Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = roof structure extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 309
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 12338 KiB  
Article
Study on the Evolution Characteristics of Surrounding Rock and Differentiated Support Design of Dynamic Pressure Roadway with Double-Roadway Arrangement
by Linjun Peng, Shixuan Wang, Wei Zhang, Weidong Liu and Dazhi Hui
Appl. Sci. 2025, 15(13), 7315; https://doi.org/10.3390/app15137315 - 29 Jun 2025
Viewed by 341
Abstract
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue [...] Read more.
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue of resource wastage resulting from the excessive dimensions of coal pillars in prior periods by employing a research methodology that integrates theoretical analysis, numerical simulation, and field monitoring to systematically examine the movement characteristics of overlying rock in the working face. On that basis, the size of coal pillar is optimized. The advance’s stress transfer law and deformation distribution characteristics of the return air roadway and transport roadway are studied. The cause of the asymmetric deformation of roadway retention is explained. A differentiated design is conducted on the support parameters of double-roadway bolts and cables under strong dynamic pressure conditions. The study indicates that a 16 m coal pillar results in an 8 m elastic zone at its center, balancing stability with optimal resource extraction. In the basic top-sloping double-block conjugate masonry beam structure, the differing stress levels between the top working face’s transport roadway and the lower working face’s return air roadway are primarily due to the varied placements of key blocks. In the return air roadway, floor heave deformation is managed using locking anchor rods, while roof subsidence is controlled with a constant group of large deformation anchor cables. The displacement of surrounding rock increases under the influence of both leading and lagging pressures from the previous working face, although the change is minimal. There is a significant correlation between roadway deformation and support parameters and coal pillar size. With a 16 m coal pillar, differential support of the double roadway lowers the return air roadway deformation by 30%, which improves the mining rate and effectively controls the deformation of the roadway. Full article
Show Figures

Figure 1

21 pages, 4361 KiB  
Article
Building Sustainable Futures: Evaluating Embodied Carbon Emissions and Biogenic Carbon Storage in a Cross-Laminated Timber Wall and Floor (Honeycomb) Mass Timber Building
by Aayusha Chapagain and Paul Crovella
Sustainability 2025, 17(12), 5602; https://doi.org/10.3390/su17125602 - 18 Jun 2025
Viewed by 597
Abstract
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to [...] Read more.
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to calculate the embodied carbon emissions and biogenic carbon storage of a CLT-based affordable housing project, 340+ Dixwell in New Haven, Connecticut. This project was designed using a honeycomb structural system, where mass timber floors and roofs are supported by mass timber-bearing walls. The authors are not aware of a prior study that has evaluated the life cycle impacts of honeycomb mass timber construction while considering Timber Use Intensity (TUI). Unlike traditional post-and-beam systems, the honeycomb design uses nearly twice the amount of timber, resulting in higher carbon sequestration. This makes the study significant from a sustainability perspective. This study follows International Standard Organization (ISO) standards 14044, 21930, and 21931 and reports the results for both lifecycle stages A1–A3 and A1–A5. The analysis covers key building components, including the substructure, superstructure, and enclosure, with timber, concrete, metals, glass, and insulation as the materials assessed. Material quantities were extracted using Autodesk Revit®, and the life cycle assessment (LCA) was evaluated using One Click LCA (2015)®. The A1 to A3 stage results of this honeycomb building revealed that, compared to conventional mass timber housing structures such as Adohi Hall and Heartwood, it demonstrates the lowest embodiedf carbon emissions and the highest biogenic carbon storage per square foot. This outcome is largely influenced by its higher Timber Use Intensity (TUI). Similarly, the A1-A5 findings indicate that the embodied carbon emissions of this honeycomb construction are 40% lower than the median value for other multi-family residential buildings, as assessed using the Carbon Leadership Forum (CLF) Embodied Carbon Emissions Benchmark Study of various buildings. Moreover, the biogenic carbon storage per square foot of this building is 60% higher than the average biogenic carbon storage of reference mass timber construction types. Full article
Show Figures

