Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = rod insulators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10068 KiB  
Article
Effect of AF Surface Nanostructure on AFRP Interface Properties Under Temperature: A MD Simulation Study
by Zhaohua Zhang, Guowei Xia, Chunying Qiao, Longyin Qiao, Fei Gao, Qing Xie and Jun Xie
Polymers 2025, 17(15), 2024; https://doi.org/10.3390/polym17152024 - 24 Jul 2025
Viewed by 229
Abstract
The insulating rod of aramid fiber-reinforced epoxy resin composites (AFRP) is an important component of gas-insulated switchgear (GIS). Under complex working conditions, the high temperature caused by voltage, current, and external climate change becomes one of the important factors that aggravate the interface [...] Read more.
The insulating rod of aramid fiber-reinforced epoxy resin composites (AFRP) is an important component of gas-insulated switchgear (GIS). Under complex working conditions, the high temperature caused by voltage, current, and external climate change becomes one of the important factors that aggravate the interface degradation between aramid fiber (AF) and epoxy resin (EP). In this paper, molecular dynamics (MD) simulation software is used to study the effect of temperature on the interfacial properties of AF/EP. At the same time, the mechanism of improving the interfacial properties of three nanoparticles with different properties (insulator Al2O3, semiconductor ZnO, and conductor carbon nanotube (CNT)) is explored. The results show that the increase in temperature will greatly reduce the interfacial van der Waals force, thereby reducing the interfacial binding energy between AF and EP, making the interfacial wettability worse. Furthermore, the addition of the three fillers can improve the interfacial adhesion of the composite material. Among them, Al2O3 and CNT maintain a large dipole moment at high temperature, making the van der Waals force more stable and the adhesion performance attenuation less. The Mulliken charge and energy gap of Al2O3 and ZnO decrease slightly with temperature but are still higher than AF, which is conducive to maintaining good interfacial insulation performance. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

16 pages, 8495 KiB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 288
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

22 pages, 12499 KiB  
Article
Optimization of Structural Configuration and Ridge Height for Large-Span Insulated Plastic Greenhouse Based on Finite Element Analysis
by Xiaoxing Dong, Fengzhi Piao, Nanshan Du, Han Dong, Tao Zhang, Yanping Qin, Yaling Li and Zhixin Guo
Agriculture 2025, 15(13), 1333; https://doi.org/10.3390/agriculture15131333 - 21 Jun 2025
Viewed by 306
Abstract
The large-span insulated plastic greenhouse is a highly promising horticultural facility. The design parameters and configuration of structural components significantly impact their safety and load-bearing performance. However, current research in this field remains insufficient. In this study, the deformation, stress distribution, and stability [...] Read more.
The large-span insulated plastic greenhouse is a highly promising horticultural facility. The design parameters and configuration of structural components significantly impact their safety and load-bearing performance. However, current research in this field remains insufficient. In this study, the deformation, stress distribution, and stability of large-span insulated plastic greenhouses with different structural configurations were investigated using the finite element method. Subsequently, the ultimate bearing capacity of large-span insulated plastic greenhouses with varying ridge heights was examined. The research indicated that the greenhouse with a plane truss and double-layer tie rod exhibited the smallest deformation and stress in its members, as well as the highest ultimate load-bearing capacity. The analysis revealed that the installation of double-layer tie rods not only enhanced the collaborative effect of arch frames within the structural calculation unit but also reduced displacement along the Z direction, effectively mitigated the P- effect, reduced out-of-plane bending stress, and improved the ultimate load-bearing capacity. Ridge height affected the load-bearing capacity of the greenhouse structure. However, a higher ridge height did not necessarily result in a stronger ultimate load-bearing capacity. The greenhouse structure with a ridge height of 5 m demonstrated the maximum ultimate load-bearing capacity, capable of bearing 1.98 times the initial load. This study provides theoretical support for the configuration of structural components of large-span insulated plastic greenhouses and offers a scientific basis for the optimal design of ridge height. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

