Effect of Bayer Red Mud on the Mechanical Strength of Grouting Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. BRM
2.1.2. FGD
2.1.3. Cement
2.1.4. Alkaline Activator
2.2. Methods
2.2.1. Mixture Proportion Design and Sample Preparation
2.2.2. Test Methods of Fluidity and Rheological Characteristics
2.2.3. Equilibrium Moisture Content
2.2.4. Uniaxial Compressive Strength
2.2.5. XRD, FTIR, and ICP-OES
2.2.6. SEM-EDS
3. Results and Discussion
3.1. Fluidity and Rheological Characteristics
3.2. Mechanical Properties
3.3. Micro-Properties of BF-C
3.4. Microscopic Morphology of BF-C
4. Conclusions
- (1)
- In this study, a grouting material was prepared using Bayer red mud (BRM), flue gas desulfurization gypsum (FGD), and cement. When the ratio of BRM: FGD: cement was 66.5:3.5:30, the fluidity of the slurry was 230 mm, and the compressive strengths at 3 d, 7 d, and 28 d were 8.94 MPa, 9.86 MPa, and 13.71 MPa, respectively.
- (2)
- FGD supplies more Ca2+ and SO42− to the system. Ca2+ serves as the main raw material for the hydration reaction, which increases the quantity of the hydrated products. SO42− ions promote the dissolution of Al3+ and Si4+ in BRM, thereby enhancing the activity of BRM.
- (3)
- The main hydration products of the BF-C grouting materials are C-S-H gel, calcite, and a small amount of C(N)-A-S-H. The C-S-H gel shows a dense three-dimensional network structure. The amount of its generation plays a decisive role in the increase of strength.
- (4)
- The Ca/(Si + Al) ratio is regulated by the FGD and alkaline activator. An appropriate Ca/(Si + Al) ratio can enhance the synergistic effect among BRM, FGD, and cement. The formation of hydration products is affected by the Ca/(Si + Al) ratio, which macroscopically manifests as a strength enhancement.
- (5)
- Compared with existing methods, this study achieves the large-scale utilization of red mud in a concise and low-cost approach, alleviating the landfill problem of red mud while extending its value chain and promoting sustainability. The prepared grouting material can be used for sealing rock fissures. The durability and corrosion resistance of the products of the grouting materials in the study needed to be addressed and verified over a longer period.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, S.; Sun, B.; Han, G.; Duan, W.; Wang, Z. Application and Prospect of Curtain Grouting Technology in Mine Water Safety Management in China: A Review. Water 2022, 14, 4093. [Google Scholar] [CrossRef]
- Zhang, Y. Cementation Technology; Coal Industry Publishing House: Beijing, China, 2012. [Google Scholar]
- Li, Z.; You, H.; Gao, Y.; Wang, C.; Zhang, J. Effect of ultrafine red mud on the workability and microstructure of blast furnace slag-red mud based geopolymeric grouts. Powder Technol. 2021, 392, 610–618. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B. Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement. Constr. Build. Mater. 2019, 214, 516–526. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Z.; Xu, Y.; Wang, S.; Chen, H.; Huang, J.; Xue, B.; Wang, J.; Chen, J.; Yang, C. High-Fluidization, Early Strength Cement Grouting Material Enhanced by Nano-SiO2: Formula and Mechanisms. Materials 2021, 14, 6144. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, R.; Liu, S.; Zhu, Y.; Wang, S.; Wang, J.; Guan, X. Enhanced toughness of ultra-fine sulphoaluminate cement-based hybrid grouting materials by incorporating in-situ polymerization of acrylamide. Constr. Build. Mater. 2021, 292, 123421. [Google Scholar] [CrossRef]
- Dorn, T.; Blask, O.; Stephan, D. Acceleration of cement hydration—A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures. Constr. Build. Mater. 2022, 323, 126554. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Survey, U. Mineral Commodity Summaries 2021; US Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- Tian, K.; Wang, Y.; Dong, B.; Fang, G.; Xing, F. Engineering and micro-properties of alkali-activated slag pastes with Bayer red mud. Constr. Build. Mater. 2022, 351, 128869. [Google Scholar] [CrossRef]
- Power, G.; Gräfe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, W.; Yu, Y.; Yan, K. Environmental assessment, management and utilization of red mud in China. J. Clean. Prod. 2014, 84, 606–610. [Google Scholar] [CrossRef]
- Geng, J.; Zhou, M.; Li, Y.; Chen, Y.; Han, Y.; Wan, S.; Zhou, X.; Hou, H. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Constr. Build. Mater. 2017, 153, 185–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y.; Mukiza, E. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue. J. Clean. Prod. 2019, 232, 980–992. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Li, S.; Gao, Y.; Liu, C.; Qi, Y. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J. Clean. Prod. 2020, 245, 118759. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Tang, B.; Li, Y.; Zhang, W.; Xue, Y. Effect of Ca/(Si + Al) on red mud based eco-friendly revetment block: Microstructure, durability and environmental performance. Constr. Build. Mater. 2021, 304, 124618. [Google Scholar] [CrossRef]
- Song, Y.; Dong, M.; Wang, Z.; Qian, X.; Yan, D.; Shen, S.; Zhang, L.; Sun, G.; Lai, J.; Ruan, S. Effects of red mud on workability and mechanical properties of autoclaved aerated concrete (AAC). J. Build. Eng. 2022, 61, 105238. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Nie, Q.; Jia, X. A high-strength red mud–fly ash geopolymer and the implications of curing temperature. Powder Technol. 2023, 416, 118242. [Google Scholar] [CrossRef]
- Ghalehnovi, M.; Asadi Shamsabadi, E.; Khodabakhshian, A.; Sourmeh, F.; de Brito, J. Self-compacting architectural concrete production using red mud. Constr. Build. Mater. 2019, 226, 418–427. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z.; Liu, C.; Gao, Y.; Qi, Y. Properties of red mud blended with magnesium phosphate cement paste: Feasibility of grouting material preparation. Constr. Build. Mater. 2020, 260, 119704. [Google Scholar] [CrossRef]
- Anirudh, M.; Rekha, K.S.; Venkatesh, C.; Nerella, R. Characterization of red mud based cement mortar; mechanical and microstructure studies. Mater. Today Proc. 2021, 43, 1587–1591. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, Y.; Chen, B.; Wang, L. Properties of red mud blended magnesium phosphate cements: Workability and microstructure evolution. Constr. Build. Mater. 2023, 409, 134023. [Google Scholar] [CrossRef]
- Kang, S.; Kang, H.; Lee, B. Hydration Properties of Cement with Liquefied Red Mud Neutralized by Nitric Acid. Materials 2021, 14, 2641. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z.; Liu, C.; Gao, Y. Feasibility study of red mud for geopolymer preparation: Effect of particle size fraction. J. Mater. Cycles Waste Manag. 2020, 22, 1328–1338. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N.; Yao, Y.; Sun, H.; Feng, H. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials. J. Hazard. Mater. 2013, 262, 428–438. [Google Scholar] [CrossRef]
- Hou, D.; Wu, D.; Wang, X.; Gao, S.; Yu, R.; Li, M.; Wang, P.; Wang, Y. Sustainable use of red mud in ultra-high performance concrete (UHPC): Design and performance evaluation. Cem. Concr. Comp. 2021, 115, 103862. [Google Scholar] [CrossRef]
- Cong, X.; Lu, S.; Gao, Y.; Yao, Y.; Elchalakani, M.; Shi, X. Effects of microwave, thermomechanical and chemical treatments of sewage sludge ash on its early-age behavior as supplementary cementitious material. J. Clean. Prod. 2020, 258, 120647. [Google Scholar] [CrossRef]
- Xiao, Q.; Cao, C.; Xiao, L.; Bai, L.; Cheng, H.; Lei, D.; Sun, X.; Zeng, L.; Huang, B.; Qian, Q.; et al. Selective Decomposition of Waste Rubber from the Shoe Industry by the Combination of Thermal Process and Mechanical Grinding. Polymers 2022, 14, 1057. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Z.; Xin, G.; Shen, Q.; Zhang, J.; Yang, Y. Utilization of High-Volume Red Mud Application in Cement Based Grouting Material: Effects on Mechanical Properties at Different Activation Modes. J. Mater. Civil Eng. 2023, 35, 04023011. [Google Scholar] [CrossRef]
- Gong, C.; Yang, N. Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material. Cem. Concr. Res. 2000, 30, 1013–1016. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Y.; Mi, H.; Zhang, X.; Liu, M.; Fang, B.; Wang, C. Research and Development of Red Mud and Slag Alkali Activation Light Filling Materials Preparation by Ultra-High Water Content and Analysis of Microstructure Formation Mechanism. Polymers 2022, 14, 5176. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Liu, Z.; Gao, Y.; Li, Z.; Zhang, J.; Niu, H. Study on the effect and mechanism of cement-based material retarder on red mud-based hybrid alkali activated cement. J. Build. Eng. 2023, 70, 106353. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jun, Y.; Jeon, D.; Oh, J.E. Synthesis of structural binder for red brick production based on red mud and fly ash activated using Ca(OH)2 and Na2CO3. Constr. Build. Mater. 2017, 147, 101–116. [Google Scholar] [CrossRef]
- Cho, Y.-K.; Yoo, S.-W.; Jung, S.-H.; Lee, K.-M.; Kwon, S.-J. Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer. Constr. Build. Mater. 2017, 145, 253–260. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Cement a Review. Available online: https://www.geopolymer.org (accessed on 29 April 2024).
- Escalante-García, J.I.; Magallanes-Rivera, R.X.; Gorokhovsky, A. Waste gypsum–blast furnace slag cement in mortars with granulated slag and silica sand as aggregates. Constr. Build. Mater. 2009, 23, 2851–2855. [Google Scholar] [CrossRef]
- Liu, C.; Wu, H.; Jiang, J.; Wang, L.; Kong, D.; Yu, K. Properties of Flue Gas Desulphurization Gypsum–Activated Steel Slag Fine Aggregate Red Mud–Based Concrete. J. Mater. Civil Eng. 2023, 35, 04023025. [Google Scholar] [CrossRef]
- GB/T 8077-2012; Methods for Testing Uniformity of Concrete Admixture. Standardization Administration of China: Beijing, China, 2012.
- GB 175-2020; Common Portland Cement. Standardization Administration of China: Beijing, China, 2020.
- Zhang, S.; Zhao, T.; Li, Y.; Li, Z.; Li, H.; Zhang, B.; Li, J.; Li, Y.; Ni, W. The effects and solidification characteristics of municipal solid waste incineration fly ash-slag-tailing based backfill blocks in underground mine condition. Constr. Build. Mater. 2024, 420, 135508. [Google Scholar] [CrossRef]
- Fei, Y.; Marshall, M.; Jackson, W.; Chaffee, A.; Allardice, D. A comparison of adsorption isotherms using different techniques for a range of raw, water- and acid-washed lignites. Fuel 2006, 85, 1559–1565. [Google Scholar] [CrossRef]
- Fei, Y.; Zhang, C.; Marshall, M.; Jackson, W.R.; Chaffee, A.L.; Allardice, D.J. The effect of cation content of some raw and ion-exchanged Victorian lignites on their equilibrium moisture content and surface area. Fuel 2007, 86, 2890–2897. [Google Scholar] [CrossRef]
- Liao, J.; Fei, Y.; Marshall, M.; Chaffee, A.L.; Chang, L. Hydrothermal dewatering of a Chinese lignite and properties of the solid products. Fuel 2016, 180, 473–480. [Google Scholar] [CrossRef]
- Yan, Z. Effect and Mechanism of Microwave and Hot Gas Couple Drying on Physico-Chemical Structure and Water Re-Absorption of Lignite. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2022. [Google Scholar]
- Liu, X.; Zhang, N. Utilization of red mud in cement production: A review. Waste Manag. Res. J. A Sustain. Circ. Econ. 2011, 29, 1053–1063. Available online: http://wmr.sagepub.com/content/29/10/1053 (accessed on 29 April 2024). [CrossRef] [PubMed]
- DB14/T 2120-2020; Technical Guidelines for Construction of CFB Fly Ash and Bottom Ash Grouting and Filling Mined-out Area. Market Supervision Administration of Shanxi Province: Taiyuan, China, 2020.
- Xing, B.; Fan, W.; Zhuang, C.; Qian, C.; Lv, X. Effects of the morphological characteristics of mineral powder fillers on the rheological properties of asphalt mastics at high and medium temperatures. Powder Technol. 2019, 348, 33–42. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Yin, H.; Chen, J.; Zhang, N. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: Hydration characteristics and heavy metals solidification behavior. J. Hazard. Mater. 2018, 349, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.C.; Wang, Z.; Liu, Y.; Cui, H.Z. Influence of red mud on fresh and hardened properties of self-compacting concrete. Constr. Build. Mater. 2018, 178, 288–300. [Google Scholar] [CrossRef]
- Caillahua, M.C.; Moura, F.J. Technical feasibility for use of FGD gypsum as an additive setting time retarder for Portland cement. J. Mater. Res. Technol. 2018, 7, 190–197. [Google Scholar] [CrossRef]
- Niu, X.; Feng, G.; Han, Y.; Bezuijen, A.; Qi, T.; Bai, J. Influence of premixed chlorine salt on the pore characteristics of cement-based hardened grout containing a large amount of bentonite. Constr. Build. Mater. 2023, 378, 131183. [Google Scholar] [CrossRef]
- Peng, R.; Chen, W.; Li, Q.; Yuan, B. Properties and microstructure of cemented paste tailings activated by sodium sulfate. J. Build. Mater. 2020, 23, 685–691. [Google Scholar]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 2007, 45, 63–72. [Google Scholar] [CrossRef]
Physical Properties | Parameters |
---|---|
Particle diameter | 0.088~0.25 mm |
pH value | 12.1~13.0 |
Specific gravity | 2.7~2.9 |
Unit weight | 0.8~1.0 g/cm3 |
Type | SiO2 | Al2O3 | Fe2O3 | Na2O | CaO | MgO | K2O | TiO2 | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
BRM | 20.94 | 26.32 | 16.63 | 8.84 | 10.46 | 0.74 | 0.97 | 3.57 | 0.58 | 11.08 |
FGD | 2.39 | 0.84 | 0.37 | 0.10 | 39.02 | 0.78 | 0.16 | 0.03 | 55.14 | 11.22 |
Cement | 17.51 | 5.33 | 2.75 | 0.17 | 52.54 | 3.71 | 0.70 | 0.33 | 2.99 | 4.34 |
Group | BRM /g | FGD /g | Cement /g | Alkaline Activator /g | Water Reducer /g | Water-Solid Ratio/wt% | Ca/(Si + Al) Ratio |
---|---|---|---|---|---|---|---|
BF100C0 | 95 | 5 | 0 | 14 | 1 | 0.5 | 0.42 |
BF90C10 | 85.5 | 4.5 | 10 | 14 | 1 | 0.5 | 0.57 |
BF80C20 | 76 | 4 | 20 | 14 | 1 | 0.5 | 0.75 |
BF70C30 | 66.5 | 3.5 | 30 | 14 | 1 | 0.5 | 0.94 |
BF60C40 | 57 | 3 | 40 | 14 | 1 | 0.5 | 1.14 |
BF0C100 | 0 | 0 | 100 | 14 | 1 | 0.5 | - |
Salt | LiCl·H2O | MgCl2·H2O | NaBr | NaCl | K2SO4 |
---|---|---|---|---|---|
RH (%) | 11.28 ± 0.24 | 32.14 ± 0.14 | 50.00 ± 0.24 | 75.09 ± 0.11 | 97.00 ± 0.40 |
Type | Si | Al | Fe | Na | Ca | Mg | K | Ti |
---|---|---|---|---|---|---|---|---|
BRM | 15.02 | 6.86 | 9.19 | 6.28 | 1.75 | 0.23 | 0.74 | 1.85 |
FGD | 2.05 | 0.27 | 0.26 | 0.06 | 23.38 | 0.51 | 0.12 | 0.02 |
BF100C0 | BF90C10 | BF80C20 | BF70C30 | BF60C40 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Compressive strength at 3 d | 0.23 | 0.54 | 2.40 | 8.94 | 10.06 | |||||
Strength increment at 3 d | 0.31 | 1.86 | 6.54 | 1.12 | ||||||
Compressive strength at 7 d | 0.3 | 0.67 | 4.52 | 9.86 | 12.94 | |||||
Strength increment at 7 d | 0.37 | 3.85 | 5.34 | 3.08 | ||||||
Compressive strength at 28 d | 0.53 | 3.08 | 5.41 | 13.71 | 17.04 | |||||
Strength increment at 28 d | 2.55 | 2.33 | 8.30 | 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Han, Y.; Feng, G.; Bai, J.; Ma, J.; Wu, G.; Su, S.; Qiu, J.; Lv, M. Effect of Bayer Red Mud on the Mechanical Strength of Grouting Material. Materials 2025, 18, 788. https://doi.org/10.3390/ma18040788
Li X, Han Y, Feng G, Bai J, Ma J, Wu G, Su S, Qiu J, Lv M. Effect of Bayer Red Mud on the Mechanical Strength of Grouting Material. Materials. 2025; 18(4):788. https://doi.org/10.3390/ma18040788
Chicago/Turabian StyleLi, Xiran, Yanna Han, Guorui Feng, Jinwen Bai, Junbiao Ma, Guowei Wu, Shengyu Su, Jiahui Qiu, and Mingzhuang Lv. 2025. "Effect of Bayer Red Mud on the Mechanical Strength of Grouting Material" Materials 18, no. 4: 788. https://doi.org/10.3390/ma18040788
APA StyleLi, X., Han, Y., Feng, G., Bai, J., Ma, J., Wu, G., Su, S., Qiu, J., & Lv, M. (2025). Effect of Bayer Red Mud on the Mechanical Strength of Grouting Material. Materials, 18(4), 788. https://doi.org/10.3390/ma18040788