Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = rock fissure networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11744 KB  
Article
Effects of Fissure Network Morphology on Soil Organic Carbon Pools in Karst Rocky Habitats
by Yuanduo Chen, Meiquan Wang, Huiwen Xiang, Zongsheng Huang, Zhixin Lin, Xiaohu Huang and Jiachuan Yang
Forests 2026, 17(1), 59; https://doi.org/10.3390/f17010059 - 31 Dec 2025
Abstract
Karst regions cover about 12% of Earth’s land surface and exhibit high uncertainty in soil organic carbon (SOC) pools due to strong spatial heterogeneity. This study quantifies the association between rock fissure network morphology and SOC pools across three karst rocky habitat types [...] Read more.
Karst regions cover about 12% of Earth’s land surface and exhibit high uncertainty in soil organic carbon (SOC) pools due to strong spatial heterogeneity. This study quantifies the association between rock fissure network morphology and SOC pools across three karst rocky habitat types in the Maolan National Nature Reserve (Guizhou, China): Type I (predominantly sub-horizontal and weakly connected fissures), Type II (oblique and moderately connected fissures), and Type III (predominantly subvertical and highly connected fissures). Fissure network morphology was characterized using quantitative network morphology metrics, and SOC pools (content, density, and stock) were measured from field samples (with long-term sequestration estimated). Type I habitats showed the highest SOC content, density, stock, and sequestration estimates, whereas Type III habitats consistently showed the lowest values. Across habitats, SOC density and stock were negatively associated with metrics reflecting steeper fissure orientation, greater spatial heterogeneity, and higher network connectivity, while SOC content was positively associated with fissure network complexity. These findings highlight fissure network morphology as an important structural dimension for explaining SOC variability in karst rocky habitats and suggest incorporating fissure information into SOC assessment and habitat-specific soil and vegetation management in karst landscapes. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

26 pages, 10447 KB  
Article
Mechanisms and Mitigation of Injection-Induced Microseismicity: The Critical Role of Fracture Orientation in Shear Reactivation
by Yilong Yuan, Wei Wang, Jiawei Tang and Zixu Hu
Appl. Sci. 2025, 15(22), 11919; https://doi.org/10.3390/app152211919 - 9 Nov 2025
Viewed by 488
Abstract
Hot dry rock (HDR) is a promising renewable energy resource whose vast reserves and wide distribution have attracted extensive attention in recent years. However, exploiting HDR resources requires hydraulic stimulation, which is typically accompanied by substantial microseismic activity, posing significant risks to project [...] Read more.
Hot dry rock (HDR) is a promising renewable energy resource whose vast reserves and wide distribution have attracted extensive attention in recent years. However, exploiting HDR resources requires hydraulic stimulation, which is typically accompanied by substantial microseismic activity, posing significant risks to project safety and public acceptance. Current understanding of microseismic mechanisms, particularly the role of fracture geometry under varying injection schemes, remains inadequate. This study employs a three-dimensional block-based discrete element method to construct a fluid–mechanics coupled model founded on a discrete fracture network, aimed at investigating the mechanical behavior of fractures and the spatial distribution of microseismicity during hydraulic stimulation. Our results quantitatively demonstrate that fractures oriented at 45° to the maximum principal stress are most susceptible to shear reactivation and microseismic clustering, with event magnitudes strongly correlated to both fracture orientation and intra-fracture fluid pressure. Consequently, preventing critically high fluid pressures in natural fractures near the injection well, particularly those at approximately 45° to the maximum principal stress direction, is essential for risk mitigation. Cyclic injection can shear more fractures and slightly reduce magnitudes via staged pressure relaxation, but its effectiveness in controlling microseismic magnitude is limited. Therefore, it is recommended to implement measures to control the entry of fracturing fluid into these high-risk fissures, such as segmented fracturing or temporary plugging techniques. This strategy is expected to enhance seismic risk mitigation, thereby contributing to the safe and efficient exploitation of deep geothermal resources. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 17825 KB  
Article
Study on Tensile Mechanical Behavior and Crack Propagation Mechanism of Yellow Sandstone Containing Randomly Distributed Fissures
by Zhimin Sun and Yaoyao Meng
Processes 2025, 13(11), 3462; https://doi.org/10.3390/pr13113462 - 28 Oct 2025
Viewed by 395
Abstract
To address the complexity of tensile mechanical behavior in fissured rock masses, this study conducted Brazilian splitting tests and numerical simulations on yellow sandstone containing randomly distributed fissures. Based on secondary development of the ABAQUS platform, a numerical model considering the spatial distribution [...] Read more.
To address the complexity of tensile mechanical behavior in fissured rock masses, this study conducted Brazilian splitting tests and numerical simulations on yellow sandstone containing randomly distributed fissures. Based on secondary development of the ABAQUS platform, a numerical model considering the spatial distribution of mineral components was established. A random fissure network was generated using the Weibull distribution, and crack propagation was characterized by employing cohesive elements. The influence mechanisms of the fissure inclination angle (θ = 0°~90°) and fissure ratio (R = 3~15%) on Brazilian tensile strength, failure mode, and crack propagation were systematically analyzed. The research demonstrates the following: (1) Brazilian tensile strength exhibits an overall decreasing trend with an increasing fissure ratio, while the effect of the fissure inclination angle is non-monotonic: at a low fissure ratio (R = 3%), Brazilian tensile strength shows a “decrease–increase–decrease” characteristic; at a medium to high fissure ratio (R ≥ 9%), Brazilian tensile strength continuously increases with an increasing fissure inclination angle. (2) The fissure ratio dominates the deviation of the failure path (deviation intensifies when θ ≤ 67.5° and is minimal at θ = 90°). At the mesoscale, the proportion of tensile cracks increases with an increasing R, while the contribution of shear cracks significantly enhances with an increasing θ (sharply increasing after θ > 45°). (3) Crack propagation is controlled by the spatial interaction of initial cracks. Under the combined action of a high inclination angle (θ = 90°) and high fissure ratio (R = 15%), a tensile–shear composite failure pattern forms, characterized by dual-source crack initiation and central coalescence. This study provides a mesoscale mechanical basis for the stability assessment of engineering structures in fissured rock masses. Full article
Show Figures

Figure 1

19 pages, 1850 KB  
Article
Investigating the Frost Cracking Mechanisms of Water-Saturated Fissured Rock Slopes Based on a Meshless Model
by Chunhui Guo, Feixiang Zeng, Han Shao, Wenbing Zhang, Bufan Zhang, Wei Li and Shuyang Yu
Water 2025, 17(19), 2858; https://doi.org/10.3390/w17192858 - 30 Sep 2025
Viewed by 427
Abstract
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed [...] Read more.
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed to simulate progressive frost heave and fracture of water-saturated fissured rock masses—its novelty lies in avoiding grid distortion and artificial crack path assumptions of FEM as well as complex parameter calibration of DEM by integrating the maximum tensile stress criterion (with a binary fracture marker for particle failure), thermodynamic phase change theory (classifying fissure water into water, ice-water mixed, and ice particles), and the equivalent thermal expansion coefficient method to quantify frost heave force. Systematic simulations of fissure parameters (inclination angle, length, number, and row number) revealed that these factors significantly shape failure modes: longer fissures and more rows shift failure from strip-like to tree-like/network-like, more fissures accelerate crack coalescence, and larger inclination angles converge stress to fissure tips. This study clarifies key mechanisms and provides a theoretical/numerical reference for cold region rock slope stability control. Full article
Show Figures

Figure 1

24 pages, 6997 KB  
Article
Characteristics of Overlying Rock Breakage and Fissure Evolution in the Mining of Extra-Thick Coal Seams in Anticline Structural Area
by Jun Wang, Shibao Liu, Xin Yu, Haoyuan Gu, Huaidong Liu and Changyou Liu
Appl. Sci. 2025, 15(16), 8812; https://doi.org/10.3390/app15168812 - 9 Aug 2025
Cited by 2 | Viewed by 824
Abstract
To reveal the fracture mechanism of overburden aquifers during mining under anticlinal structural zones in western mining areas, this study takes Panel 1309 of the Guojiahe Coal Mine as the engineering background and employs field investigations, physical similarity simulation, and numerical simulation methods [...] Read more.
To reveal the fracture mechanism of overburden aquifers during mining under anticlinal structural zones in western mining areas, this study takes Panel 1309 of the Guojiahe Coal Mine as the engineering background and employs field investigations, physical similarity simulation, and numerical simulation methods to systematically investigate the overburden fracture and crack evolution laws during extra-thick coal seam mining in anticlinal zones. The research results demonstrate the following: (1) The large slope angle of the anticlinal zone and significant elevation difference between slope initiation points and the axis constitute the primary causes of water inrush-induced support failures in working face 1309. The conglomerate of the Yijun Formation serves as the critical aquifer responsible for water inrush, while the coarse sandstone in the Anding Formation acts as the key aquiclude. (2) Influenced by the slope angle, both overburden fractures and maximum bed separation zones during rise mining predominantly develop toward the goaf side. The water-conducting fracture zone initially extends in the advance direction, when its width is greater than its height, and changes to a height greater than its width when the key aquifer fractures and connects to the main aquifer. (3) The height of the collapse zone of the working face is 65 m, and the distribution of broken rock blocks in the collapse zone is disordered; after the fracture of the water-insulating key layer, the upper rock layer is synchronously fractured and activated, and the water-conducting fissure leads to the water-conducting layer of the Yijun Formation. (4) Compared to the periodic ruptures of the main roof, the number of fractures and their propagation speed are greater during the initial ruptures of each stratum. Notably, the key aquiclude’s fracture triggers synchronous collapse of overlying strata, generating the most extensive and rapidly developing fracture networks. (5) The fracture surface on the mining face side and the overlying strata separation zone jointly form a “saddle-shaped” high-porosity area, whose distribution range shows a positive correlation with the working face advance distance. During the mining process, the porosity variation in the key aquiclude undergoes three distinct phases with advancing distance: first remaining stable, then increasing, and finally decreasing, with porosity reaching its peak when the key stratum fractures upon attaining its ultimate caving interval. Full article
(This article belongs to the Special Issue Novel Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

21 pages, 26914 KB  
Article
Case Study on the Failure Characteristics and Energy Evolution of Three Types of Hole-Fissured Sandstone Under Wetting–Drying Cycles
by Peijie Lou, Penghui Ji, Lichen Sun and Yue Pan
Appl. Sci. 2025, 15(5), 2318; https://doi.org/10.3390/app15052318 - 21 Feb 2025
Cited by 3 | Viewed by 1021
Abstract
Engineering structures, including rock slopes and embankments, are vulnerable to wetting–drying cycles caused by tidal shifts and rainfall, which exacerbate mechanical degradation in hole-fissured sandstone. This study investigated the effects of 0, 10, and 20 wetting–drying cycles on sandstone samples using uniaxial compression [...] Read more.
Engineering structures, including rock slopes and embankments, are vulnerable to wetting–drying cycles caused by tidal shifts and rainfall, which exacerbate mechanical degradation in hole-fissured sandstone. This study investigated the effects of 0, 10, and 20 wetting–drying cycles on sandstone samples using uniaxial compression tests combined with digital image correlation (DIC), computed tomography (CT), and scanning electron microscopy (SEM). The results revealed that wetting–drying cycles progressively reduced peak strength and the elastic modulus while increasing macroscopic crack quantity and width. Internal crack networks simplified, transitioning from tensile-dominated to combined tensile–shear and shear failure modes. An energy analysis showed diminished energy storage capacity—both the total energy density at peak stress and elastic strain energy density declined with increasing cycle numbers, whereas dissipated energy density decreased initially before rising. SEM observations indicated that wetting–drying cycles enhanced the surface roughness of the sandstone, characterized by a scaly texture, thereby compromising its structural integrity. This study provides a theoretical basis for stability and safety assessments of protective engineering systems. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

20 pages, 8464 KB  
Article
Effect of Bayer Red Mud on the Mechanical Strength of Grouting Material
by Xiran Li, Yanna Han, Guorui Feng, Jinwen Bai, Junbiao Ma, Guowei Wu, Shengyu Su, Jiahui Qiu and Mingzhuang Lv
Materials 2025, 18(4), 788; https://doi.org/10.3390/ma18040788 - 11 Feb 2025
Cited by 2 | Viewed by 1045
Abstract
The massive stockpiles of Bayer-process red mud (BRM) severely compromise soil integrity, necessitating the urgent development of efficient large-scale utilization strategies. BRM contains large amounts of calcium, silicon, and aluminum. Theoretically, water glass and flue gas desulfurization gypsum (FGD) can increase the active [...] Read more.
The massive stockpiles of Bayer-process red mud (BRM) severely compromise soil integrity, necessitating the urgent development of efficient large-scale utilization strategies. BRM contains large amounts of calcium, silicon, and aluminum. Theoretically, water glass and flue gas desulfurization gypsum (FGD) can increase the active substances in BRM, making it a cementitious raw material capable of replacing cement. This study pioneers a novel activation strategy utilizing water glass–FGD synergism to amplify the BRM reactivity, enabling an increased dosage in construction materials through enhanced pozzolanic activity. They were blended into the cement at different ratios to prepare a grouting material (BF-C) for fissure sealing in mine rock strata. The hydration mechanism of BF-C was analyzed from a micro perspective by XRD, FTIR, ICP-OES, and SEM-EDS, and combined with the Ca/(Si + Al) ratio to reveal its hydration synergy. The results showed that the 3 d and 28 d strength of 70% BRM-FGD reached 8.94 MPa and 13.71 MPa, respectively. At this ratio, the hydration synergy of BF-C was the strongest. The addition of water glass and FGD can directly modulate the Ca/(Si + Al) ratio of the system to an optimal value of 0.94, which promotes the formation of early hydration products. C-S-H gel, calcite, and C(N)-A-S-H are the main hydration products of BF-C. C-S-H gels are encapsulated on cancrinite, and their three-dimensional network structures are dense. Meanwhile, C(N)-A-S-H crystals are interspersed between C-S-H gels, making the structure more stable. This achievement introduces an innovative method for the large-scale utilization of Bayer red mud, providing an effective solution in grouting technology using solid waste as raw material. Full article
Show Figures

Figure 1

19 pages, 11215 KB  
Article
Study on Fracture Evolution and Water-Conducting Fracture Zone Height beneath the Sandstone Fissure Confined Aquifer
by Jiabo Xu, Daming Yang, Zhenquan Zhang, Yun Sun and Linshuang Zhao
Sustainability 2024, 16(14), 6006; https://doi.org/10.3390/su16146006 - 14 Jul 2024
Cited by 7 | Viewed by 1747
Abstract
Studying the evolution law of overlying rock fissures and predicting the development height of water-conducting fissure zones is the key to preventing roof water damage, protecting mine water resources, and realizing the safe and sustainable development of the mine. To study the overburden [...] Read more.
Studying the evolution law of overlying rock fissures and predicting the development height of water-conducting fissure zones is the key to preventing roof water damage, protecting mine water resources, and realizing the safe and sustainable development of the mine. To study the overburden fracture evolution law of coal mining under aquifer conditions, the 1402 working face of Longwangzhuang Mine in Shaanmian Coalfield serves as the engineering background based on the Fractal Theory and similar simulation technology; this paper analyzes the fracture evolution of overburden rock and the development law of Water-Conducting Fracture Zone (WCFZ) during the advancing of working face, and further puts forward a model for the location discrimination of overburden fracture based on plate theory. The results indicate that post-mining, overburden rock failure assumes a trapezoidal shape, and fractures around the cutting hole and the side of the working face fully develop, while those in the middle of the goaf tend to compact. The distribution of the fracture network of mining strata at different advancing distances has good self-similarity, and the fractal dimension of the fracture network of overlying rock can be divided into three stages: ascending dimension, decreasing dimension, and stable phase. The II 1 coal seam fracture does not spread to the Sandstone Fissure Confined Aquifer. These findings provide strategic guidance for protecting mine aquifer water resources, preventing and controlling roof water inrush, and ensuring safe and sustainable production within the study area. Full article
(This article belongs to the Special Issue Scientific Disposal and Utilization of Coal-Based Solid Waste)
Show Figures

Figure 1

23 pages, 3638 KB  
Review
Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing
by Haifeng Wang, Yunbo Li, Dangyu Song, Meng Lin, Xingxin Guo and Xiaowei Shi
Processes 2024, 12(6), 1117; https://doi.org/10.3390/pr12061117 - 29 May 2024
Cited by 4 | Viewed by 3507
Abstract
Ultralow-temperature fluids (such as liquid nitrogen, liquid CO2) are novel waterless fracturing technologies designed for dry, water-sensitive reservoirs. Due to their ultralow temperatures, high compression ratios, strong frost heaving forces, and low viscosities, they offer a solution for enhancing the fracturing [...] Read more.
Ultralow-temperature fluids (such as liquid nitrogen, liquid CO2) are novel waterless fracturing technologies designed for dry, water-sensitive reservoirs. Due to their ultralow temperatures, high compression ratios, strong frost heaving forces, and low viscosities, they offer a solution for enhancing the fracturing and permeability of low-permeability reservoirs. In this study, we focus on the combined effects of high-pressure fluid rock breaking, low-temperature freeze-thaw fracturing, and liquid-gas phase transformation expansion on coal-rock in low-permeability reservoirs during liquid nitrogen fracturing (LNF). We systematically analyze the factors that limit the LNF effectiveness, and we discuss the pore fracture process induced by low-temperature fracturing in coal-rock and its impact on the permeability. Based on this analysis, we propose a model and flow for fracturing low-permeability reservoirs with low-temperature fluids. The analysis suggests that the Leidenfrost effect and phase change after ultralow-temperature fluids enter the coal support the theoretical feasibility of high-pressure fluid rock breaking. The thermal impact and temperature exchange rate between the fluid and coal determine the temperature difference gradient, which directly affects the mismatch deformation and fracture development scale of different coal-rock structures. The low-temperature phase change coupling fracturing of ultralow-temperature fluids is the key to the formation of reservoir fracture networks. The coal-rock components, natural fissures, temperature difference gradients, and number of cycles are the key factors in low-temperature fracturing. In contrast to those in conventional hydraulic fracturing, the propagation and interaction of fractures under low-temperature conditions involve multifield coupling and synergistic temperature, fluid flow, fracture development, and stress distribution processes. The key factors determining the feasibility of the large-scale application of ultralow-temperature fluid fracturing in the future are the reconstruction of fracture networks and the enhancement of the permeability response in low-permeability reservoirs. Based on these considerations, we propose a model and process for LNF in low-permeability reservoirs. The research findings presented herein provide theoretical insights and practical guidance for understanding waterless fracturing mechanisms in deep reservoirs. Full article
(This article belongs to the Special Issue Exploration, Exploitation and Utilization of Coal and Gas Resources)
Show Figures

Figure 1

24 pages, 7548 KB  
Article
Study on Uniaxial Mechanical Behavior and Damage Evolution Mechanism of Water-Immersed Mudstone
by Yanqi Song, Junjie Zheng, Hongfa Ma, Zhixin Shao, Jiangkun Yang, Fuxin Shen and Chuanpeng Liu
Sustainability 2023, 15(16), 12499; https://doi.org/10.3390/su151612499 - 17 Aug 2023
Cited by 10 | Viewed by 2132
Abstract
The existence of mudstone weak interlayers has a significant impact on the stability of open-pit coal mine slopes. Under the combined influence of rainfall and groundwater, the mechanical properties of the mudstone of weak interlayers deteriorate, leading to a local loss of bearing [...] Read more.
The existence of mudstone weak interlayers has a significant impact on the stability of open-pit coal mine slopes. Under the combined influence of rainfall and groundwater, the mechanical properties of the mudstone of weak interlayers deteriorate, leading to a local loss of bearing capacity of the slope and further accelerating the overall instability of the slope. In order to investigate the changes of macroscopic and mesoscopic structures, mechanical failure behavior, and the damage evolution mechanism of water-immersed mudstone, non-destructive water immersion experiments and uniaxial compression experiments were conducted. The results indicate that the main causes of macroscopic structure failure of water-immersed mudstone are the initiation, propagation, and mutual penetration of micro cracks. The mesoscopic structure characteristics of water-immersed mudstone are primarily manifested by increased surface smoothness, increased occurrence of small-scale pores, the presence of a dense network of fissures on the surface, and fusion of mineral unit boundaries. With the increasing immersion time, the quality, relative water content, and peak strain increase, while the uniaxial mechanical parameters and energy parameters decrease. In addition, a statistically damaged constitutive model for mudstone considering the coupling damage of water immersion and low-stress loading was established, and the model is consistent with experimental results. Finally, the water-softening characteristics of mudstone are caused by the propensity of clay minerals to expand and disintegrate upon water contact, changes in pore structure, variations in mineral types and distributions, and the presence of pore water pressure. This study provides valuable insights into the water–rock deterioration mechanism of mudstone and the stability of slopes containing weak interlayers. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

14 pages, 3302 KB  
Article
Triaxial Compression Strength Prediction of Fissured Rocks in Deep-Buried Coal Mines Based on an Improved Back Propagation Neural Network Model
by Yiyang Wang, Bin Tang, Wenbin Tao, Anying Yuan, Tianguo Li, Zhenyu Liu, Fenglin Zhang and An Mao
Processes 2023, 11(8), 2414; https://doi.org/10.3390/pr11082414 - 10 Aug 2023
Cited by 5 | Viewed by 1908
Abstract
In deep coal mine strata, characterized by high ground stress and extensive fracturing, predicting the strength of fractured rock masses is crucial for stability analysis of the surrounding rock in coal mine strata. In this study, rock samples were obtained from construction sites [...] Read more.
In deep coal mine strata, characterized by high ground stress and extensive fracturing, predicting the strength of fractured rock masses is crucial for stability analysis of the surrounding rock in coal mine strata. In this study, rock samples were obtained from construction sites in deep coal mine strata and intact, as well as fissured, rock specimens were prepared and subjected to triaxial compression tests. A numerical model based on the discrete element method was then established and the micro-parameters were calibrated. A total of 288 triaxial compression tests on the rock specimens under different conditions of confining pressure, loading rate, fissure dip angle, and fissure length, were conducted to obtain the triaxial compressive strength of the fractured rock specimens under different conditions. To address the limitations of traditional back propagation (BP) neural networks in solving stochastic problems, a modified BP neural network model was developed using a random factor and an interlayer mean square error corrected network model evaluation function. The traditional and modified BP neural network models were then employed to predict the triaxial compressive strength of the fractured rock specimens. Through comparative analysis, it was found that the modified BP neural network prediction model exhibited smaller errors and significantly reduced overfitting, making it an effective tool for predicting the strength of fractured rocks in deep coal mine strata. Full article
Show Figures

Figure 1

17 pages, 9335 KB  
Article
Research on a Space–Time Continuous Sensing System for Overburden Deformation and Failure during Coal Mining
by Gang Cheng, Zhenxue Wang, Bin Shi, Wu Zhu and Tianbin Li
Sensors 2023, 23(13), 5947; https://doi.org/10.3390/s23135947 - 27 Jun 2023
Cited by 15 | Viewed by 2705
Abstract
Underground coal mining can cause the deformation, failure, and collapse of the overlying rock mass of a coal seam. If the mining design, monitoring, early warning, or emergency disposal are improper, in that case, it can often lead to mining disasters such as [...] Read more.
Underground coal mining can cause the deformation, failure, and collapse of the overlying rock mass of a coal seam. If the mining design, monitoring, early warning, or emergency disposal are improper, in that case, it can often lead to mining disasters such as roof falls, water inrush, surface collapse, and ground fissures, seriously threatening the safety of mine engineering and the geological environment protection in mining areas. To ensure the intrinsic security of the entire coal mining process, aspace–time continuous sensing system of overburden deformation and failure was developed, which breaks through the limitations of traditional monitoring methods that characterize the evolution process of overlying rock deformation and ground subsidence. This paper summarizes the classification of typical overburden deformation and failure modes. It researches the space–time continuous sensing of rock–soil mass above the coal seam based on Distributed Fiber Optic Sensing (DFOS). A multi-range strain optical fiber sensing neural series from micron to meter was developed to achieve synchronous sensing of overburden separation, internal micro–cracks, and large rock mass deformation. The sensing cable–rock mass coupling test verified the reliability of the optical fiber monitoring data. The sensing neural network of overburden deformation was constructed using integrated optical fiber layout technology on the ground and underground. Different sensing nerves’ performance and application effects in overburden deformation and failure monitoring were compared and analyzed with field monitoring examples. A physical model was used to carry out the experimental study on the overburden subsidence prediction during coal mining. The results showed that the optical fiber monitoring data were reliable and could be used to predict overburden subsidence. The reliability of the calculation model for overlying rock subsidence based on space–time continuous optical fiber sensing data was verified in the application of mining subsidence evaluation. A systematic review of the shortcomings of current overburden deformation observation technology during coal mining was conducted, and a space–time continuous sensing system for overburden deformation and failure was proposed. This system integrated sensing, transmission, processing, early warning, decision-making, and emergency response. Based on the fusion of multi-parameter sensing, multi-method transmission, multi-algorithm processing, and multi-threshold early warning, the system realized the real-time acquisition of space–time continuous information for the overburden above coal seams. This system utilizes long-term historical monitoring data from the research area for data mining and modeling, realizing the prediction and evaluation of the evolution process of overburden deformation as well as the potential for mining subsidence. This work provides a theoretical reference for the prevention and control of mining disasters and the environmental carrying capacity evaluation of coal development. Full article
(This article belongs to the Special Issue Geo-Sensing and Geo-Big Data)
Show Figures

Figure 1

15 pages, 6744 KB  
Article
Research on Fractal Evolution Characteristics and Safe Mining Technology of Overburden Fissures under Gully Water Body
by Kaijun Miao, Shihao Tu, Hongsheng Tu, Xun Liu, Wenlong Li, Hongbin Zhao, Long Tang, Jieyang Ma and Yan Li
Fractal Fract. 2022, 6(9), 486; https://doi.org/10.3390/fractalfract6090486 - 30 Aug 2022
Cited by 17 | Viewed by 2368
Abstract
A fractal realizes the quantitative characterization of complex and disordered mining fracture networks, and it is of great significance to grasp the fractal characteristics of rock movement law to guide mine production. To prevent the water-conducting fracture (WF) under the gullies from conducting [...] Read more.
A fractal realizes the quantitative characterization of complex and disordered mining fracture networks, and it is of great significance to grasp the fractal characteristics of rock movement law to guide mine production. To prevent the water-conducting fracture (WF) under the gullies from conducting the surface water body, and to realize the purpose of safe production and surface water body protection. The evolution of overburden fissures in the working face with shallow buried gulley landform and thick bedrock conditions is studied. The development height of water-conducting fracture (DHWF) is theoretically analyzed. The evolution characteristics of overlying fissures with different mining heights were observed by similarity simulation, and the observation results were analyzed by fractal theory. The results show that the main factor that determines the height of WF is mining height. The working face is mined at different mining heights, and the corresponding indexes such as the height of the WF, the area of the caving zone and the fractal dimension are related to engineering phenomena. In particular, the appearance and disappearance of the separation space correspond to the fractal dimension fluctuation phase. The safe mining technology under a gully water body, which mainly reduces mining height, is adopted, and the fissures of the working face are not connected to the surface water body after mining. Full article
(This article belongs to the Topic Computational Complex Networks)
Show Figures

Figure 1

16 pages, 5179 KB  
Article
Study on Fractal Characteristics of Evolution of Mining-Induced Fissures in Karst Landform
by Rentao Gou, Chengyu Jiang, Yong Liu, Chen Wang and Yuanlin Li
Energies 2022, 15(15), 5372; https://doi.org/10.3390/en15155372 - 25 Jul 2022
Cited by 17 | Viewed by 2434
Abstract
The karst landscape is widespread in the southern region of China. As a result of underground mining activities, the original stress equilibrium is disrupted, causing the redistribution of stress in the overlying rock layer, inducing the longitudinal fracture of mining to expand and [...] Read more.
The karst landscape is widespread in the southern region of China. As a result of underground mining activities, the original stress equilibrium is disrupted, causing the redistribution of stress in the overlying rock layer, inducing the longitudinal fracture of mining to expand and penetrate upwards, resulting in the rupture and destabilization of the karst cave roof, thus triggering a series of engineering problems such as karst cave collapse, landslide, the discontinuous deformation of the ground surface, and soil erosion. In order to study the evolutionary characteristics of buried rock fissures in shallow coal seam mining under the karst landform, taking the shallow coal seam with the typical karst cave development landform in Guizhou as the engineering background, based on the similarity simulation experiment and fractal theory, the evolution law of buried rock fissures and network fractal characteristics under the disturbance of the karst landform mining are analyzed. The research shows that the mining-induced fracture reaches the maximum development height of 61 m on the left side of the cave, and the two sides of the cave produce uncoordinated deformation. The separation fracture below the cave is relatively developed, and the overall distribution pattern of the cave rock fracture network presents a “ladder” shape. The correlation coefficient of the fractal dimension of the rock fractures under different advancing distances is more than 0.90, and the rock fracture network under the karst landform has high self-similarity. The variation of fractal dimension with the advancing degree of the working face can be divided into four stages. The first and second stages show an exponential growth trend, and the third and fourth stages show linear changes with slopes of 0.0007 and 0.0014, respectively. The fluctuation of the fractal dimension is small. The periodic weighting of the upper roof in the cave-affected zone is frequent, the fragmentation of the fractured rock mass becomes larger, and the fractures of the upper rock mass are relatively developed. The research results can provide a reference for the study on the evolution law of mining-induced rock fissures under similar karst landforms. Full article
Show Figures

Figure 1

21 pages, 9860 KB  
Article
Research on Water Pressure Distribution Characteristics and Lining Safety Evaluation of Deep Shaft in Water-Rich, Large, Fractured Granite Stratum
by Mingli Huang, Xiayi Yao, Zhongsheng Tan and Jiabin Li
Appl. Sci. 2022, 12(15), 7415; https://doi.org/10.3390/app12157415 - 23 Jul 2022
Cited by 5 | Viewed by 2653
Abstract
Building deep shafts in water-rich granite formations with large fissures has difficulties, such as high-water pressure and high construction risks, and is prone to water inrush and shaft flooding. This paper relies on the No. 1 vertical auxiliary shaft project of Gaoligongshan tunnel [...] Read more.
Building deep shafts in water-rich granite formations with large fissures has difficulties, such as high-water pressure and high construction risks, and is prone to water inrush and shaft flooding. This paper relies on the No. 1 vertical auxiliary shaft project of Gaoligongshan tunnel and obtains the uneven distribution of water pressure on the outside of the lining in the horizontal direction through on-site monitoring data. In order to explain this phenomenon, based on the statistical parameters of actual fractures in the field and the Monte Carlo method, the DFN built in FLAC3D6.0 is used to generate a discrete fracture network, and a dual medium model, considering the distribution of large fractures, is established. The reason for the uneven distribution of water pressure is obtained through research: the large fissures in the surrounding rock make the hydraulic conductivity of each part of the stone body formed after grouting of the surrounding rock different. This results in different osmotic pressures from the hydrostatic pressure outside the grouting ring to the outside of the lining through the grouting ring. Based on the distribution characteristics of water pressure outside the lining, the safety of the lining under non-uniform pressure is studied. The lining safety factor is defined as the ratio of the lining’s normal service limit state load to the actual load. The normal service limit state load is the load when the RFPA software is used to establish a load-structure model to simulate the load when the lining has obvious cracks under the action of external load; the actual load is the monitoring load. The new method and mine design code method are used to evaluate the lining safety and make a comparative analysis. The results show that the new method can effectively calculate the lining safety factor and has a larger safety reserve. Full article
(This article belongs to the Special Issue Engineering Groundwater and Groundwater Engineering)
Show Figures

Figure 1

Back to TopTop