41 pages, 7139 KiB  
Review
Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines
by Guohui Pang, Zhijin Zhang, Jianlin Hu, Qin Hu, Hualong Zheng and Xingliang Jiang
Energies 2025, 18(12), 3138; https://doi.org/10.3390/en18123138 - 14 Jun 2025
Viewed by 667
Abstract
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal [...] Read more.
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal insulation for overhead transmission lines, and its performance directly affects the overall operational condition of the insulator. However, it remains susceptible to failures induced by complex actions of mechanical, electrical, thermal, and environmental stresses. This paper systematically reviews the major failure modes of core rods, including mechanical failures (normal fracture, brittle fracture, and decay-like fracture) and electrical failures (flashunder and abnormal heating of the core rod). Through analysis of extensive field data and research findings, key failure mechanisms are identified. Preventive strategies encompassing material modification (such as superhydrophobic coatings, self-diagnostic materials, and self-healing epoxy resin), structural optimization (like the optimization of grading rings), and advanced inspection methods (such as IRT detection, Terahertz (THz) detection, X-ray computed tomography (XCT)) are proposed. Furthermore, the limitations of current technologies are discussed, emphasizing the need for in-depth studies on deterioration mechanisms, materials innovation, and defect detection technologies to enhance the long-term reliability of composite insulators in transmission networks. Full article
Show Figures

Figure 1

18 pages, 7255 KiB  
Article
Effect of Annealing Temperature on the Microstructural and Mechanical Properties of Wire Rod Steel Annealed Using a Biomass Gasifier
by Pathompong Chootapa, Songkran Wiriyasart and Sommas Kaewluan
Energies 2025, 18(8), 1912; https://doi.org/10.3390/en18081912 - 9 Apr 2025
Viewed by 638
Abstract
Natural and liquefied petroleum gases are widely used in industrial heat treatment. However, the rising cost of gas, combined with increased demand, has significantly impacted production costs and the environment. The annealing process typically relies on natural or liquefied petroleum gases as the [...] Read more.
Natural and liquefied petroleum gases are widely used in industrial heat treatment. However, the rising cost of gas, combined with increased demand, has significantly impacted production costs and the environment. The annealing process typically relies on natural or liquefied petroleum gases as the primary heat source. In this study, we aimed to investigate the use of biomass fuel as a replacement for fossil fuels and to evaluate the mechanical properties and microstructure of wire rod steel after annealing using indirect heat from a gasifier. We experimented to examine the effects of annealing temperatures of 650 °C, 700 °C (below the critical temperature Ac1), and 750 °C (above Ac1 but below the upper temperature Ac3). The batch furnace, made of stainless steel, was modified from a traditional wire annealing furnace that originally used CNG and LPG gas burners. It was adapted into a wire annealing furnace connected to a cross-draft gasifier. The furnace’s interior was designed with spiral cooling fins to minimize energy consumption and shorten annealing time. Additionally, it was modified to use biomass as a substitute fuel, reducing environmental pollution. The furnace was coated with thermal insulation, and the biomass gasifier stove was a cross-draft device with primary air feeding at 20 m3/h and secondary air supplied at a constant flow rate of 32 m3/h, 36 m3/h, or 40 m3/h. As a fuel source, we used eucalyptus. The mechanical properties of wire rod steel were measured in terms of tensile strength and torsion, following the TIS 138-2562 standard. This standard specifies that the tensile strength must be at least 260 MPa. Regarding torsion, the TIS 138-2562 requirements state that the wire must withstand at least 75 rounds of twisting without breaking. Our results showed that after annealing at 650 °C, 700 °C, or 750 °C, with a soaking time of 30 min and subsequent cooling in the furnace at natural temperature for 24 h, the tensile strength values were 494.82, 430.87, and 381.33 MPa, respectively. The torsion values were 126.92, 125.8, and 125.76 rounds, respectively. Additionally, ferrite grain size increased with annealing temperature, reaching a maximum of 750 °C. The total annealing duration for each batch was 2 h and 40 min at 650 °C, 2 h and 10 min at 700 °C, and 2 h at 750 °C. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

13 pages, 2405 KiB  
Article
Development of Electrode of Electric Impulse Chamber for Coal Grinding
by Ayanbergen Kairbekovich Khassenov, Dana Zhilkibaevna Karabekova, Madina Muratovna Bolatbekova, Arystan Satybaldinovich Kudussov, Serik S. Kassymov and Lyubov Vasilyevna Chirkova
Appl. Sci. 2025, 15(7), 3607; https://doi.org/10.3390/app15073607 - 25 Mar 2025
Cited by 1 | Viewed by 327
Abstract
The coal industry remains a significant source of environmental pollution. Development of coal–water fuel allows for the reduction of harmful emissions (CO2, SO2, etc.) due to a more complete and environmentally friendly combustion of the fuel, making it an [...] Read more.
The coal industry remains a significant source of environmental pollution. Development of coal–water fuel allows for the reduction of harmful emissions (CO2, SO2, etc.) due to a more complete and environmentally friendly combustion of the fuel, making it an attractive transition solution towards cleaner energy. This study uses electropulse processing, which significantly increased the efficiency of the coal grinding process compared to mechanical action methods (cone mills, drum mills, etc.). The main advantages of electropulse technology are grinding efficiency, reduced high environmental impact (no need for chemical reagents and waste minimization), and the ability to produce coal powder with improved porosity and a larger surface area. The electrode in electropulse devices plays a decisive role in obtaining coal powder for coal–water fuel. The positive electrode must be resistant to high temperatures and aggressive conditions arising during the pulse processing. We have developed an optimal electrode design, including a gap between the metal rod and insulation, which ensures high resistance to pulse discharges. Increasing the capacity of the capacitor and the number of pulse discharges has had a positive effect on the yield of the finished product. The developed technology of electric impulse coal grinding helps to reduce the negative impact of the coal industry on the environment. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

12 pages, 2362 KiB  
Article
Experimental Study on the Discharge Characteristics of a Dripping ‘Rod–Plane’ Air Gap at High Altitude Under DC Voltages
by Chuyan Zhang, Xi Wang, Xinzhe Yu, Kaixuan Qu, Yuxi Dong and Yu Deng
Energies 2025, 18(6), 1453; https://doi.org/10.3390/en18061453 - 16 Mar 2025
Viewed by 438
Abstract
High-voltage transmission and substation projects at high altitudes are pivotal in realizing the objective of universal electricity access. However, the reduced air density at elevated heights facilitates the formation and propagation of discharges, posing more stringent challenges to the external insulation of these [...] Read more.
High-voltage transmission and substation projects at high altitudes are pivotal in realizing the objective of universal electricity access. However, the reduced air density at elevated heights facilitates the formation and propagation of discharges, posing more stringent challenges to the external insulation of these projects compared to their counterparts in plains areas. Furthermore, considering the influence of meteorological conditions such as rainfall, it is imperative to conduct comprehensive experimental studies on the insulation properties of air gaps to inform the design and maintenance of engineered external insulation. This paper presents the results of rod–plane gap discharge tests conducted under dripping conditions at an actual high-altitude location of 2500 m. The employed test methodology effectively simulates the impact of rainfall on the insulation characteristics of the gap. Based on the experimental findings, a detailed analysis is conducted on the effects of gap distance, dripping flow rate, and conductivity on the gap breakdown voltage. Additionally, the discharge paths and underlying mechanisms under water-dripping conditions on rod electrodes are briefly discussed. The acquired data and conclusions contribute to a deeper understanding of the mechanisms governing rainfall effects on gap discharges and provide valuable insights for the design of external insulation in high-altitude HVDC transmission projects. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

14 pages, 5541 KiB  
Article
Dendrite Structure Refinement and Mechanical Property Improvement of a Single-Crystal Superalloy
by Hongyuan Sun, Dexin Ma, Yunxing Zhao, Jianhui Wei, Xiaoyi Gong and Zhongyuan Sun
Metals 2025, 15(3), 295; https://doi.org/10.3390/met15030295 - 7 Mar 2025
Viewed by 739
Abstract
In the present work, the effect of different casting processes on the microstructure and creep properties of the second-generation single-crystal superalloy DD419 was investigated. Under conventional production conditions and a contour-suited thermal insulation method, single-crystal rods of types A and B were fabricated, [...] Read more.
In the present work, the effect of different casting processes on the microstructure and creep properties of the second-generation single-crystal superalloy DD419 was investigated. Under conventional production conditions and a contour-suited thermal insulation method, single-crystal rods of types A and B were fabricated, respectively. In comparison to rod type A, the solidification process of rod type B featured a 1.6-fold increase in the temperature gradient and a 32% reduction in primary dendrite spacing. The γ/γ′ eutectic in the as-cast microstructure, the residual eutectic phase, and porosity after heat treatment were also significantly reduced, resulting in the improved homogeneity of the single crystal castings. Under the testing conditions of 850 °C/650 MPa and 1050 °C/190 MPa, the stress rupture life of sample B was enhanced by 25% and 5.2%, respectively, compared to sample A. Therefore, due to dendrite structure refinement, the stress rupture life of the superalloy was evidently improved, especially at medium temperatures. Full article
(This article belongs to the Special Issue Research Progress of Crystal in Metallic Materials)
Show Figures

Figure 1

17 pages, 4246 KiB  
Article
A Preprocessing Method for Insulation Pull Rod Defect Dataset Based on the YOLOv5s Object Detection Network
by Xuetong Li, Meng Cong, Bo Liu, Xianhao Fan, Weiqi Qin, Fangwei Liang, Chuanyang Li and Jinliang He
Sensors 2025, 25(4), 1209; https://doi.org/10.3390/s25041209 - 17 Feb 2025
Viewed by 656
Abstract
Insulation pull rods used in gas-insulated switchgear (GIS) inevitably contain the micro defects generated during production. The intelligent identification method, which requires large datasets with a balanced distribution of defect types, is regarded as the prevailing way to avoid insulation faults. However, the [...] Read more.
Insulation pull rods used in gas-insulated switchgear (GIS) inevitably contain the micro defects generated during production. The intelligent identification method, which requires large datasets with a balanced distribution of defect types, is regarded as the prevailing way to avoid insulation faults. However, the number of defective pull rods is limited, and the occurrence of different types of defects is highly imbalanced in actual production, leading to poor recognition performance. Thus, this work proposes a data preprocessing method for the insulation pull rod defect feature dataset. In this work, the YOLOv5s algorithm is used to detect defects in insulation pull rod images, creating a dataset with five defect categories. Two preprocessing methods for impurities and bubbles are introduced, including copy–paste within images and bounding box corrections for hair-like impurities. The results show that these two methods can specifically enhance small-sized defect targets while maintaining the detection performance for other types of targets. In contrast, the proposed method integrates copy–paste within images with Mosaic data augmentation and corrects bounding boxes for hair-like impurities significantly improving the model’s performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 2661 KiB  
Article
Influence of Mountain Wildfires on the Insulation Properties of Air Gaps in Power Grids
by Fangrong Zhou, Hao Geng, Gang Wen, Yutang Ma, Yi Ma, Guofang Wang, Jun Cao, Jiaze Xu and Hongwei Mei
Energies 2025, 18(2), 225; https://doi.org/10.3390/en18020225 - 7 Jan 2025
Viewed by 876
Abstract
The complex terrain of China frequently leads to wildfires, which in turn pose a threat to the safe operation of power transmission lines. Studying the breakdown characteristics of air gaps under wildfire conditions is of great significance for understanding wildfire propagation mechanisms, risk [...] Read more.
The complex terrain of China frequently leads to wildfires, which in turn pose a threat to the safe operation of power transmission lines. Studying the breakdown characteristics of air gaps under wildfire conditions is of great significance for understanding wildfire propagation mechanisms, risk assessment and management, and ecological environment protection. This paper establishes an experimental platform simulating wildfire climatic conditions and conducts experimental research on air gaps between rod–rod gaps and conductor–ground gaps. The experimental voltage types include direct current, power frequency, and standard operating waves. The impact of wildfire factors on the breakdown voltage and discharge characteristics of air gaps was obtained. The results indicate that the main factors affecting the air gap breakdown characteristics during wildfires are flame height and smoke. Flame height directly influences the gap insulation distance. Under flame bridging conditions, the maximum decrease in breakdown voltage reaches 70–80%. As the concentration of smoke increases, the degradation of insulation performance becomes more pronounced, with a reduction ranging from 20% to over 50%. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

18 pages, 4451 KiB  
Article
A Self-Oscillator Based on Liquid Crystal Elastomer Fiber Under Constant Voltage
by Dali Ge, Xin Liu, Qingrui Hong and Haiyi Liang
Polymers 2024, 16(22), 3192; https://doi.org/10.3390/polym16223192 - 17 Nov 2024
Viewed by 1058
Abstract
Self-oscillation is the phenomenon in which a system generates spontaneous, consistent periodic motion in response to a steady external stimulus, making it highly suitable for applications in soft robotics, motors, and mechatronic devices. In this paper, we present a self-oscillator based on liquid [...] Read more.
Self-oscillation is the phenomenon in which a system generates spontaneous, consistent periodic motion in response to a steady external stimulus, making it highly suitable for applications in soft robotics, motors, and mechatronic devices. In this paper, we present a self-oscillator based on liquid crystal elastomer (LCE) fiber under constant voltage. The system primarily consists of an LCE–liquid metal (LCE-LM) composite fiber, a metal mass sphere, and a straight rod featuring both conductive and insulating segments. Building upon an established dynamic LCE model, we derive the governing dynamic equations. Numerical calculations reveal two distinct motion regimes: a static regime and a self-oscillation regime. Furthermore, we provide the temporal behavior curves of electrothermal-induced contraction and tensile force, the phase trajectories variation curves of the equivalent driving force and damping force. These detailed studies elucidate that self-oscillation results from the contraction of the electrothermal-responsive LCE-LM fiber when the circuit is activated, with continuous periodic motion being sustained through the interplay between the metal mass sphere and a self-controlled dynamic circuit. We also investigate the threshold conditions necessary for initiating self-oscillation, as well as the key system parameters that influence its frequency and amplitude. Our self-oscillator demonstrates improved stability by reducing the effects of gravity and other disturbances. Additionally, the curved trajectory of the mass sphere can be achieved by replacing the straight rod with a curved one, resulting in a more flexible and easily controllable structure. Given these characteristics, a self-oscillator system based on LCE-LM fiber may be ideal for creating monitoring and warning devices, dynamic circuit systems, and for integrating actuators and controllers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 2212 KiB  
Article
Research on Fault Prediction of Power Devices in Rod Control Power Cabinets Based on BiTCN-Attention Transfer Learning Model
by Zhi Chen, Liqi Ye, Yifan Jian, Meiyuan Chen and Yuan Min
Micromachines 2024, 15(11), 1326; https://doi.org/10.3390/mi15111326 - 30 Oct 2024
Viewed by 952
Abstract
The Insulated Gate Bipolar Transistor (IGBT) is the key power device in the rod control power cabinet of nuclear power plants; its reliable operation is of great significance for ensuring the safe and economical operation of the nuclear power plants. Therefore, it is [...] Read more.
The Insulated Gate Bipolar Transistor (IGBT) is the key power device in the rod control power cabinet of nuclear power plants; its reliable operation is of great significance for ensuring the safe and economical operation of the nuclear power plants. Therefore, it is necessary to conduct fault prediction research on IGBT to achieve better condition-based maintenance and improve its operational reliability. However, power cabinets often operate under multiple, complex working conditions, so predicting IGBT faults from single working condition data usually has limitations and low accuracy. Its failure probability has an important relationship with the actual operating conditions of the cabinet. In order to improve the reliability and maintainability of the control power cabinet in nuclear power plants, this paper takes IGBTs in the rod control power cabinet as the object and makes full use of the data of IGBTs under multiple working conditions to carry out research on the cross-condition fault prediction of IGBTs under multiple-source working conditions. A transfer learning (TL) model based on a bidirectional time convolutional network (BiTCN) combined with attention was proposed to solve the problem of low accuracy of cross-operating fault prediction in a multi-source domain. Firstly, an IGBT fault simulation model was built to collect the life cycle state data of the module under different working conditions. Then, after pre-processing such as removing outliers, kernel principal component analysis (KPCA) was used to integrate all source domain data, obtain source domain characterization data, and train the BiTCN-attention model. Finally, the BiTCN-attention model trained in the source domain was transferred, and the model was fine-tuned according to the target domain data. Simulation results show that the accuracy of the proposed BiTCN-attention transfer learning prediction method can reach more than 99%, which is significantly better than that of the recurrent neural network transfer learning (RNN-TL) model, long short-term memory network transfer learning (LSTM-TL) model, gated cyclic unit transfer learning (GRU-TL) model, and time convolutional network transfer learning (TCN-TL) model. This method can not only reduce the inconsistency of fault characteristic values caused by changes in working conditions but also accurately predict the degradation trend when only early fault data are available, providing an effective solution for IGBT fault prediction across working conditions in multi-source domains. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules)
Show Figures

Figure 1

15 pages, 4267 KiB  
Article
Temperature and Physicochemical Properties of Abnormal Heating Composite Insulators
by Li Wang, Qin Hu, Xing Xu, Lipeng Rao and Xingliang Jiang
Polymers 2024, 16(21), 3010; https://doi.org/10.3390/polym16213010 - 26 Oct 2024
Cited by 1 | Viewed by 1221
Abstract
Abnormal heating will reduce the insulation performance of composite insulators or even cause insulator fracture, and the abnormal heating phenomenon is more serious under high-humidity conditions. Therefore, in this paper, the voltage withstand test of abnormal heating composite insulators caused by aging and [...] Read more.
Abnormal heating will reduce the insulation performance of composite insulators or even cause insulator fracture, and the abnormal heating phenomenon is more serious under high-humidity conditions. Therefore, in this paper, the voltage withstand test of abnormal heating composite insulators caused by aging and damp sheath, decay-like core rod, and contamination were carried out under different ambient humidity. The heating and discharge of composite insulators were observed by infrared thermal imager and ultraviolet imager, and its temperature characteristics were analyzed from the aspects of heating range, heating shape, and temperature difference. In addition, in order to study the abnormal heating mechanism of composite insulators, the micro-morphology, chemical groups and dielectric properties of the silicon rubber of composite insulators with aging and damp sheath and the decay-like core rod were also measured. It is found that the temperature characteristics of the three types of abnormal heating composite insulators are different, and the temperature difference increases with the increase of humidity. The deterioration of silicone rubber and core rod material is the internal reason for the abnormal heating of composite insulators, and high-humidity conditions will exacerbate the heating phenomenon. Full article
(This article belongs to the Special Issue Aging Behavior of Polymeric Materials)
Show Figures

Figure 1

13 pages, 11189 KiB  
Article
Deep Learning-Based Intelligent Detection Device for Insulation Pull Rod Defects
by Hua Yu, Shu Niu, Shuai Li, Gang Yang, Xuan Wang, Hanhua Luo, Xianhao Fan and Chuanyang Li
Energies 2024, 17(17), 4344; https://doi.org/10.3390/en17174344 - 30 Aug 2024
Cited by 3 | Viewed by 959
Abstract
This paper proposes a deep learning-based intelligent detection device for insulation pull rod defects, addressing the issues of low detection accuracy, poor timeliness of intelligent analysis, and the difficulty in preserving detection results. Firstly, by constructing the pull rod defects dataset and training [...] Read more.
This paper proposes a deep learning-based intelligent detection device for insulation pull rod defects, addressing the issues of low detection accuracy, poor timeliness of intelligent analysis, and the difficulty in preserving detection results. Firstly, by constructing the pull rod defects dataset and training the YOLOv5s network, along with commonly used object detection algorithms in industrial defect detection, the feasibility of deep learning networks for insulation pull rod defects detection is explored. Secondly, the trained model is combined to build an intelligent detection device for pull rod defects, integrating insulation pull rod image acquisition and defect detection into a unified system. The research results demonstrate that the YOLOv5s network can quickly and accurately detect pull rod defects. On the test set constructed in this paper, the detection performance metric mAP@0.5:0.95 of the trained model reached 54.7%. Specifically, the mAP@0.5 score was 86.9% at a threshold of 0.5. The detection speed FPS reached 169.5, significantly improving the detection efficiency and accuracy compared to traditional object detection algorithms. By establishing an organic connection between the image hardware acquisition device and the deep learning network, the existing problems of inefficient detection and difficult storage of detection results in pull rod defects detection methods are effectively addressed. This research provides new insights for detecting insulation pull rod defects. Full article
Show Figures

Figure 1

16 pages, 4356 KiB  
Article
Thermal Performance Analysis of Aluminum Alloy Phase Change Panels for Regions with Hot Summers and Warm Winters
by Baoshi Jiang and Chen Yang
Appl. Sci. 2024, 14(16), 6936; https://doi.org/10.3390/app14166936 - 8 Aug 2024
Cited by 1 | Viewed by 1422
Abstract
Utilizing phase change materials (PCMs) in passive energy-saving wall panels to regulate indoor temperatures during hot seasons can improve people’s thermal comfort and reduce the energy consumption of air conditioning systems. This study is based on the hot summer and warm winter climatic [...] Read more.
Utilizing phase change materials (PCMs) in passive energy-saving wall panels to regulate indoor temperatures during hot seasons can improve people’s thermal comfort and reduce the energy consumption of air conditioning systems. This study is based on the hot summer and warm winter climatic characteristics of Hainan. According to local meteorological data and residents’ living habits, a suitable phase change temperature of approximately 28 °C was determined. A composite PCM of paraffin and stearic acid n-butyl ester was prepared and tested for thermal performance. Encased in an aluminum box with non-penetrating aluminum rods to enhance heat transfer, the phase change panel was applied to the inner side of exterior walls. Thermal tests demonstrated that increasing the mass ratio of stearic acid n-butyl ester to paraffin lowers the melting point and latent heat. At a 3:7 mass ratio, the melting point of the composite PCM was 28.30 °C, and the latent heat was 128.26 J/g. The 20 mm thick panel maintained a stable phase change process, with unheated surface temperatures between 28 °C and 29 °C for up to 180 min. Compared to panels without aluminum rods, those with rods exhibited a 20% longer phase change time, extended heat transfer paths, and reduced liquid-phase convective heat transfer rates, demonstrating improved PCM utilization. Therefore, the phase change panel with non-penetrating aluminum rods exhibits excellent insulation and temperature control properties. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop