Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = riverbank failure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4310 KiB  
Article
An Experimental Investigation on Dike Stabilization against Floods
by Sohail Iqbal and Norio Tanaka
Geosciences 2023, 13(10), 307; https://doi.org/10.3390/geosciences13100307 - 13 Oct 2023
Cited by 8 | Viewed by 3655
Abstract
A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the [...] Read more.
A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the local environment and its biodiversity. The present study used a uniform cohesionless sand with d50 = 0.9 mm to investigate the local scour process near a single combined dike (permeable and impermeable), replicating a flooding scenario. The experiments revealed that the maximum scour depth is likely to occur at the upstream edge of the dike, resembling a local scour observed around a scaled-down emerged dike in an open channel. The scour hole downstream of the dike gets shallower as it gets smaller, as do the horseshoe vortices that surround it. Additionally, by combining different pile shapes, the flow surrounding the dike was changed to reduce horseshoe vortices, resulting in scour length and depth reductions of 48% at the nose and 45% and 65% at the upstream and downstream dike–wall junction, respectively. Contrarily, the deposition height downstream of the dike had a reciprocal effect on permeability, which can severely harm the riverbank defense system. The combined dike demonstrates their ability to mitigate scour by reducing the flow swirls formed around the dike. The suggested solutions can slow down the rapid deterioration and shield the dike and other river training infrastructure from scour-caused failures. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

15 pages, 4782 KiB  
Article
Mortar Characterization of Historical Masonry Damaged by Riverbank Failure: The Case of Lungarno Torrigiani (Florence)
by Sara Calandra, Teresa Salvatici, Elena Pecchioni, Irene Centauro and Carlo Alberto Garzonio
Heritage 2023, 6(5), 3820-3834; https://doi.org/10.3390/heritage6050203 - 22 Apr 2023
Cited by 2 | Viewed by 2047
Abstract
The research of structural masonry associated with geo-hydrological hazards in Cultural Heritage is a multidisciplinary issue, requiring consideration of several aspects including the characterization of used materials. On 25 May 2016, loss of water from the subterranean pipes and of the aqueduct caused [...] Read more.
The research of structural masonry associated with geo-hydrological hazards in Cultural Heritage is a multidisciplinary issue, requiring consideration of several aspects including the characterization of used materials. On 25 May 2016, loss of water from the subterranean pipes and of the aqueduct caused an Arno riverbank failure damaging a 100 m long portion of the historical embankment wall of Lungarno Torrigiani in Florence. The historical masonry was built from 1854–1855 by Giuseppe Poggi and represents a historical example of an engineering approach to riverbank construction, composed of a scarp massive wall on foundation piles, with a rubble masonry internal core. The failure event caused only a cusp-shaped deformation to the wall without any shattering or toppling. A complete characterization of the mortars was performed to identify the technologies, raw materials and state of conservation in order to understand why the wall has not collapsed. Indeed, the mortars utilized influenced the structural behavior of masonry, and their characterization was fundamental to improve the knowledge of mechanical properties of civil architectural heritage walls. Therefore, the aim of this research was to analyze the mortars from mineralogical–petrographic, physical and mechanical points of view, to evaluate the contribution of the materials to damage events. Moreover, the results of this study helped to identify compatible project solutions for the installation of hydraulically and statically functional structures to contain the riverbank. Full article
(This article belongs to the Special Issue Conservation Methodologies and Practices for Built Heritage)
Show Figures

Figure 1

19 pages, 3614 KiB  
Article
An Effective Approach for Automatic River Features Extraction Using High-Resolution UAV Imagery
by Marco La Salandra, Rosa Colacicco, Pierfrancesco Dellino and Domenico Capolongo
Drones 2023, 7(2), 70; https://doi.org/10.3390/drones7020070 - 18 Jan 2023
Cited by 23 | Viewed by 4053
Abstract
The effects of climate change are causing an increase in the frequency and extent of natural disasters. Because of their morphological characteristics, rivers can cause major flooding events. Indeed, they can be subjected to variations in discharge in response to heavy rainfall and [...] Read more.
The effects of climate change are causing an increase in the frequency and extent of natural disasters. Because of their morphological characteristics, rivers can cause major flooding events. Indeed, they can be subjected to variations in discharge in response to heavy rainfall and riverbank failures. Among the emerging methodologies that address the monitoring of river flooding, those that include the combination of Unmanned Aerial Vehicle (UAV) and photogrammetric techniques (i.e., Structure from Motion-SfM) ensure the high-frequency acquisition of high-resolution spatial data over wide areas and so the generation of orthomosaics, useful for automatic feature extraction. Trainable Weka Segmentation (TWS) is an automatic feature extraction open-source tool. It was developed to primarily fulfill supervised classification purposes of biological microscope images, but its usefulness has been demonstrated in several image pipelines. At the same time, there is a significant lack of published studies on the applicability of TWS with the identification of a universal and efficient combination of machine learning classifiers and segmentation approach, in particular with respect to classifying UAV images of riverine environments. In this perspective, we present a study comparing the accuracy of nine combinations, classifier plus image segmentation filter, using TWS, also with respect to human photo-interpretation, in order to identify an effective supervised approach for automatic river features extraction from UAV multi-temporal orthomosaics. The results, which are very close to human interpretation, indicate that the proposed approach could prove to be a valuable tool to support and improve the hydro-geomorphological and flooding hazard assessments in riverine environments. Full article
Show Figures

Figure 1

13 pages, 5430 KiB  
Article
Identifying Flow Eddy Currents in the River System as the Riverbank Scouring Cause: A Case Study of the Mekong River
by Tanh T. N. Nguyen, Dong-Sin Shih, Lloyd HC Chua, Huyen N. Kieu, Linh H. Ha, Linh H. Nguyen, Ninh V. Luu, Thai V. Huynh, Linh M. Duong, An T. Ngo, Hoa V. Nguyen and Chau N. Tran
Water 2022, 14(15), 2418; https://doi.org/10.3390/w14152418 - 4 Aug 2022
Cited by 2 | Viewed by 3084
Abstract
River morphological change is the complex evolution of riverbed states, which can lead to serious riverbank failures, and is a worldwide concern. However, revealing the cause of the evolution, in particular, the potential morphological scouring by eddy currents, is difficult. Accordingly, we propose [...] Read more.
River morphological change is the complex evolution of riverbed states, which can lead to serious riverbank failures, and is a worldwide concern. However, revealing the cause of the evolution, in particular, the potential morphological scouring by eddy currents, is difficult. Accordingly, we propose a comprehensive combination of 2D and 3D simulations to reveal the eddy currents. We selected the Vam Nao, part of the Mekong River, with semi-tidal effects and confluence flows as the case study. We created two unstructured 40 m × 40 m triangular meshes using inverse distance interpolation. This study used the Saint–Venant equations (TELEMAC2D) and Navier–Stokes equations (TELEMAC3D) to reveal the eddy currents for 2009, 2017, and 2018. TELEMAC2D (the simplified form of TELEMAC3D) was assessed for 15 days, 3 months, and 1 year, which met a satisfactory level. The eddy currents’ appearance was verified by local knowledge. We found recirculating currents near the riverbank to the East (right at the riverbank failures), whose velocity was approximately half and 1/3–1/4 of the mainstream flow velocity in the dry and flood seasons, respectively. Our study approach performed well in revealing the eddy currents, which can aid in assessing potential riverbank failures and can be applicable to similar contexts. Full article
Show Figures

Figure 1

11 pages, 1777 KiB  
Article
Delayed Evacuation after a Disaster Because of Irrational Prediction of the Future Cumulative Precipitation Time Series under Asymmetry of Information
by Atsuo Murata, Toshihisa Doi, Rin Hasegawa and Waldemar Karwowski
Symmetry 2022, 14(1), 6; https://doi.org/10.3390/sym14010006 - 22 Dec 2021
Viewed by 2410
Abstract
This study investigated biased prediction of cumulative precipitation, using a variety of patterns of histories of cumulative precipitation, to explore how such biased prediction could delay evacuation or evacuation orders. The irrationality in predicting the future of cumulative precipitation was examined to obtain [...] Read more.
This study investigated biased prediction of cumulative precipitation, using a variety of patterns of histories of cumulative precipitation, to explore how such biased prediction could delay evacuation or evacuation orders. The irrationality in predicting the future of cumulative precipitation was examined to obtain insights into the causes of delayed evacuation or evacuation orders using a simulated prediction of future cumulative precipitation based on the cumulative precipitation history. Anchoring and adjustment, or availability bias stemming from asymmetry of information, was observed in the prediction of cumulative precipitation, and found to delay evacuation or evacuation orders. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 6752 KiB  
Article
Laboratory Investigation of Geobag Revetment Performance in Rivers
by Leila Khajenoori, Grant Wright and Martin Crapper
Geosciences 2021, 11(8), 304; https://doi.org/10.3390/geosciences11080304 - 22 Jul 2021
Cited by 6 | Viewed by 4172
Abstract
Geobag (sand-filled geotextile bags) revetments have recently emerged as long-term riverbank protection measures in developing countries; however, their performance is still not well understood. The hydraulic stability of geobag revetments used for riverbank protection has been studied within an extensive laboratory programme to [...] Read more.
Geobag (sand-filled geotextile bags) revetments have recently emerged as long-term riverbank protection measures in developing countries; however, their performance is still not well understood. The hydraulic stability of geobag revetments used for riverbank protection has been studied within an extensive laboratory programme to improve our understanding of the complete failure processes of geobag revetments. A 1:10 scale distorted physical model was tested in a laboratory flume, comparing a range of different construction methods and revetment side slopes, subjected to different flow loading. The results indicate that whilst failure mechanisms are highly dependent on water depth and revetment slope, the construction method had no noticeable impact. It was thus concluded that the dominating factor is the friction between individual geobags, which itself is dependent on bag longitudinal overlap rather than a specific construction method. Full article
Show Figures

Figure 1

26 pages, 6004 KiB  
Article
A Quantitative Framework for Analyzing Spatial Dynamics of Flood Events: A Case Study of Super Cyclone Amphan
by Mohammad Mehedy Hassan, Kevin Ash, Joynal Abedin, Bimal Kanti Paul and Jane Southworth
Remote Sens. 2020, 12(20), 3454; https://doi.org/10.3390/rs12203454 - 21 Oct 2020
Cited by 34 | Viewed by 7650
Abstract
Identifying the flooding risk hotspot is crucial for aiding a rapid response and prioritizes mitigation efforts over large disaster impacted regions. While climate change is increasing the risk of floods in many vulnerable regions of the world, the commonly used crisis map is [...] Read more.
Identifying the flooding risk hotspot is crucial for aiding a rapid response and prioritizes mitigation efforts over large disaster impacted regions. While climate change is increasing the risk of floods in many vulnerable regions of the world, the commonly used crisis map is inefficient and cannot rapidly determine the spatial variation and intensity of flooding extension across the affected areas. In such cases, the Local Indicators of Spatial Association (LISA) statistic can detect heterogeneity or the flooding hotspot at a local spatial scale beyond routine mapping. This area, however, has not yet been studied in the context of the magnitude of the floods. The present study incorporates the LISA methodology including Moran’s I and Getis–Ord Gi* to identify the spatial and temporal heterogeneity of the occurrence of flooding from super cyclone Amphan across 16 coastal districts of Bangladesh. Using the Synthetic Aperture Radar (SAR) data from Sentinel-1 and a Support Vector Machine (SVM) classification, “water” and “land” were classified for the pre-event (16 May 2020) and post-events (22 May, 28 May, and 7 June 2020) of the area under study. A Modified Normalized Difference Water Index (MNDWI), and visual comparison were used to evaluate the flood maps. A compelling agreement was accomplished between the observed and predicted flood maps, with an overall precision of above 95% for all SAR classified images. As per this study, 2233 km2 (8%) of the region is estimated to have been inundated on 22 May. After this point, the intensity and aerial expansion of flood decreased to 1490 km2 by 28 May before it increased slightly to 1520 km2 (2.1% of the study area) on 7 June. The results from LISA indicated that the main flooding hotspots were located in the central part, particularly in the region off the north-east of the mangrove forest. A total of 238 Unions (smallest administrative units) were identified as high flooding hotspots (p < 0.05) on 22 May, but the number of flooding hotspots dropped to 166 in the second week (28 May) after Amphan subsided before it increased to a further 208 hotspots (p < 0.05) on 7 June due to incessant rainfall and riverbank failure in the south-west part of the study area. As such, an appropriate, timely, and cost-effective strategy would be to assess existing flooding management policies through the identified flooding hotspot regions. This identification would then allow for the creation of an improved policy to help curtail the destructive effects of flooding in the future. Full article
Show Figures

Graphical abstract

23 pages, 38928 KiB  
Article
Predicting River Embankment Failure Caused by Toe Scour Considering 1D and 2D Hydraulic Models: A Case Study of Da-An River, Taiwan
by Chih-Hsin Chang, Hongey Chen, Wen-Dar Guo, Sen-Hai Yeh, Wei-Bo Chen, Che-Hsin Liu and Shih-Chiang Lee
Water 2020, 12(4), 1026; https://doi.org/10.3390/w12041026 - 3 Apr 2020
Cited by 7 | Viewed by 5591
Abstract
Physically based numerical models can predict scour depth at embankments located in bend reaches. However, methodologies for utilizing these numerical models to assess the risk of reinforced concrete embankment failure are rarely investigated. Therefore, a new assessment methodology is proposed to predict the [...] Read more.
Physically based numerical models can predict scour depth at embankments located in bend reaches. However, methodologies for utilizing these numerical models to assess the risk of reinforced concrete embankment failure are rarely investigated. Therefore, a new assessment methodology is proposed to predict the riverbank failure caused by bend scour. The methodology is primarily based on a bend scour simulation model that integrates a one-dimensional (1D) hydraulic model, a two-dimensional (2D) hydrodynamic finite-volume model, and an empirical equation of bend scour prediction. The model was first applied to the Shuiwei Embankment located in a river bend reach of Da-An River in Taiwan and verified against results from the 1D hydraulic model and field data. The model was then used to simulate 2D flow field and the temporal evolution of bend scour depth under different return period flood events to examine the relationships between river discharge, water level, shear stress, and bend scour depth. The influence of shear stress on the stability of toe protections was also investigated. The field data (from two events) and numerical solutions (four scenarios) were assessed to conceive two empirical equations for predicting shear stress and bend scour depth. A new assessment methodology was proposed using these two equations to predict the risk of river embankment failure during flood periods. The proposed methodology can be easily applied in other disaster-prone regions to mitigate the effects of disasters caused by bend scouring. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 4239 KiB  
Article
Riverbank Stability Assessment under River Water Level Changes and Hydraulic Erosion
by Toan Duong Thi and Duc Do Minh
Water 2019, 11(12), 2598; https://doi.org/10.3390/w11122598 - 10 Dec 2019
Cited by 36 | Viewed by 12497
Abstract
The dominant mechanism of riverbank cantilever failure is soil erosion of the bank toe and near bank zone. This paper demonstrates that the shape of the riverbank cantilever failure depends on the properties of the soil and the fluctuation of the river water [...] Read more.
The dominant mechanism of riverbank cantilever failure is soil erosion of the bank toe and near bank zone. This paper demonstrates that the shape of the riverbank cantilever failure depends on the properties of the soil and the fluctuation of the river water level (RWL). With a stable RWL, a riverbank with higher resistance force leads to failure with larger and deeper overhang erosion width. When RWL rises, a less cohesive soil bank will be eroded over a larger width and riverbank failure will occur earlier. With a low rate of rising RWL, riverbank failure may happen in a type of mass failure. With a high rate of rising RWL, a riverbank will fail in a type of overhang riverbank failure, with the soil erosion rate being the main affected factor. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 7108 KiB  
Article
Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures
by Dick R. Mastbergen, Konrad Beinssen and Yves Nédélec
J. Mar. Sci. Eng. 2019, 7(10), 368; https://doi.org/10.3390/jmse7100368 - 17 Oct 2019
Cited by 15 | Viewed by 7438
Abstract
Retrogressive breach failures or coastal flow slides occur naturally in the shoreface in fine sands near dynamic tidal channels or rivers. They sometimes retrogress into beaches, shoal margins and riverbanks where they can threaten infrastructure and cause severe coastal erosion and flood risk. [...] Read more.
Retrogressive breach failures or coastal flow slides occur naturally in the shoreface in fine sands near dynamic tidal channels or rivers. They sometimes retrogress into beaches, shoal margins and riverbanks where they can threaten infrastructure and cause severe coastal erosion and flood risk. Ever since the first reports were published in the Netherlands over a century ago, attempts have been made to understand the geo-mechanical mechanism of flow slides. In this paper we have established that events, observed during the active phase, are characterized by a slow but steady retrogression into the shoreline, often continuing for many hours. This can be explained by the breaching mechanism, as will be clarified in this paper. Recently, further evidence has become available in the form of video footage of active events in Australia and elsewhere, often publicly posted on the internet. All these observations justify the new term ‘retrogressive breach failure’ (RBF event). The mechanism has been confirmed in flume tests and in a field experiment. With a better understanding of the geo-mechanical mechanism, current protection methods can be better understood, and new defense strategies can be envisaged. In writing this paper, we hope that the coastal science and engineering communities will better recognize and understand these intriguing natural events. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Graphical abstract

16 pages, 4360 KiB  
Article
Assessing the Effects of Rainfall Intensity and Hydraulic Conductivity on Riverbank Stability
by Toan Thi Duong, Duc Minh Do and Kazuya Yasuhara
Water 2019, 11(4), 741; https://doi.org/10.3390/w11040741 - 10 Apr 2019
Cited by 17 | Viewed by 5513
Abstract
Riverbank failure often occurs in the rainy season, with effects from some main processes such as rainfall infiltration, the fluctuation of the river water level and groundwater table, and the deformation of transient seepage. This paper has the objective of clarifying the effects [...] Read more.
Riverbank failure often occurs in the rainy season, with effects from some main processes such as rainfall infiltration, the fluctuation of the river water level and groundwater table, and the deformation of transient seepage. This paper has the objective of clarifying the effects of soil hydraulic conductivity and rainfall intensity on riverbank stability using numerical analysis with the GeoSlope program. The initial saturation condition is first indicated as the main factor affecting riverbank stability. Analyzing high-saturation conditions, the obtained result can be used to build an understanding of the mechanics of riverbank stability and the effect of both the rainfall intensity and soil hydraulic conductivity. Firstly, the rainfall intensity is lower than the soil hydraulic conductivity; the factor of safety (FOS) reduces with changes in the groundwater table, which is a result of rainwater infiltration and unsteady state flow through the unsaturated soil. Secondly, the rainfall intensity is slightly higher than the soil hydraulic conductivity, the groundwater table rises slowly, and the FOS decreases with both changes in the wetting front and groundwater table. Thirdly, the rainfall intensity is much higher than the soil hydraulic conductivity, and the FOS decreases dominantly by the wetting front and pond loading area. Finally, in cases with no pond, the FOS reduces when the rainfall intensity is lower than hydraulic conductivity. With low hydraulic conductivity, the wetting front is on a shallow surface and descends very slowly. The decreasing of FOS is only due to transient seepage changes of the unsaturated soil properties by losing soil suction and shear strength. These obtained results not only build a clearer understanding of the filtration mechanics but also provide a helpful reference for riverbank protection. Full article
(This article belongs to the Special Issue Rainfall Infiltration Modeling)
Show Figures

Figure 1

19 pages, 6389 KiB  
Article
Dynamic Characteristics and Failure Mechanism of Vegetated Revetment under Cyclic Loading
by Wei Chen, Ruoyu Jin, Han Zhu, Yidong Xu, Dariusz Wanatowski, Lili He and Qinglin Guo
Materials 2019, 12(5), 716; https://doi.org/10.3390/ma12050716 - 1 Mar 2019
Cited by 2 | Viewed by 2902
Abstract
This research is focused on the dynamic behavior and failure mechanisms of an ecologically vegetated bituminous mixture applied in a riverbank revetment model. The dynamic bearing capacity of the vegetated riparian slope was evaluated. The dynamic soil pressure distribution and deformation were analyzed, [...] Read more.
This research is focused on the dynamic behavior and failure mechanisms of an ecologically vegetated bituminous mixture applied in a riverbank revetment model. The dynamic bearing capacity of the vegetated riparian slope was evaluated. The dynamic soil pressure distribution and deformation were analyzed, followed by 3D elastic–plastic finite element modeling. Experimental results showed that the cumulative vertical settlement increased rapidly with the loading time. Vegetation added into bituminous mixtures was found to be effective in inhibiting the development of the vertical displacement of sand. The research described in this paper provides a theoretical basis and guidelines for the protection of riverbank slopes. Full article
Show Figures

Figure 1

18 pages, 4689 KiB  
Article
Coupled Model of Bank Erosion and Meander Evolution for Cohesive Riverbanks
by Kattia Rubi Arnez Ferrel, Supapap Patsinghasanee, Ichiro Kimura and Yasuyuki Shimizu
Geosciences 2018, 8(10), 359; https://doi.org/10.3390/geosciences8100359 - 22 Sep 2018
Cited by 10 | Viewed by 5258
Abstract
In this paper, a physics-based model that couples a bank erosion model with a meander evolution model is developed and evaluated. The physics-based bank erosion model considers the cantilever failure mechanism with slump blocks and decomposition effects. Moreover, bank accretion was considered using [...] Read more.
In this paper, a physics-based model that couples a bank erosion model with a meander evolution model is developed and evaluated. The physics-based bank erosion model considers the cantilever failure mechanism with slump blocks and decomposition effects. Moreover, bank accretion was considered using critical values of time required for landing, shear stresses and water depths. Two cases were tested. The first case consists of a hypothetical small-scale channel with cohesive riverbanks. Cross sections in the straight and curved part of the channel were compared to evaluate the curvature effect. Furthermore, the effect of the bank strength in the plan shape of the channel was tested in this case. The results show that the curvature increases the erosion rate in the outer bank and changes the cross-sectional profile by narrowing and widening the channel width. The plan shape of the channel changed as the bank strength was increased. In the second case, the model is compared with the River meander migration software (RVR meander) and the advantages and limitations of the model are discussed in terms of meander migration plan form and bank erosion processes. The results showed that the presented model is capable of simulating asymmetric bends. Full article
(This article belongs to the Special Issue Mechanics of Erosion: Process Response to Change)
Show Figures

Graphical abstract

15 pages, 2352 KiB  
Article
The Influences of Riparian Vegetation on Bank Failures of a Small Meadow-Type Meandering River
by Haili Zhu, Xiasong Hu, Zhiwei Li, Lu Song, Ke Li, Xilai Li and Guorong Li
Water 2018, 10(6), 692; https://doi.org/10.3390/w10060692 - 25 May 2018
Cited by 21 | Viewed by 5441
Abstract
The outer banks of meadow-type meandering river bends in the source zone of the Yellow River are especially vulnerable to bank failure. This study aims to understand how vegetation affects bank stability and the mechanism of bank failure, especially via a prediction of [...] Read more.
The outer banks of meadow-type meandering river bends in the source zone of the Yellow River are especially vulnerable to bank failure. This study aims to understand how vegetation affects bank stability and the mechanism of bank failure, especially via a prediction of the width of a collapsed block of small rivers through a proposed bank stability equilibrium as well as field sampling. Soil and vegetation properties were surveyed at four sites near the riverbank in 2013–2016. It was found that the failed blocks had, on average, a dimension of 0.865 m (width) by 0.817 m (thickness) by 2.228 m (length). The variability in the size of all the failed blocks was attributed predominantly to the roots of plants. Block thickness could be logarithmically predicted by root length at R2 ≥ 0.76. The block width predicted from the proposed equilibrium equation deviated from in situ measurements by approximately 22.1%, a discrepancy highly subject to the overestimation of root reinforcement using Wu’s model. By reducing the coefficient of Wu’s model from 1.2 to 0.85, the proposed equilibrium equation was reliable to predict the width of bank collapse. However, its applicability to other study areas needs to be verified in further studies. Full article
(This article belongs to the Special Issue Erosion and Torrent Control)
Show Figures

Figure 1

Back to TopTop