Figure 1

23 pages, 25528 KiB  
Article
UGC-Net: Uncertainty-Guided Cost Volume Optimization with Contextual Features for Satellite Stereo Matching
by Wonje Jeong and Soon-Yong Park
Remote Sens. 2025, 17(10), 1772; https://doi.org/10.3390/rs17101772 - 19 May 2025
Viewed by 436
Abstract
Disparity estimation in satellite stereo images is a highly challenging task due to complex terrain, occlusions caused by tall buildings and structures, and texture-less regions such as roads, rivers, and building roofs. Recent deep learning-based satellite stereo disparity estimation methods have adopted cascade [...] Read more.
Disparity estimation in satellite stereo images is a highly challenging task due to complex terrain, occlusions caused by tall buildings and structures, and texture-less regions such as roads, rivers, and building roofs. Recent deep learning-based satellite stereo disparity estimation methods have adopted cascade multi-scale feature extraction techniques to address these challenges. However, the recent learning-based methods still struggle to effectively estimate disparity in the high ambiguity regions. This paper proposes a disparity estimation and refinement method that leverages variance uncertainty in the cost volume to overcome these limitations. The proposed method calculates variance uncertainty from the cost volume and generates uncertainty weights to adjust the cost volume based on this information. These weights are designed to emphasize geometric features in regions with low uncertainty while enhancing contextual features in regions with high uncertainty, such as occluded or texture-less areas. Furthermore, the proposed method introduces a pseudo volume, referred to as the 4D context volume, which extends the reference image’s features during the stereo-matching aggregation step. By integrating the 4D context volume into the aggregation layer of the geometric cost volume, our method effectively addresses challenges in disparity estimation, particularly in occluded and texture-less areas. For the evaluation of the proposed method, we use the Urban Semantic 3D dataset and the WHU-Stereo dataset. The evaluation results show that the proposed method achieves state-of-the-art performance, improving disparity accuracy in challenging regions. Full article
Show Figures

Figure 1

14 pages, 1656 KiB  
Article
A Hybrid Learning Framework for Enhancing Bridge Damage Prediction
by Amal Abdulbaqi Maryoosh, Saeid Pashazadeh and Pedram Salehpour
Appl. Syst. Innov. 2025, 8(3), 61; https://doi.org/10.3390/asi8030061 - 30 Apr 2025
Cited by 1 | Viewed by 627
Abstract
Bridges are crucial structures for transportation networks, and their structural integrity is paramount. Deterioration and damage to bridges can lead to significant economic losses, traffic disruptions, and, in severe cases, loss of life. Traditional methods of bridge damage detection, often relying on visual [...] Read more.
Bridges are crucial structures for transportation networks, and their structural integrity is paramount. Deterioration and damage to bridges can lead to significant economic losses, traffic disruptions, and, in severe cases, loss of life. Traditional methods of bridge damage detection, often relying on visual inspections, can be challenging or impossible in critical areas such as roofing, corners, and heights. Therefore, there is a pressing need for automated and accurate techniques for bridge damage detection. This study aims to propose a novel method for bridge crack detection that leverages a hybrid supervised and unsupervised learning strategy. The proposed approach combines pixel-based feature method local binary pattern (LBP) with the mid-level feature bag of visual words (BoVW) for feature extraction, followed by the Apriori algorithm for dimensionality reduction and optimal feature selection. The selected features are then trained using the MobileNet model. The proposed model demonstrates exceptional performance, achieving accuracy rates ranging from 98.27% to 100%, with error rates between 1.73% and 0% across multiple bridge damage datasets. This study contributes a reliable hybrid learning framework for minimizing error rates in bridge damage detection, showcasing the potential of combining LBP–BoVW features with MobileNet for image-based classification tasks. Full article
Show Figures

Figure 1

17 pages, 47764 KiB  
Article
Existing Buildings Recognition and BIM Generation Based on Multi-Plane Segmentation and Deep Learning
by Dejiang Wang, Jinzheng Liu, Haili Jiang, Panpan Liu and Quanming Jiang
Buildings 2025, 15(5), 691; https://doi.org/10.3390/buildings15050691 - 22 Feb 2025
Cited by 1 | Viewed by 864
Abstract
Point cloud-based BIM reconstruction is an effective approach to enabling the digital documentation of existing buildings. However, current methods often demand substantial time and expertise for the manual measurement of building dimensions and the drafting of BIMs. This paper proposes an automated approach [...] Read more.
Point cloud-based BIM reconstruction is an effective approach to enabling the digital documentation of existing buildings. However, current methods often demand substantial time and expertise for the manual measurement of building dimensions and the drafting of BIMs. This paper proposes an automated approach to BIM modeling of the external surfaces of existing buildings, aiming to streamline the labor-intensive and time-consuming processes of manual measurement and drafting. Initially, multi-angle images of the building are captured using drones, and the building’s point cloud is reconstructed using 3D reconstruction software. Next, a multi-plane segmentation technique based on the RANSAC algorithm is applied, facilitating the efficient extraction of key features of exterior walls and planar roofs. The orthophotos of the building façades are generated by projecting wall point clouds onto a 2D plane. A lightweight convolutional encoder–decoder model is utilized for the semantic segmentation of windows and doors on the façade, enabling the precise extraction of window and door features and the automated generation of AutoCAD elevation drawings. Finally, the extracted features and segmented data are integrated to generate the BIM. The case study results demonstrate that the proposed method exhibits a stable error distribution, with model accuracy exceeding architectural industry requirements, successfully achieving reliable BIM reconstruction. However, this method currently faces limitations in dealing with buildings with complex curved walls and irregular roof structures or dense vegetation obstacles. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

24 pages, 12975 KiB  
Article
Study on the Law of Mine Pressure Manifestation in Three-Soft Coal Seam Isolated Working Face
by Hui Liu, Jiarui Sun, Tao Yang, Jie Zhang, Dong Liu, Haifei Lin, Jiayue Deng and Yiming Zhang
Appl. Sci. 2025, 15(4), 1943; https://doi.org/10.3390/app15041943 - 13 Feb 2025
Viewed by 539
Abstract
The isolated working face is significantly impacted by the adjacent goaf and the mining activities of the working face itself, causing the overlying rock layers above the working face to exhibit far more intense activity compared to an ordinary working face. The stress [...] Read more.
The isolated working face is significantly impacted by the adjacent goaf and the mining activities of the working face itself, causing the overlying rock layers above the working face to exhibit far more intense activity compared to an ordinary working face. The stress levels are high, and the surrounding rock suffers severe damage, posing serious challenges to the safe and efficient extraction of the working face. Improving the service life of the retreating roadway in an isolated working face is a pressing technical issue that coal mining companies must address. Focusing on the characteristics of the strata and mining conditions of the 8213 isolated working face in the Yanjiahe Coal Mine, which features a three-soft coal seam, a combination of field investigation, theoretical analysis, on-site monitoring, and numerical simulation methods was employed. This approach aimed to analyze the fundamental laws of mine pressure behavior in the three-soft coal seam isolated working face as well as the deformation and failure mechanisms of the surrounding rock in the retreating roadway. Using elastic thin plate theory, it was determined that the basic roof periodic fracture step of the 8213 isolated face in the Yanjiahe Coal Mine is approximately 23 m. Field mine pressure monitoring on the 8213 isolated working face revealed that during non-periodic pressure events, the support resistance of the working face generally fluctuated stably below the rated working resistance. When the basic roof collapsed, the average working resistance of the support showed a significant increase with periodic pressure steps ranging from 16 to 27 m and an average of 22 m. Numerical simulations were further used to analyze the changes in stress and the plastic zone of the overlying rock on the 8213 isolated working face, clarifying the mechanism by which instability in the overlying rock structure leads to incidents. This analysis provides theoretical support for the safe mining of isolated working faces. Full article
Show Figures

Figure 1

32 pages, 9477 KiB  
Article
Strata Control by Roof Blasting for Bord and Pillar Mining Method in Mechanized Depillaring Panels
by Abhishek Gautam, Ashok Kumar, Sahendra Ram, Krzysztof Skrzypkowski, Krzysztof Zagórski, Anna Zagórska, Maciej Madziarz and Krzysztof Migda
Appl. Sci. 2025, 15(3), 1403; https://doi.org/10.3390/app15031403 - 29 Jan 2025
Cited by 2 | Viewed by 1405
Abstract
This article discusses the challenges and remedial measures (roof blasting) adopted to deal with extremely difficult cavable roofs while working with Continuous Miner Technology (CMT) in Bord and Pillar mining method. The main objective of the roof blasting in the goaf is to [...] Read more.
This article discusses the challenges and remedial measures (roof blasting) adopted to deal with extremely difficult cavable roofs while working with Continuous Miner Technology (CMT) in Bord and Pillar mining method. The main objective of the roof blasting in the goaf is to induce caving to minimize the abutment load in and around the working face to prevent incidences of coal bumps, goaf swelling, pillar spalling, and air blasts. It was found that roof blasting is subjected to the nature of local roof falls, results of strata monitoring studies, and the hanging span of roof strata near the line of extraction. Efforts have been made to design different geotechnical elements and structures involved during the mechanized depillaring panel of the Tawa-I mine, using empirical methods to minimize the issues of roof overhang in the goaf. Numerical simulation studies were also performed to validate the design predicted by empirical methods. The Cavability Index indicated that the roof at Tawa-I mine is difficult to cave. To address this, roof blasting design strategies have been discussed to promote caving and minimize roof overhang, ensuring safe and efficient strata control while operating CMT in the challenging and complex geo-mining conditions of the mine. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

24 pages, 9610 KiB  
Article
Numerical Simulation Analysis and Prevention Measures of Dynamic Disaster Risk in Coal Seam Variation Areas During Deep Mining
by Chenglin Tian, Xu Wang, Yong Sun, Qingbiao Wang, Xuelong Li, Zhenyue Shi and Keyong Wang
Sustainability 2025, 17(3), 810; https://doi.org/10.3390/su17030810 - 21 Jan 2025
Cited by 2 | Viewed by 946
Abstract
Deep coal mining is essential for energy use and sustainable development. In a situation where coal–rock–gas dynamic disasters are prone to occur in coal seam variation areas affected by different degrees of roof angle during deep coal seam mining, a disaster energy equation [...] Read more.
Deep coal mining is essential for energy use and sustainable development. In a situation where coal–rock–gas dynamic disasters are prone to occur in coal seam variation areas affected by different degrees of roof angle during deep coal seam mining, a disaster energy equation considering the influence of roof elastic energy is established, and the disaster energy criterion considering the influence of roof elastic energy is derived and introduced into COMSOL6.1 software for numerical simulation. The results show that, compared with the simple change of coal thickness and coal strength, the stress concentration degree of a thick coal belt with small structure is higher, and the maximum horizontal stress can reach 47.6 MPa. There is a short rise area of gas pressure in front of the working face, and the maximum gas pressure reaches 0.82 MPa. The plastic deformation of the coal body in a small-structure thick coal belt is the largest, and the maximum value is 18.04 m3. The simulated elastic energy of rock mass is about one third of that of coal mass, and the influence of the elastic energy of roof rock on a disaster cannot be ignored. When the coal seam is excavated from thin to thick with a small-structural thick coal belt, the peak value of the energy criterion in front of the excavation face is the largest, and the maximum value is 1.42, indicating that a dynamic disaster can occur and the harm degree will be the greatest. It is easy to cause a coal and gas outburst accident when the excavation face enters a soft coal seam from a hard coal seam and a small-structural thick coal belt from a thin coal belt. Practice shows that holistic prevention and control measures based on high-pressure water jet slit drilling technology make it possible to increase the average pure volume of gas extracted from the drilled holes by 4.5 times, and the stress peak is shifted to the deeper part of the coal wall. At the same time, the use of encrypted drilling in local small tectonic thick coal zones can effectively attenuate the concentrated stress in the coal seam and reduce the expansion energy of gas. This study enriches our understanding of the mechanism of coal–rock–gas dynamic disaster, provides methods and a basis for the prevention and control of dynamic disaster in deep coal seam variation areas, and promotes the sustainable development of energy. Full article
(This article belongs to the Topic Advances in Coal Mine Disaster Prevention Technology)
Show Figures

Figure 1

12 pages, 2680 KiB  
Article
Optimization and Practice of a High-Strength Acoustic Wave Indirect Penetration Enhancement Scheme for the Drilling of Structural Coal Seams
by Cunqiang Chen, Yongmin Zhang, Chao Li, Kexiang Li, Youzhi Zhao, Shuo Zhang, Jing Ren, Yong Qin and Wenxiao Chu
Processes 2025, 13(1), 149; https://doi.org/10.3390/pr13010149 - 8 Jan 2025
Viewed by 595
Abstract
The structural coal seam drilling process often faces challenges such as shallow drilling depth, low hole formation rate, and the presence of blind areas in gas control. To address these issues, this study proposes a novel high-strength acoustic penetration approach and optimization design [...] Read more.
The structural coal seam drilling process often faces challenges such as shallow drilling depth, low hole formation rate, and the presence of blind areas in gas control. To address these issues, this study proposes a novel high-strength acoustic penetration approach and optimization design method under in situ conditions. Field tests were conducted at the Yunnan Bailongshan Coal Mine and Huainan Xieqiao Coal Mine to evaluate the effectiveness of this technique. The results demonstrate that the coal seam or its roof can act as an acoustic energy converter to generate high-intensity acoustic waves that penetrate the coal seam, and the field test results confirm the efficacy of this method in increasing gas extraction. This study proposes a novel ‘hole replaces seam’ technique, optimizing the extraction process and reducing the risk of explosions and providing a more efficient and safer method for gas control in structural coal seams. Accordingly, a new technical method for replacing the bottom (top) extraction lane is proposed. Full article
Show Figures

Figure 1

17 pages, 7222 KiB  
Article
Extracting Regular Building Footprints Using Projection Histogram Method from UAV-Based 3D Models
by Yaoyao Ren, Xing Li, Fangyuqing Jin, Chunmei Li, Wei Liu, Erzhu Li and Lianpeng Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(1), 6; https://doi.org/10.3390/ijgi14010006 - 28 Dec 2024
Cited by 2 | Viewed by 1180
Abstract
Extracting building outlines from 3D models poses significant challenges stemming from the intricate diversity of structures and the complexity of urban scenes. Current techniques heavily rely on human expertise and involve repetitive, labor-intensive manual operations. To address these limitations, this paper presents an [...] Read more.
Extracting building outlines from 3D models poses significant challenges stemming from the intricate diversity of structures and the complexity of urban scenes. Current techniques heavily rely on human expertise and involve repetitive, labor-intensive manual operations. To address these limitations, this paper presents an innovative automatic technique for accurately extracting building footprints, particularly those with gable and hip roofs, directly from 3D data. Our methodology encompasses several key steps: firstly, we construct a triangulated irregular network (TIN) to capture the intricate geometry of the buildings. Subsequently, we employ 2D indexing and counting grids for efficient data processing and utilize a sophisticated connected component labeling algorithm to precisely identify the extents of the roofs. A single seed point is manually specified to initiate the process, from which we select the triangular facets representing the outer walls of the buildings. Utilizing the projection histogram method, these facets are grouped and processed to extract regular building footprints. Extensive experiments conducted on datasets from Nanjing and Wuhan demonstrate the remarkable accuracy of our approach. With mean intersection over union (mIOU) values of 99.2% and 99.4%, respectively, and F1 scores of 94.3% and 96.7%, our method proves to be both effective and robust in mapping building footprints from 3D real-scene data. This work represents a significant advancement in automating the extraction of building footprints from complex 3D scenes, with potential applications in urban planning, disaster response, and environmental monitoring. Full article
Show Figures

Figure 1

26 pages, 20446 KiB  
Article
Gas Content and Geological Control of Deep Jurassic Coalbed Methane in Baijiahai Uplift, Junggar Basin
by Bing Luo, Haichao Wang, Bin Sun, Zheyuan Ouyang, Mengmeng Yang, Yan Wang and Xiang Zhou
Processes 2024, 12(12), 2671; https://doi.org/10.3390/pr12122671 - 27 Nov 2024
Cited by 1 | Viewed by 1081
Abstract
Deep coalbed methane (CBM) resources are abundant in China, and in the last few years, the country’s search for and extraction of CBM have intensified, progressively moving from shallow to deep strata and from high-rank coal to medium- and low-rank coal. On the [...] Read more.
Deep coalbed methane (CBM) resources are abundant in China, and in the last few years, the country’s search for and extraction of CBM have intensified, progressively moving from shallow to deep strata and from high-rank coal to medium- and low-rank coal. On the other hand, little is known about the gas content features of deep coal reservoirs in the eastern Junggar Basin, especially with regard to the gas content and the factors that affect it. Based on data from CBM drilling, logging, and seismic surveys, this study focuses on the gas content of Baijiahai Uplift’s primary Jurassic coal seams through experiments on the microscopic components of coal, industrial analysis, isothermal adsorption, low-temperature CO2, low-temperature N2, and high-pressure mercury injection. A systematic investigation of the controlling factors, including the depth, thickness, and quality of the coal seam and pore structure; tectonics; and lithology and thickness of the roof, was conducted. The results indicate that the Xishanyao Formation in the Baijiahai Uplift usually has a larger gas content than that in the Badaowan Formation, with the Xishanyao Formation showing that free gas and adsorbed gas coexist, while the Badaowan Formation primarily consists of adsorbed gas. The coal seams in the Baijiahai Uplift are generally deep and thick, and the coal samples from the Xishanyao and Badawan formations have a high vitrinite content, which contributes to their strong gas generation capacity. Additionally, low moisture and ash contents enhance the adsorption capacity of the coal seams, facilitating the storage of CBM. The pore-specific surface area of the coal samples is primarily provided by micropores, which is beneficial for CBM adsorption. Furthermore, a fault connecting the Carboniferous and Permian systems (C-P) developed in the northeastern part of the Baijiahai Uplift allows gas to migrate into the Xishanyao and Badaowan formations, resulting in a higher gas content in the coal seams. The roof lithology is predominantly mudstone with significant thickness, effectively reducing the dissipation of coalbed methane and promoting its accumulation. Full article
Show Figures

Figure 1

18 pages, 6936 KiB  
Article
A Calculating Method for the Height of Multi-Type Buildings Based on 3D Point Cloud
by Yuehuan Wang, Shuwen Yang, Ruixiong Kou, Zhuang Shi and Yikun Li
Buildings 2024, 14(11), 3412; https://doi.org/10.3390/buildings14113412 - 27 Oct 2024
Viewed by 1552
Abstract
Building height is a critical variable in urban studies, and the automated acquisition of the precise building height is essential for intelligent construction, safety, and the sustainable development of cities. The building height is often approximated by the building’s highest point. However, the [...] Read more.
Building height is a critical variable in urban studies, and the automated acquisition of the precise building height is essential for intelligent construction, safety, and the sustainable development of cities. The building height is often approximated by the building’s highest point. However, the calculation method of the building height of the various roof types differs according to building codes, making it challenging to accurately calculate the height of buildings with complex roof structures or multiple upper appendages. Consequently, this paper utilizes point clouds to propose an automated method for calculating building heights conforming to design codes. The model considers roof types and allows for fast, automated, and highly accurate building height estimation. First, roofs are extracted from the point cloud by combining normal vector density clustering with a region-growing algorithm. Second, combined with variational Bayes, a Gaussian mixture model is employed to segment the roof surfaces. Finally, roofs are classified based on slope characteristics, achieving the automatic acquisition of building heights for various roof types over large areas. Experiments were conducted on Vaihingen and STPLS3D datasets. In the Vaihingen area, the maximum error, root-mean-square-error (RMSE), and mean absolute error (MAE) of the measured heights are 1.92 cm, 1.18 cm, and 1.13 cm, respectively. In the STPLS3D area, these values are 1.79 cm, 0.82 cm, and 0.68 cm, respectively. The results demonstrate that the proposed method is reliable and effective, which offers valuable data for the development, construction, and planning of three-dimensional (3D) cities. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 15600 KiB  
Article
Research on Deriving a Proportional System of a Roof Structure Through the Analysis of Hanok Architectural Design Methods
by Byeong-Uk Shin
Buildings 2024, 14(11), 3401; https://doi.org/10.3390/buildings14113401 - 25 Oct 2024
Viewed by 2142
Abstract
Hanoks are structures that have been built with unique techniques and styles since prehistoric times. Demand for hanoks is growing because they are recognized as climate-friendly buildings that make use of the natural environment as it is. However, there are a lack of [...] Read more.
Hanoks are structures that have been built with unique techniques and styles since prehistoric times. Demand for hanoks is growing because they are recognized as climate-friendly buildings that make use of the natural environment as it is. However, there are a lack of standardized records concerning the methods or standards for constructing hanoks, so inferring them through the dimensional analysis of existing buildings is challenging. The roof of a hanok is its most beautiful part, and its proportions change the appearance of the hanok. Relying on existing examples or inherited figures when designing hanoks has led to the formation of uniform hanoks and the loss of their identity due to the lack of proportional standards. This study aimed to derive a proportional roof structure system by analyzing hanok architectural design methods. The employed method allowed for an analysis of the types of roofs and eaves of hanoks and extracted all the roof-related factors, such as the eave overhang, eave angle, roof angle, and hanok height. These data were compared with each other to find regularities and derive a final proportional system for a hanok roof structure. The analysis showed that the eave-height-to-roof-height ratio is 5.5:4.5, and notably, the sum of the eave and roof angles is in the range of 118°~120°, which means that the lower the eave angle, the higher the roof angle. Therefore, the roof structure of a hanok should not be designed based on a partial average value; rather, it should be based on a mutual proportional system considering the eave angle, roof angle, hanok height, and eave height. The results of this study can provide designers with a basis for creating hanoks through the use of the proportional system of roofs. This data basis guarantees continuity between the past and the present, and the proposed system can serve as a guide for hanok roof design and structural analysis. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 74775 KiB  
Article
Constructing a Semantic System of Facade Elements for Religious Architecture from a Regional Perspective: A Case Study of Jingzhou
by Guangyuan Wang, Weihao Huang and Qifan Xu
Buildings 2024, 14(10), 3147; https://doi.org/10.3390/buildings14103147 - 2 Oct 2024
Cited by 1 | Viewed by 1339
Abstract
The application of semantics in facade elements mainly involves the association between architectural elements and their cultural, historical, or functional significance. By analyzing the shape, layout, and decoration of various elements (such as windows, doors, decorative patterns) in facades, semantics helps us understand [...] Read more.
The application of semantics in facade elements mainly involves the association between architectural elements and their cultural, historical, or functional significance. By analyzing the shape, layout, and decoration of various elements (such as windows, doors, decorative patterns) in facades, semantics helps us understand the symbolic meanings and cultural implications behind these design choices. This study selects twenty-eight pavilions and buildings from five temples and Taoist sites in Jingzhou City as the research objects, exploring the composition and patterns of religious architectural facades in Jingzhou through the extraction of structural and decorative elements. The study establishes the “Semantic System of Façade Elements in Jingzhou Religious Architecture”, from which the distinctive characteristics of Jingzhou religious building façades are identified. The study finds that side halls predominantly feature hard gable roofs, while the main halls use double-eave hip-and-gable roofs, reflecting differences in architectural hierarchy. The sack with three arrows pattern is the most widely used in door and window decorations, demonstrating the aesthetic preferences of the Jingchu region. Both side halls and main halls commonly adopt high podiums, with the main hall podiums typically exceeding twenty steps in height, which is closely related to Jingzhou’s climatic conditions and architectural hierarchy. This study provides scientific evidence for the preservation, new design, and harmonious integration of traditional culture and architectural features in regional religious architecture. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop