecular propeller. An analogue of bacterial flagella, archaella are long helical tails found in Archaea that are rotated by cell-envelope-embedded rotary motors to exert thrust for cell motility. Despite their simplicity, however, they are less well studied, [...] Read more.
The archaellum is the simplest known molecular propeller. An analogue of bacterial flagella, archaella are long helical tails found in Archaea that are rotated by cell-envelope-embedded rotary motors to exert thrust for cell motility. Despite their simplicity, however, they are less well studied, and how they work remains only partially understood. Here we describe four key aspects of their function: assembly, the transition from assembly to rotation, the mechanics of rotation, and how rotation generates thrust. We outline future research directions that will enhance our understanding of archaellar function. Full article
Show Figures

Figure 1

28 pages, 8589 KiB  
Article
Sensorless Control of Permanent Magnet Synchronous Motor Drives with Rotor Position Offset Estimation via Extended State Observer
by Ramón Ramírez-Villalobos, Luis N. Coria, Paul A. Valle and Christian Aldrete-Maldonado
Mathematics 2025, 13(6), 899; https://doi.org/10.3390/math13060899 - 7 Mar 2025
Cited by 1 | Viewed by 1835
Abstract
The aim of this study is to develop sensorless high-speed tracking control for surface-mounted permanent magnet synchronous motors by taking the rotor position offset error and time-varying load torque into consideration. This proposal combines an extended state observer with an adaptation position algorithm, [...] Read more.
The aim of this study is to develop sensorless high-speed tracking control for surface-mounted permanent magnet synchronous motors by taking the rotor position offset error and time-varying load torque into consideration. This proposal combines an extended state observer with an adaptation position algorithm, employing only the measurement of electrical variables for feedback. First, a rotatory coordinate model of the motor is proposed, wherein the rotor position offset error is considered as a perturbation function within the model. Second, based on the aforementioned model, a rotary coordinate model of the motor is extended in one state to estimate the load torque, as well as the rotor’s position and speed, despite the presence of the rotor position offset error. Through Lyapunov stability analysis, sufficient conditions were established to guarantee that the error estimations were bounded. Finally, to validate the feasibility of the proposed sensorless scheme, experiments were conducted on the Technosoft® development platform, where the alignment routine was disabled and an intentional misalignment between the magnetic north pole and the stator’s south pole was established. Full article
(This article belongs to the Special Issue Nonlinear Dynamical Systems: Modeling, Control and Applications)
Show Figures

Figure 1

12 pages, 1998 KiB  
Review
Scrutinizing Stator Rotation in the Bacterial Flagellum: Reconciling Experiments and Switching Models
by Ayush Joshi and Pushkar P. Lele
Biomolecules 2025, 15(3), 355; https://doi.org/10.3390/biom15030355 - 1 Mar 2025
Viewed by 1121
Abstract
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the [...] Read more.
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor. A derivative model suggests that significant changes in rotor diameter occur during switching, enabling each MotA5MotB2 stator unit to shift between internal and external gear configurations, causing clockwise (CW) and counterclockwise (CCW) motor rotation, respectively. However, recent structural work favors a mechanism where the stator units dynamically swing back and forth between the two gear configurations without significant changes in rotor diameter. Given the intricate link between the switching model and the gear mechanism for flagellar rotation, a critical evaluation of the underlying assumptions is crucial for refining switching models. This review scrutinizes key assumptions within prevailing models of flagellar rotation and switching, identifies knowledge gaps, and proposes avenues for future biophysical tests. Full article
Show Figures

Figure 1

46 pages, 3171 KiB  
Article
Clever Hans in the Loop? A Critical Examination of ChatGPT in a Human-in-the-Loop Framework for Machinery Functional Safety Risk Analysis
by Padma Iyenghar
Eng 2025, 6(2), 31; https://doi.org/10.3390/eng6020031 - 7 Feb 2025
Cited by 4 | Viewed by 2224
Abstract
This paper presents a first-of-its-kind evaluation of integrating Large Language Models (LLMs) within a Human-In-The-Loop (HITL) framework for risk analysis in machinery functional safety, adhering to ISO 12100. The methodology systematically addresses LLM limitations, such as hallucinations and lack of domain-specific expertise, by [...] Read more.
This paper presents a first-of-its-kind evaluation of integrating Large Language Models (LLMs) within a Human-In-The-Loop (HITL) framework for risk analysis in machinery functional safety, adhering to ISO 12100. The methodology systematically addresses LLM limitations, such as hallucinations and lack of domain-specific expertise, by embedding expert oversight to ensure reliable and compliant outputs. Applied to four diverse industrial case studies—motorized gates, autonomous transport vehicles, weaving machines, and rotary printing presses—this study assesses the applicability of ChatGPT in routine risk analysis tasks central to machinery functional safety workflows, such as hazard identification and risk assessment. The results demonstrated substantial improvements: during HITL involvement and the subsequent iterations of risk assessment with expert feedback, a complete agreement with ground truth was achieved across all four use cases. ChatGPT also identified additional scenarios and edge cases, enriching the risk analysis. Efficiency gains were notable, with time efficiency rated at 4.95 out of 5, on average, across case studies. Overall accuracy (4.7 out of 5) and usability (4.8 out of 5) ratings demonstrated the robustness of the HITL framework in ensuring reliable and practical outputs. Likert scale evaluations reflected high confidence in the refined outputs, emphasizing the critical role of HITL in enhancing both trust and usability. The study also highlights the importance of prompt design, revealing that longer initial prompts improve accuracy, while shorter iterative prompts maintain usability without compromising efficiency. The iterative HITL process further ensures that refined outputs align with safety standards and practical requirements. This evaluation underscores the transformative potential of generative AI in functional safety workflows, enhancing routine activities while ensuring rigorous human oversight in safety-critical, regulated industries. Full article
Show Figures

Figure 1

22 pages, 10702 KiB  
Article
Validation of CFD Analysis on Flow and Combustion Characteristics for a GP3 Rotary Engine
by Young-Jic Kim, A-Sun Yoon and Chang-Eon Lee
Energies 2025, 18(4), 758; https://doi.org/10.3390/en18040758 - 7 Feb 2025
Viewed by 797
Abstract
This study performed a 3D CFD analysis on a GP3 rotary engine to determine the stroke and flow characteristics and examine the thermal- and flow-related design factors’ validity. The 3D CFD analysis was performed using the CONVERGE program, utilizing the automatic grid generation [...] Read more.
This study performed a 3D CFD analysis on a GP3 rotary engine to determine the stroke and flow characteristics and examine the thermal- and flow-related design factors’ validity. The 3D CFD analysis was performed using the CONVERGE program, utilizing the automatic grid generation function based on the 3D engine design drawing, which is suitable for a rotating rotary engine geometry. The target species and error tolerance were selected based on the GRI-Mech 3.0 full reaction mechanism to validate the reaction model and define a reasonable range of target species and error tolerances. The RNG k-ε turbulence and SAGE combustion models were also employed to analyze the four-stroke characteristics for the GP3 engine by visualizing the internal flow. The various outcomes confirmed the rotary engine’s unique characteristics and were reasonably interpreted to validate the engine design factors. In particular, the EGR phenomenon in the intake and exhaust port overlap area and the interference phenomenon in the port overlap area between adjacent cylinders are unique to the engine, and were rationally analyzed to more accurately predict the engine’s performance. The results of this study regarding the flame quenching regions indicated power and efficiency, and the emission characteristics can be used to validate the design parameters. Full article
Show Figures

Figure 1

15 pages, 5468 KiB  
Article
Regulatory Role of a Hydrophobic Core in the FliG C-Terminal Domain in the Rotary Direction of a Flagellar Motor
by Tatsuro Nishikino, Akihiro Hatano, Seiji Kojima and Michio Homma
Biomolecules 2025, 15(2), 212; https://doi.org/10.3390/biom15020212 - 1 Feb 2025
Viewed by 768
Abstract
A flagellar motor can rotate either counterclockwise (CCW) or clockwise (CW), and rotational switching is triggered by conformational changes in FliG, although the molecular mechanism is still unknown. Here, we found that cheY deletion, which locks motor rotation in the CCW direction, restored [...] Read more.
A flagellar motor can rotate either counterclockwise (CCW) or clockwise (CW), and rotational switching is triggered by conformational changes in FliG, although the molecular mechanism is still unknown. Here, we found that cheY deletion, which locks motor rotation in the CCW direction, restored the motility abolished by the fliG L259Q mutation. We found that the CCW-biased fliG G214S mutation also restored the swimming of the L259Q mutant, but the CW-biased fliG G215A mutation did not. Since the L259 residue participates in forming the FliG hydrophobic core at its C-terminal domain, mutations were introduced into residues structurally closer to L259, and their motility was examined. Two mutants, D251R and L329Q, exhibited CW-biased rotation. Our results suggest that mutations in the hydrophobic core of FliGC collapse its conformational switching and/or stator interaction; however, the CCW state of the rotor enables rotation even with this disruption. Full article
Show Figures

Figure 1

12 pages, 1441 KiB  
Article
An Improved Speed Sensing Method for Drive Control
by Manuel R. Arahal, Manuel G. Satué, Juana M. Martínez-Heredia and Francisco Colodro
Sensors 2025, 25(2), 515; https://doi.org/10.3390/s25020515 - 17 Jan 2025
Viewed by 727
Abstract
Variable-speed electrical drive control typically relies upon a two-loop scheme, one for torque/speed and another for stator current control. In modern drive control methods, the actual mechanical speed is needed for both loops. In practical applications, the speed is often acquired by incremental [...] Read more.
Variable-speed electrical drive control typically relies upon a two-loop scheme, one for torque/speed and another for stator current control. In modern drive control methods, the actual mechanical speed is needed for both loops. In practical applications, the speed is often acquired by incremental rotary encoders. The most used method derives speed from an encoder pulse count during a fixed amount of time. It is known that this sensing method produces time delay in the speed feedback loop as well as fluctuations in the speed measurements. Time lags produce phase loss that has potentially negative effects on the overall drive performance. Nevertheless, the pulse counting method is favored in most cases due to its simplicity and existing support for its use in digital signal processors. In this paper, a new speed sensing method is proposed to reduce time lag without incurring increased fluctuations. The proposal uses a novel transient detector to determine the actual operational regime of the drive: transient or stationary. Transient detection is not based on measured speeds but works directly with the train of incoming encoder pulses. The method is designed to work well with established digital signal processor routines. The proposal is assessed through experimentation on a real five-phase induction motor. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 2199 KiB  
Article
Optimization of Flexible Rotor for Ultrasonic Motor Based on Response Surface and Genetic Algorithm
by Bo Chen, Jiyue Yang, Haoyu Tang, Yahang Wu and Haoran Zhang
Micromachines 2025, 16(1), 54; https://doi.org/10.3390/mi16010054 - 31 Dec 2024
Cited by 2 | Viewed by 1001
Abstract
The flexible rotor, as a crucial component of the traveling wave rotary ultrasonic motor, effectively reduces radial friction. However, issues such as uneven contact between the stator and rotor, as well as rotor-deformation-induced stress, still persist. This paper presents an optimization method that [...] Read more.
The flexible rotor, as a crucial component of the traveling wave rotary ultrasonic motor, effectively reduces radial friction. However, issues such as uneven contact between the stator and rotor, as well as rotor-deformation-induced stress, still persist. This paper presents an optimization method that combines the Kriging response surface model with a multi-objective genetic algorithm (MOGA). Drawing on the existing rotor structure, a novel rotor design is proposed to match the improved TRUM60 stator. During the optimization process, the contact surface between the stator and rotor is taken as the optimization target, and an objective function is established. The Kriging response surface model is constructed using Latin hypercube sampling, and an MOGA is employed to optimize this model, allowing the selection of the optimal balanced solution from multiple candidate designs. Following stator optimization, the objective function value decreased from 0.631 to 0.036, and the maximum contact stress on the rotor inner ring was reduced from 32.77 MPa to 9.96 MPa. Experimental validation confirmed the reliability of this design, significantly improving the overall performance and durability of the motor. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Back to TopTop