Gas Content and Geological Control of Deep Jurassic Coalbed Methane in Baijiahai Uplift, Junggar Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Coal Rock Quality Experiment
3.2. Isothermal Adsorption Experiment
3.3. Pore Characteristics
4. Gas Content Prediction
4.1. Prediction of Adsorbed Gas Gontent
4.1.1. Gas Adsorption Theory
4.1.2. Prediction of Adsorbed Gas Content
4.1.3. Methane Adsorption Decay Rate
4.1.4. Prediction Results of Adsorbed Gas Content
4.2. Prediction of Free Gas Content
4.2.1. Quantitative Prediction of Free Gas Content
4.2.2. Prediction Results of Free Gas Content
4.3. Varification of Gas Content Prediction Results
4.4. Calculation of Gas Content in Baijiahai Uplift
4.4.1. Calculation of Adsorbed Gas Content in the Baijiahai Uplift
4.4.2. Calculation of Free Gas Content in Baijiahai Uplift
5. Results and Discussions
5.1. Horizontal Distribution of Gas Content
5.1.1. Adsorbed Gas Content
5.1.2. Free Gas Content
5.1.3. Gas Content
5.2. The Impact of Geological Factors on Gas Content
5.2.1. Burial Depth of Coal Seams
5.2.2. Coal Thickness
5.2.3. Coal Rock Quality
5.2.4. Pore Structure
5.2.5. Geological Structure
5.2.6. Roof Lithology and Thickness
6. Conclusions
- The Jurassic coal seams in the Baijiahai Uplift are located at greater depths and have larger thicknesses. The microscopic components of the coal primarily consist of vitrinites, with inertinites being secondary. The Xishanyao Formation is characterized by very low total moisture, very low ash content, and medium volatile matter, while the Badaowan Formation’s coal samples exhibit very low total moisture, low ash content, and high volatile matter. The Xishanyao Formation shows well-developed micropores and macropores, whereas the Badaowan Formation has better developed micropores.
- Overall, the gas content in the Jurassic coal seams of the Baijiahai Uplift is relatively high. The total gas content of the Xishanyao Formation ranges from 16.40 to 23.84 m3/t, while that of the Badaowan Formation ranges from 3.70 to 11.29 m3/t. The Xishanyao Formation displays a high southwest to low northeast gas content distribution, whereas the Badaowan Formation shows a high west to low east pattern. The gas presence in the Xishanyao Formation consists of both adsorbed gas and free gas, while the Badawan Formation primarily contains adsorbed gas, with the Xishanyao Formation exhibiting a higher gas content than the Badawan Formation.
- The gas content of both the Xishanyao and Badaowan formations exhibits a trend of first increasing and then decreasing with depth. However, their correlation with coal seam thickness differs. The gas content of the Xishanyao Formation shows a positive correlation with coal seam thickness, while the Badaowan Formation does not exhibit a significant correlation, potentially due to the stability of the sedimentary environment and the structure and composition of the coal. The adsorption capacity of the Jurassic coal samples is positively correlated with the vitrinite content and negatively correlated with the moisture content and ash yield.
- The Xishanyao Formation has well-developed micropores and macropores, with macropores providing a larger pore volume conducive to the retention of free gas. The specific surface area of both formations mainly derives from micropores, which is favorable for the presence of adsorbed gas. Structural conditions such as traps and faults also play an important role in gas accumulation in the coal seams. Additionally, the roof rock of both formations is primarily mudstone, with considerable thickness, effectively preventing gas escape. Notably, the mudstone content in the Xishanyao Formation is higher than that in the Badaowan Formation, contributing to its greater gas content.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moore, T.A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Banerjee, B.D.; Dhar, B.B. Issues and options for reducing methane emission to the atmosphere from Indian coal mining. Energy Convers. Manag. 1996, 37, 1175–1179. [Google Scholar] [CrossRef]
- Gunter, W.D.; Gentzis, T.; Rottenfusser, B.A. Deep coalbed methane in Alberta, Canada: A fuel resource with the potential of zero greenhouse gas emissions. Energy Convers. Manag. 1997, 38, S217–S222. [Google Scholar] [CrossRef]
- Jiang, X.; Mira, D.; Cluff, D.L. The combustion mitigation of methane as a non-CO2 greenhouse gas. Prog. Energy Combust. Sci. 2018, 66, 176–199. [Google Scholar] [CrossRef]
- Guo, G.S.; Xu, F.Y. Deep coalbed methane enrichment and accumulation law and favorable area evaluation in Fugu area of Ordos Basin. Coal Geol. Explor. 2024, 52, 81–91. [Google Scholar]
- Xi, Z.D.; Tang, S.D. Critical depth and accumulation characteristics of deep coalbed methane in southern Ningwu Basin. Nat. Gas Ind. 2024, 44, 108–118. [Google Scholar]
- Qin, Y.; Shen, J. On the fundamental issues of deep coalbed methane geology. Acta Pet. Sin. 2016, 37, 125. [Google Scholar]
- Li, S.; Qin, Y.; Tang, D.; Shen, J. A comprehensive review of deep coalbed methane and recent developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Yan, T. Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field, southeastern Ordos Basin. Int. J. Coal Geol. 2014, 121, 148–159. [Google Scholar] [CrossRef]
- Skrzypkowski, K.; Zagórski, K.; Zagórska, A. Determination of the Extent of the rock destruction Zones around a gasification Channel on the basis of Strength Tests of Sandstone and Claystone Samples Heated at High Temperatures up to 1200 C and Exposed to Water. Energies 2021, 14, 6464. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Zhu, Y. Evaluation of gas contents for a multi-seam deep coalbed methane reservoir and their geological controls: In situ direct method versus indirect method. Fuel 2020, 265, 116917. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. Modelling permeability for coal reservoirs: A review of analytical models and testing data. Int. J. Coal Geol. 2012, 92, 1–44. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Tang, S.; Elsworth, D. Re-evaluating adsorbed and free methane content in coal and its ad-and desorption processes analysis. Chem. Eng. J. 2022, 428, 131946. [Google Scholar] [CrossRef]
- Esen, O.; Özer, S.C.; Soylu, A.; Rend, A.R. Geological controls on gas content distribution of coal seams in the Kınık coalfield, Soma Basin, Turkey. Int. J. Coal Geol. 2020, 231, 103602. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y. Characteristics of low-rank coal reservoir and exploration potential in Junggar Basin: New frontier of low-rank CBM exploration in China. J. Pet. Explor. Prod. Technol. 2020, 10, 2207–2223. Available online: http://creativecommons.org/licenses/by/4.0/ (accessed on 30 October 2024). [CrossRef]
- Zhang, Z.; Fu, X.H. Analysis of gas-bearing distribution law and geological control factors of coal seam in Panzhuang block. Coal Sci. Technol. 2014, 42, 98–102. [Google Scholar]
- Qiao, J.Q.; Liu, L.F.; Shang, X.Q.; Li, B.Y. Application and effectiveness analysis of the hydrocarbon-migration tracing: A case study of hydrocarbons from the Jurassic Badaowan Formation of the Baijiahai high in the Junggar Basin, China. Bull. Miner. Petrol. Geochem. 2023, 42, 107–121. [Google Scholar]
- Niu, X.; Xiong, T. Characteristics of normal faults and their relationship with oil and gas in Baijiahai area, central Junggar Basin. Xinjiang Oil Gas. 2008, 4, 22–24. [Google Scholar]
- Chen, G.; Qin, Y. Reservoir combination characteristics of deep coalbed methane system in Baijiahai Uplift, Junggar Basin. J. China Coal Soc. 2016, 41, 80–86. [Google Scholar]
- Zhang, B.; Tao, S.; Sun, B.; Tang, S. Genesis and accumulation mechanism of external gas in deep coal seams of the Baijiahai Uplift, Junggar Basin, China. Int. J. Coal Geol. 2024, 286, 104506. [Google Scholar] [CrossRef]
- Wang, J.; Shao, L.; Wang, X. The Coal-Forming Environment at the End of the Late Permian and Its Control on Trace Elements: The Upper Xuanwei Formation in Eastern Yunnan, China. Processes 2023, 11, 2936. [Google Scholar] [CrossRef]
- Fang, X.; Wu, C.; Song, Y. The impact of pyrolysis temperature on the evolution of the maceral and mineral geochemistry in a subbituminous coal. Energy 2024, 290, 130092. [Google Scholar] [CrossRef]
- Dou, Y.; Wang, Q.; Wang, S. Quantitative analysis of coal quality by a portable laser induced breakdown spectroscopy and three chemometrics methods. Appl. Sci. 2023, 13, 10049. [Google Scholar] [CrossRef]
- Alpern, B.; De Sousa, M.L.; Flores, D. A progress report on the Alpern Coal Classification. Int. J. Coal Geol. 1989, 13, 1–19. [Google Scholar] [CrossRef]
- Sun, B.; Yang, M.F.; Yang, Q.; Tian, W.G.; Sun, Q.P.; Xu, Y.G.; Yang, Y.P. Analysis of occurrence state of deep coalbed methane in Junggar Basin. J. China Coal Soc. 2017, 42, 195–202. [Google Scholar]
- Jinlong, J.; Shuxun, S.; Liwen, C. Characteristics of CO2/supercritical CO2 adsorption-induced swelling to anthracite: An experimental study. Fuel 2018, 216, 639–647. [Google Scholar] [CrossRef]
- Zhou, X.; Lü, X.; Sui, F.; Wang, X. The breakthrough pressure and sealing property of Lower Paleozoic carbonate rocks in the Gucheng area of the Tarim Basin. J. Pet. Sci. Eng. 2022, 208, 109289. [Google Scholar] [CrossRef]
- Wang, Q.; Su, X.; Jin, Y. Pore structure characterization for coal measure shales of the Xiashihezi Formation in the Sunan Syncline block, southern North China basin. Front. Earth Sci. 2022, 10, 1017429. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Li, X.Q. Pore structure characteristics and evolution of coal measure shale reservoir. J. China Coal Soc. 2019, 44, 195–204. [Google Scholar]
- Yang, Y.; Liu, S. Estimation and modeling of pressure-dependent gas diffusion coefficient for coal: A fractal theory-based approach. Fuel 2019, 253, 588–606. [Google Scholar] [CrossRef]
- Asif, M.; Panigrahi, D.C.; Naveen, P.; Ojha, K. Construction of high-pressure adsorption isotherm: A tool for predicting coalbed methane recovery from Jharia coalfield, India. Int. J. Min. Sci. Technol. 2019, 29, 765–769. [Google Scholar] [CrossRef]
- Saunders, J.T.; Tsai, B.M.; Yang, R.T. Adsorption of gases on coals and heattreated coals at elevated temperature and pressure: 2. Adsorption from hydrogen-methane mixtures. Fuel 1985, 64, 621–626. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, H.; Sun, B.; Liu, Y.; Fu, X. Quantitative prediction of deep coalbed methane content in Daning-Jixian Block, Ordos Basin, China. Processes 2023, 11, 3093. [Google Scholar] [CrossRef]
- Chen, G. Deep Low-Rank Coalbed Methane System and Reservoiring Mechanism in the Case of the Cainan Block in Junggar Basin. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2014. [Google Scholar]
- Li, Y.; Gao, S. Evaluation and correction of prediction model of free gas content in deep coalbed methane-a case study of deep coal seam in the eastern margin of Ordos Basin. Acta Pet. Sin. 2023, 44, 1892–1902. [Google Scholar]
- Lewis, R.; Ingraham, D.; Pearcy, M.; Williamson, J.; Sawyer, W.; Frantz, J. New evaluation techniques for gas shale reservoirs. In Reservoir Symposium; Schlumbcrgcr Houston: Houston, TX, USA, 2004. [Google Scholar]
- Akdaş, S.B.; Fişne, A. A data-driven approach for the prediction of coal seam gas content using machine learning techniques. Appl. Energy 2023, 347, 121499. [Google Scholar] [CrossRef]
- Drobniak, A.; Mastalerz, M.; Rupp, J.; Eaton, N. Evaluation of coalbed gas potential of the Seelyville Coal Member, Indiana, USA. Int. J. Coal Geol. 2004, 57, 265–282. [Google Scholar] [CrossRef]
- Liu, B.; Chang, S.; Zhang, S.; Chen, Q.; Zhang, J. Coalbed methane gas content and its geological controls: Research based on seismic-geological integrated method. J. Nat. Gas Sci. Eng. 2022, 101, 104510. [Google Scholar] [CrossRef]
- Liu, H.; Sang, S.; Wang, G.G.; Li, M. Block scale investigation on gas content of coalbed methane reservoirs in southern Qinshui basin with statistical model and visual map. J. Pet. Sci. Eng. 2014, 114, 1–14. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Pan, Z.; Yan, D. A study of hydrogeology and its effect on coalbed methane enrichment in the southern Junggar Basin, China. AAPG Bull. 2019, 103, 189–213. [Google Scholar] [CrossRef]
- Hemza, P.; Sivek, M.; Jirásek, J. Factors influencing the methane content of coal beds of the Czech part of the Upper Silesian Coal Basin, Czech Republic. Int. J. Coal Geol. 2009, 79, 29–39. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Krooss, B.M.; Busch, A.; Gaschnitz, R.J.I.J. Evolution of methane sorption capacity of coal seams as a function of burial history—A case study from the Campine Basin, NE Belgium. Int. J. Coal Geol. 2006, 66, 179–203. [Google Scholar] [CrossRef]
- Zou, Z.; Liu, D.; Cai, Y.; Wang, Y. Geological factors and reservoir properties affecting the gas content of coal seams in the Gujiao Area, Northwest Qinshui Basin, China. Energies 2018, 11, 1044. [Google Scholar] [CrossRef]
- Yao, P.; Zhang, J.; Lv, D. Effect of water occurrence in coal reservoirs on the production capacity of coalbed methane by using NMR simulation technology and production capacity simulation. Geoenergy Sci. Eng. 2024, 243, 213353. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Strąpoć, D.; Acosta, W.S. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content. Int. J. Coal Geol. 2008, 76, 205–216. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Xiaoyan, Z. Characterization of the full-sized pore structure of coal-bearing shales and its effect on shale gas content. Energy Fuels 2019, 33, 1969–1982. [Google Scholar] [CrossRef]
- Chen, L.; Fan, S.W. Pore structure characteristics of coal and its influence on gas content. Coal Sci. Technol. 2017, 45, 126–132. [Google Scholar]
- Zheng, X.; Zhang, B.; Sanei, H.; Bao, H. Pore structure characteristics and its effect on shale gas adsorption and desorption behavior. Mar. Pet. Geol. 2019, 100, 165–178. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Sun, B.; Ouyang, Z. Pore Size Distribution and Fractal Characteristics of Deep Coal in the Daning–Jixian Block on the Eastern Margin of the Ordos Basin. ACS Omega 2024, 9, 32837–32852. [Google Scholar] [CrossRef]
- Ni, X.; Zhao, Z.; Wang, Y.; Wang, L. Optimisation and application of well types for ground development of coalbed methane from no. 3 coal seam in shizhuang south block in Qinshui basin, Shanxi province, China. J. Pet. Sci. Eng. 2020, 193, 107453. [Google Scholar] [CrossRef]
- Kędzior, S.; Kotarba, M.J.; Pękała, Z. Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2013, 105, 24–35. [Google Scholar] [CrossRef]
- Yin, S.; Ding, W. Evaluation indexes of coalbed methane accumulation in the strong deformed strike-slip fault zone considering tectonics and fractures: A 3D geomechanical simulation study. Geol. Mag. 2019, 156, 1052–1068. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Yuan, Y.; Li, H. Effect and mechanism of geological structures on coal seam gas occurrence in Changping minefield. Energy Sci. Eng. 2020, 8, 104–115. [Google Scholar] [CrossRef]
- Sechman, H.; Kotarba, M.J.; Kędzior, S.; Dzieniewicz, M. Distribution of methane and carbon dioxide concentrations in the near-surface zone over regional fault zones and their genetic characterization in the Pszczyna-Oświęcim area (SE part of the Upper Silesian Coal Basin, Poland). J. Pet. Sci. Eng. 2020, 187, 106804. [Google Scholar] [CrossRef]
- Ding, Z.J. Pre-Carboniferous Paleogeomorphology Restoration and Gas-Bearing Evaluation in Southwestern Ordos Basin. Master’s Thesis, Xi’an Shiyou University, Xian, China, 2023. [Google Scholar]
- Li, Z.; Liu, D.; Ranjith, P.G.; Cai, Y. Geological controls on variable gas concentrations: A case study of the northern Gujiao Block, northwestern Qinshui Basin, China. Mar. Pet. Geol. 2018, 92, 582–596. [Google Scholar] [CrossRef]
- Hou, S.; Wang, X.; Wang, X.; Yuan, Y. Geological controls on gas saturation in the Yanchuannan coalbed methane field, southeastern Ordos Basin, China. Mar. Pet. Geol. 2016, 78, 254–270. [Google Scholar] [CrossRef]
- Tao, C.Q.; He, Y.C. The main controlling factors of coalbed methane enrichment in Shizhuangbei 3 ~ # coal seam. Coal Technol. 2017, 36, 23–25. [Google Scholar]
Sample | Proximate Analysis (%) | Maceral (%) | Ro,max/% | ||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | V | I | L | ||
BJ8-1-1 * | 5.04 | 5.49 | 31.33 | 67.70 | 21.90 | 9.40 | 0.96 |
BJ8-1-2 * | 5.07 | 2.99 | 29.30 | 66.50 | 24.40 | 7.50 | 0.95 |
JT2-1 | 5.70 | 1.96 | 23.26 | 55.00 | 43.50 | 0.90 | 0.47 |
JT2-2 | 5.53 | 2.36 | 23.87 | 79.20 | 18.10 | 0.50 | 0.45 |
JT2-3 | 4.67 | 2.20 | 27.06 | 57.20 | 40.90 | 0.00 | 0.60 |
JT2-4 | 5.89 | 1.34 | 26.96 | 71.50 | 22.20 | 0.00 | 0.62 |
JT2-5 | 6.04 | 2.41 | 29.97 | 62.70 | 32.90 | 0.80 | 0.60 |
JT2-6 | 5.77 | 1.46 | 29.67 | 36.20 | 60.50 | 0.90 | 0.47 |
JT2-7 | 3.12 | 3.57 | 36.15 | 95.20 | 2.30 | 0.80 | 0.56 |
JT2-8 | 2.00 | 6.11 | 44.92 | 96.00 | 0.70 | 2.30 | 0.50 |
JT2-9 | 1.96 | 7.24 | 43.44 | 96.30 | 0.50 | 0.00 | 0.43 |
JT2-10 | 2.08 | 4.98 | 43.32 | 98.20 | 1.70 | 0.00 | 0.65 |
JT2-11 | 2.21 | 3.20 | 38.58 | 86.40 | 9.10 | 3.00 | 0.50 |
JT2-12 | 2.01 | 3.75 | 41.73 | 82.60 | 6.20 | 6.60 | 0.54 |
JT2-13 | 2.20 | 7.10 | 40.70 | 86.10 | 12.60 | 0.70 | 0.53 |
DN141-1-1 | 1.85 | 4.83 | 25.07 | 33.90 | 57.40 | 4.90 | 0.94 |
DN141-1-2 | 1.13 | 3.63 | 23.40 | / | / | / | / |
DN141-1-3 | 1.01 | 2.02 | 27.85 | 53.90 | 42.20 | 1.40 | 0.70 |
DN141-1-4 | 1.06 | 2.06 | 27.71 | / | / | / | / |
DN141-1-5 | 0.97 | 1.89 | 27.37 | 40.10 | / | / | 0.72 |
DN141-1-6 | 1.23 | 1.39 | 30.36 | / | 54.50 | 3.40 | / |
DN141-2-1 | 0.81 | 9.89 | 46.17 | 86.70 | / | / | 0.64 |
DN141-2-2 | 0.76 | 6.02 | 42.92 | / | 1.50 | 7.10 | / |
DN141-2-3 | 0.97 | 5.29 | 44.59 | 82.90 | / | / | 0.64 |
DN141-2-4 | 0.72 | 11.10 | 43.07 | / | 11.10 | 2.90 | / |
DN141-2-5 | 0.92 | 9.91 | 42.47 | 92.90 | / | / | 0.73 |
DN141-2-6 | 1.14 | 4.80 | 45.04 | / | 0.60 | 1.20 | / |
Sample | Xishanyao Formation | Sample | Badaowan Formation | ||
---|---|---|---|---|---|
VL (m3/t) | PL (MPa) | VL (m3/t) | PL (MPa) | ||
JT2-1 | 11.80 | 7.41 | DN141-1-2 | 10.79 | 7.65 |
JT2-2 | 12.31 | 2.90 | DN141-1-3 | 10.76 | 7.54 |
JT2-3 | 13.95 | 3.37 | DN141-1-4 | 10.13 | 6.26 |
JT2-4 | 14.30 | 3.70 | DN141-1-5 | 13.31 | 7.39 |
JT2-5 | 12.59 | 9.87 | DN141-1-6 | 12.85 | 7.72 |
JT2-6 | 13.77 | 4.79 | DN141-2-1 | 10.87 | 6.15 |
JT2-7 | 15.62 | 3.65 | DN141-2-2 | 11.85 | 5.91 |
JT2-8 | 15.93 | 3.39 | DN141-2-3 | 10.14 | 5.26 |
JT2-9 | 14.35 | 6.248 | DN141-2-4 | 10.83 | 6.36 |
JT2-10 | 15.64 | 3.818 | DN141-2-5 | 9.83 | 5.36 |
JT2-11 | 15.81 | 3.98 | DN141-2-6 | 12.05 | 6.34 |
JT2-12 | 14.64 | 5.34 | BJ8-1-1 | 9.81 | 6.69 |
JT2-13 | 16.22 | 3.87 | BJ8-1-2 | 7.83 | 4.90 |
DN141-1-1 | 9.61 | 5.47 |
Sample | Depth (m) | M (m3/t) | P (m3/t) | Proportion of Gas Content Phases (%) | |
---|---|---|---|---|---|
Adsorbed Gas Ratio (%) | Free Gas Ratio (%) | ||||
BJ8-1-1 | 3362.99 | 13.34 | 11.29 | 54 | 46 |
BJ8-1-2 | 3360.07 | 16.11 | 10.94 | 47 | 53 |
JT2-1 | 3190.98 | 3.36 | 12.46 | 68 | 32 |
JT2-2 | 3192.38 | 3.18 | 14.67 | 67 | 33 |
JT2-3 | 3193.58 | 3.25 | 14.54 | 63 | 37 |
JT2-4 | 3194.54 | 3.40 | 14.84 | 61 | 39 |
JT2-5 | 3195.40 | 3.73 | 11.94 | 67 | 33 |
JT2-6 | 3195.90 | 3.93 | 14.28 | 72 | 28 |
JT2-7 | 3614.73 | 9.15 | 10.74 | 100 | 0 |
JT2-8 | 3615.70 | 9.27 | 11.89 | 100 | 0 |
JT2-9 | 3616.71 | 9.16 | 10.88 | 100 | 0 |
JT2-10 | 3617.52 | 9.68 | 9.19 | 100 | 0 |
JT2-11 | 3618.84 | 9.72 | 11.92 | 100 | 0 |
JT2-12 | 3619.19 | 10.14 | 11.09 | 100 | 0 |
JT2-13 | 3620.38 | 10.11 | 11.32 | 100 | 0 |
DN141-1-1 | 2582.50 | 8.86 | 11.96 | 55 | 45 |
DN141-1-2 | 2584.09 | 10.81 | 13.10 | 57 | 43 |
DN141-1-3 | 2585.65 | 12.71 | 12.94 | 58 | 42 |
DN141-1-4 | 2586.53 | 9.07 | 13.24 | 57 | 43 |
DN141-1-5 | 2587.23 | 15.35 | 14.63 | 65 | 35 |
DN141-1-6 | 2587.66 | 12.39 | 14.55 | 64 | 36 |
DN141-2-1 | 3007.59 | 5.81 | 7.15 | 100 | 0 |
DN141-2-2 | 3009.82 | 8.13 | 8.95 | 100 | 0 |
DN141-2-3 | 3010.86 | 7.68 | 7.14 | 100 | 0 |
DN141-2-4 | 3012.04 | 10.33 | 7.62 | 100 | 0 |
DN141-2-5 | 3013.44 | 9.34 | 6.21 | 100 | 0 |
DN141-2-6 | 3014.73 | 8.32 | 8.72 | 100 | 0 |
Sample | Formation | The Predicted Value of Adsorbed Gas Content | Relative Error (%) | |
---|---|---|---|---|
Adsorption Model (m3/t) | Neural Network Model (m3/t) | |||
JT2-1 | J2x | 8.51 | 8.51 | 0 |
JT2-2 | J2x | 9.85 | 9.85 | 0 |
JT2-3 | J2x | 9.20 | 9.20 | 0 |
JT2-4 | J2x | 9.07 | 9.07 | 0 |
JT2-5 | J2x | 7.97 | 10.18 | 27.69 ** |
JT2-6 | J2x | 10.25 | 10.25 | 0 |
JT2-7 | J1b | 10.74 | 10.69 | 0.50 |
JT2-8 | J1b | 11.89 | 11.73 | 1.34 |
JT2-9 | J1b | 10.88 | 11.73 | 7.87 |
JT2-10 | J1b | 9.19 | 11.64 | 26.65 ** |
JT2-11 | J1b | 11.92 | 11.67 | 2.14 |
JT2-12 | J1b | 11.09 | 11.31 | 1.98 |
JT2-13 | J1b | 11.32 | 11.18 | 1.27 |
DN141-1-1 | J2x | 6.62 | 6.63 | 0 |
DN141-1-2 | J2x | 7.43 | 7.43 | 0 |
DN141-1-3 | J2x | 7.55 | 7.64 | 1.21 |
DN141-1-4 | J2x | 7.59 | 6.84 | 9.87 |
DN141-1-5 | J2x | 9.48 | 9.47 | 0 |
DN141-1-6 | J2x | 9.28 | 9.21 | 0.69 |
DN141-2-1 | J1b | 7.15 | 7.16 | 0.25 |
DN141-2-2 | J1b | 8.95 | 8.94 | 0.16 |
DN141-2-3 | J1b | 7.14 | 7.15 | 0.15 |
DN141-2-4 | J1b | 7.62 | 4.69 | 38.35 ** |
DN141-2-5 | J1b | 6.21 | 6.26 | 0.76 |
DN141-2-6 | J1b | 8.72 | 8.75 | 0.34 |
Sample | Pore Volume (cm3/g) | Pore Specific Surface Area (m2·g) | ||||||
---|---|---|---|---|---|---|---|---|
Micropores | Mesopores | Mecropores | Total | Micropores | Mesopores | Mecropores | Total | |
DN141-1-1 | 0.077 | 0.047 | 0.909 | 1.033 | 236.375 | 0.348 | 1.365 | 238.088 |
DN141-1-3 | 0.065 | 0.054 | 0.518 | 0.637 | 206.816 | 0.502 | 4.605 | 211.923 |
DN141-1-5 | 0.058 | 0.026 | 0.456 | 0.540 | 194.535 | 0.346 | 5.237 | 200.118 |
DN141-2-1 | 0.032 | 0 | 0.027 | 0.059 | 98.230 | 0.035 | 0.333 | 98.598 |
DN141-2-3 | 0.034 | 0 | 0.025 | 0.059 | 105.861 | 1.294 | 2.184 | 109.339 |
DN141-2-5 | 0.035 | 0 | 0.024 | 0.059 | 110.950 | 1.273 | 2.018 | 114.241 |
Average | 0.050 | 0.021 | 0.327 | 0.398 | 158.795 | 0.633 | 2.624 | 162.052 |
Trap Number | Closed Height (m) | Type | Area (km2) | High Point of Structure (m) | Low Point of Structure (m) |
---|---|---|---|---|---|
1 | 15 | Faulted anticline | 1.95 | −1650 | −1665 |
2 | 50 | Faulted anticline | 5.60 | −1550 | −1600 |
3 | 20 | Faulted anticline | 6.07 | −1940 | −1960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, B.; Wang, H.; Sun, B.; Ouyang, Z.; Yang, M.; Wang, Y.; Zhou, X. Gas Content and Geological Control of Deep Jurassic Coalbed Methane in Baijiahai Uplift, Junggar Basin. Processes 2024, 12, 2671. https://doi.org/10.3390/pr12122671
Luo B, Wang H, Sun B, Ouyang Z, Yang M, Wang Y, Zhou X. Gas Content and Geological Control of Deep Jurassic Coalbed Methane in Baijiahai Uplift, Junggar Basin. Processes. 2024; 12(12):2671. https://doi.org/10.3390/pr12122671
Chicago/Turabian StyleLuo, Bing, Haichao Wang, Bin Sun, Zheyuan Ouyang, Mengmeng Yang, Yan Wang, and Xiang Zhou. 2024. "Gas Content and Geological Control of Deep Jurassic Coalbed Methane in Baijiahai Uplift, Junggar Basin" Processes 12, no. 12: 2671. https://doi.org/10.3390/pr12122671
APA StyleLuo, B., Wang, H., Sun, B., Ouyang, Z., Yang, M., Wang, Y., & Zhou, X. (2024). Gas Content and Geological Control of Deep Jurassic Coalbed Methane in Baijiahai Uplift, Junggar Basin. Processes, 12(12), 2671. https://doi.org/10.3390/pr12122671