Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = river confluence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5063 KiB  
Article
Flood Susceptibility Assessment Based on the Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS): A Case Study of the Broader Area of Megala Kalyvia, Thessaly, Greece
by Nikolaos Alafostergios, Niki Evelpidou and Evangelos Spyrou
Information 2025, 16(8), 671; https://doi.org/10.3390/info16080671 - 6 Aug 2025
Viewed by 195
Abstract
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused [...] Read more.
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused significant flooding and many damages and fatalities. The southeastern areas of Trikala were among the many areas of Thessaly that suffered the effects of these rainfalls. In this research, a flood susceptibility assessment (FSA) of the broader area surrounding the settlement of Megala Kalyvia is carried out through the analytical hierarchy process (AHP) as a multicriteria analysis method, using Geographic Information Systems (GIS). The purpose of this study is to evaluate the prolonged flood susceptibility indicated within the area due to the past floods of 2018, 2020, and 2023. To determine the flood-prone areas, seven factors were used to determine the influence of flood susceptibility, namely distance from rivers and channels, drainage density, distance from confluences of rivers or channels, distance from intersections between channels and roads, land use–land cover, slope, and elevation. The flood susceptibility was classified as very high and high across most parts of the study area. Finally, a comparison was made between the modeled flood susceptibility and the maximum extent of past flood events, focusing on that of 2023. The results confirmed the effectiveness of the flood susceptibility assessment map and highlighted the need to adapt to the changing climate patterns observed in September 2023. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis, 3rd Edition)
Show Figures

Figure 1

19 pages, 7033 KiB  
Article
The Influence of Combined Energy Dissipators on Navigable Flow Characteristics at Main Channel—Tributary Confluences in Trans-Basin Canals: A Case Study of the Jiuzhou River Section, Pinglu Canal
by Linfeng Han, Kaixian Deng, Tao Yu and Junhui He
Water 2025, 17(15), 2214; https://doi.org/10.3390/w17152214 - 24 Jul 2025
Viewed by 481
Abstract
The flow characteristics at the tributary entrance are crucial for ensuring safe navigation where the main channel and tributary converge. Along the inter-basin canal, numerous tributaries feature large confluence angles and significant flow discharge ratios. An experimental study investigated how these factors influence [...] Read more.
The flow characteristics at the tributary entrance are crucial for ensuring safe navigation where the main channel and tributary converge. Along the inter-basin canal, numerous tributaries feature large confluence angles and significant flow discharge ratios. An experimental study investigated how these factors influence flow patterns, leading to proposed mitigation measures. This research employed a 1:50-scale physical river model and a sediment deposition model. It analyzed navigable flow conditions including velocity, flow patterns, the confluence ratio, the bottom elevation difference, and the confluence angle at the main channel–tributary junction. Focusing on the Jiuzhou River tributary entrance (Pinglu Canal), which has a large confluence ratio, significant bottom elevation difference, and wide confluence angle, this study tested two solutions: a single energy dissipator and a combined energy dissipator system. Sediment deposition modeling compared the effectiveness of these approaches. The results showed that implementing a steep slope with a three-stage stilling pool in the Jiuzhou River entrance section effectively manages confluences with large elevation differences, wide angles, and high flow discharge ratios. This configuration significantly improves entrance flow characteristics. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

34 pages, 24111 KiB  
Article
Natural and Anthropic Constraints on Historical Morphological Dynamics in the Middle Stretch of the Po River (Northern Italy)
by Laura Turconi, Barbara Bono, Carlo Mambriani, Lucia Masotti, Fabio Stocchi and Fabio Luino
Sustainability 2025, 17(14), 6608; https://doi.org/10.3390/su17146608 - 19 Jul 2025
Viewed by 563
Abstract
Geo-historical information deduced from geo-iconographical resources, derived from extensive research and the selection of cartographies and historical documents, enabled the investigation of the natural and anthropic transformations of the perifluvial area of the Po River in the Emilia-Romagna region (Italy). This territory, significant [...] Read more.
Geo-historical information deduced from geo-iconographical resources, derived from extensive research and the selection of cartographies and historical documents, enabled the investigation of the natural and anthropic transformations of the perifluvial area of the Po River in the Emilia-Romagna region (Italy). This territory, significant in terms of its historical, cultural, and environmental contexts, for centuries has been the scene of flood events. These have characterised the morphological and dynamic variability in the riverbed and relative floodplain. The close relationship between man and river is well documented: the interference induced by anthropic activity has alternated with the sometimes-damaging effects of river dynamics. The attention given to the fluvial region of the Po River and its main tributaries, in a peculiar lowland sector near Parma, is critical for understanding spatial–temporal changes contributing to current geo-hydrological risks. A GIS project outlined the geomorphological aspects that define the considerable variations in the course of the Po River (involving width reductions of up to 66% and length changes of up to 14%) and its confluences from the 16th to the 21st century. Knowledge of anthropic modifications is essential as a tool within land-use planning and enhancing community awareness in risk-mitigation activities and strategic management. This study highlights the importance of interdisciplinary geo-historical studies that are complementary in order to decode river dynamics in damaging flood events and latent hazards in an altered river environment. Full article
Show Figures

Figure 1

34 pages, 9311 KiB  
Article
Historical Evolution and Future Trends of Riverbed Dynamics Under Anthropogenic Impact and Climatic Change: A Case Study of the Ialomița River (Romania)
by Andrei Radu and Laura Comănescu
Water 2025, 17(14), 2151; https://doi.org/10.3390/w17142151 - 19 Jul 2025
Viewed by 781
Abstract
Riverbed dynamics are natural processes that are strongly driven by human and climatic factors. In the last two centuries, the anthropogenic influence and impact of climate change on European rivers has resulted in significant degradation of riverbeds. This research paper aims to determine [...] Read more.
Riverbed dynamics are natural processes that are strongly driven by human and climatic factors. In the last two centuries, the anthropogenic influence and impact of climate change on European rivers has resulted in significant degradation of riverbeds. This research paper aims to determine the historical evolution (1856–2021) and future trends of the Ialomița riverbed (Romania) under the influence of anthropogenic impact and climate change. The case study is a reach of 66 km between the confluences with the Ialomicioara and Pâscov rivers. The localisation in a contact zone between the Curvature Subcarpathians and the Târgoviște Plain, the active recent tectonic uplift of the area, and the intense anthropogenic intervention gives to this river reach favourable conditions for pronounced riverbed dynamics over time. To achieve the aim of the study, we developed a complex methodology which involves the use of Geographical Information System (GIS) techniques, hierarchical cluster analysis (HCA), the Mann–Kendall test (MK), and R programming. The results indicate that the evolution of the Ialomița River aligns with the general trends observed across Europe and within Romania, characterised by a reduction in riverbed geomorphological complexity and a general transition from a braided, multi-thread into a sinuous, single-thread fluvial style. The main processes consist of channel narrowing and incision alternating with intense meandering. However, specific temporal and spatial evolution patterns were identified, mainly influenced by the increasingly anthropogenic local influences and confirmed climate changes in the study area since the second half of the 20th century. Future evolutionary trends suggest that, in the absence of river restoration interventions, the Ialomița riverbed is expected to continue degrading on a short-term horizon, following both climatic and anthropogenic signals. The findings of this study may contribute to a better understanding of recent river behaviours and serve as a valuable tool for the management of the Ialomița River. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

14 pages, 2100 KiB  
Article
Response of Han River Estuary Discharge to Hydrological Process Changes in the Tributary–Mainstem Confluence Zone
by Shuo Ouyang, Changjiang Xu, Weifeng Xu, Junhong Zhang, Weiya Huang, Cuiping Yang and Yao Yue
Sustainability 2025, 17(14), 6507; https://doi.org/10.3390/su17146507 - 16 Jul 2025
Viewed by 342
Abstract
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of [...] Read more.
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of riverbed scouring (mean annual incision rate: 0.12 m) and Three Gorges Dam (TGD) operation through four orthogonal scenarios. Key findings reveal: (1) Riverbed incision dominates discharge variation (annual mean contribution >84%), enhancing flood conveyance efficiency with a peak flow increase of 21.3 m3/s during July–September; (2) TGD regulation exhibits spatiotemporal intermittency, contributing 25–36% during impoundment periods (September–October) by reducing Yangtze backwater effects; (3) Nonlinear interactions between drivers reconfigure flow paths—antagonism occurs at low confluence ratios (R < 0.15, e.g., Cd increases to 45 under TGD but decreases to 8 under incision), while synergy at high ratios (R > 0.25) reduces Hanchuan Station flow by 13.84 m3/s; (4) The 180–265 km confluence-proximal zone is identified as a sensitive area, where coupled drivers amplify water surface gradients to −1.41 × 10−3 m/km (2.3× upstream) and velocity increments to 0.0027 m/s. The proposed “Natural/Anthropogenic Dual-Stressor Framework” elucidates estuary discharge mechanisms under intensive human interference, providing critical insights for flood control and trans-basin water resource management in tide-free estuaries globally. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

24 pages, 2446 KiB  
Article
Mechanisms and Resilience Governance of Built Heritage Spatial Differentiation in China: A Sustainability Perspective
by Yangyang Lu, Longyin Teng, Jian Dai, Qingwen Han, Zhong Sun and Lin Li
Sustainability 2025, 17(13), 6065; https://doi.org/10.3390/su17136065 - 2 Jul 2025
Viewed by 359
Abstract
Built heritage serves as a vital repository of human history and culture, and an examination of its spatial distribution and influencing factors holds significant value for the preservation and advancement of our historical and cultural narratives. This thesis brings together various forms of [...] Read more.
Built heritage serves as a vital repository of human history and culture, and an examination of its spatial distribution and influencing factors holds significant value for the preservation and advancement of our historical and cultural narratives. This thesis brings together various forms of built heritage, employing methodologies such as kernel density estimation, average nearest neighbor analysis, and standard deviation ellipses to elucidate the characteristics of spatial distribution. Additionally, it investigates the influencing factors through geographical detectors and Multiscale Geographically Weighted Regression (MGWR). The findings reveal several key insights: (1) In terms of geographical patterns, built heritage is predominantly located southeast of the “Hu-Huanyong” line, with notable concentrations at the confluence of Shanxi and Henan provinces, the southeastern region of Guizhou, as well as in southern Anhui, Fujian, and Zhejiang. Moreover, distinct types of built heritage exhibit marked spatial variations. (2) The reliability and significance of the analytical results derived from prefecture and city-level units surpass those obtained from grid and provincial-level analyses. Among the influencing factors, the explanatory power associated with the number of counties emerges as the strongest, while that relating to population density was the weakest; furthermore, interactions among factors that meet significance thresholds reveal enhanced explanatory capabilities. (3) Both road density and population density demonstrate positive correlations; conversely, the positive influence of topographic relief and river density accounts for 90% of their variance. GDP exhibits a negative correlation, with the number of counties contributing to 70% of this negative impact; thus, the distribution of positive and negative influences from various factors varies significantly. Drawing upon these spatial distribution characteristics and the disparities observed in regression coefficients, this thesis delves into potential influence factors and proposes recommendations for the development and safeguarding of built heritage. Full article
(This article belongs to the Special Issue Architecture, Urban Space and Heritage in the Digital Age)
Show Figures

Figure 1

26 pages, 9572 KiB  
Article
Geochemical Characteristics and Risk Assessment of PTEs in the Supergene Environment of the Former Zoige Uranium Mine
by Na Zhang, Zeming Shi, Chengjie Zou, Yinghai Zhu and Yun Hou
Toxics 2025, 13(7), 561; https://doi.org/10.3390/toxics13070561 - 30 Jun 2025
Viewed by 309
Abstract
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly [...] Read more.
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly at river confluences and downstream regions, attributed to leachate migration from ore bodies and tailings ponds. Surface samples exhibited high Cd bioavailability. The integrated BCR and mineral analysis reveals that Acid-soluble and reducible fractions of Ni, Cu, Zn, As, and Pb are governed by carbonate dissolution and Fe-Mn oxide dynamics via silicate weathering, while residual and oxidizable fractions show weak mineral-phase dependencies. Positive Matrix Factorization identified natural lithogenic, anthropogenic–natural composite, mining-related sources. Pollution assessments using geo-accumulation index and contamination factor demonstrated severe contamination disparities: soils showed extreme Cd pollution, moderate U, As, Zn contamination, and no Cr, Pb pollution (overall moderate risk); sediments exhibited extreme Cd pollution, moderate Ni, Zn, U levels, and negligible Cr, Pb impacts (overall extreme risk). USEPA health risk models indicated notable non-carcinogenic (higher in adults) and carcinogenic risks (higher in children) for both age groups. Ecological risk assessments categorized As, Cr, Cu, Ni, Pb, and Zn as low risk, contrasting with Cd (extremely high risk) and sediment-bound U (high risk). These findings underscore mining legacy as a critical environmental stressor and highlight the necessity for multi-source pollution mitigation strategies. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

18 pages, 2811 KiB  
Article
Numerical Simulation of Turbulent Flow in River Bends and Confluences Using the k-ω SST Turbulence Model and Comparison with Standard and Realizable k-ε Models
by Rawaa Shaheed, Abdolmajid Mohammadian and Alaa Mohammed Shaheed
Hydrology 2025, 12(6), 145; https://doi.org/10.3390/hydrology12060145 - 11 Jun 2025
Viewed by 1659
Abstract
River bends and confluences are critical features in fluvial environments where complex flow patterns, including secondary currents, turbulence, and surface changes, strongly influence sediment transport, river morphology, and water quality. The accurate prediction of these flow characteristics is essential for hydraulic engineering applications. [...] Read more.
River bends and confluences are critical features in fluvial environments where complex flow patterns, including secondary currents, turbulence, and surface changes, strongly influence sediment transport, river morphology, and water quality. The accurate prediction of these flow characteristics is essential for hydraulic engineering applications. In this study, we present a numerical simulation of turbulent flow in river bends and confluences, with special consideration given to the dynamic interaction between free-surface variations and closed-surface constraints. The simulations were performed using OpenFOAM, an open-source computational fluid dynamics (CFDs) platform, with the k-ω SST (Shear Stress Transport) turbulence model, which is well-suited for capturing boundary layer behavior and complex turbulence structures. The finite volume method (FVM) is used to simulate and examine the behavior of the secondary current in channel bends and confluences. Two sets of experimental data, one with a sharply curved channel and the other with a confluent channel, were used to compare the numerical results and to evaluate the validity of the model. This study focuses on investigating to what extent the k-ω SST turbulence model can capture the effects of secondary flow and surface changes on flow hydrodynamics, analyzing velocity profiles and turbulence effects. The results are validated against experimental data, demonstrating the model’s ability to reasonably replicate flow features under both free- and closed-surface conditions. This study provides insights into the performance of the k-ω SST model in simulating the impact of geometrical constraints on flow regimes, offering a computationally robust and reasonable tool for river engineering and water resources management, particularly in the context of hydraulic structure design and erosion control in curved and confluence regions. Full article
(This article belongs to the Special Issue Hydrodynamics and Water Quality of Rivers and Lakes)
Show Figures

Figure 1

14 pages, 2408 KiB  
Article
Comprehensive Risk Evaluation of Perfluoroalkyl Substance Pollution in Urban Riverine Systems: Ecotoxicological and Human Health Perspectives
by Ferlian Vida Satriaji, Cat Tuong Le Tong, Nelly Marlina, Yan Lin, Nguyen Duy Dat, Ha Manh Bui, Yoshifumi Horie and Jheng-Jie Jiang
Toxics 2025, 13(6), 435; https://doi.org/10.3390/toxics13060435 - 26 May 2025
Viewed by 647
Abstract
This study investigated the spatiotemporal distribution of perfluoroalkyl substances (PFASs) in the Daku River, Taoyuan, with a particular focus on source apportionment and associated ecological and human health risks. The total PFAS concentrations ranged from below the detection limits to 185 ng/L, with [...] Read more.
This study investigated the spatiotemporal distribution of perfluoroalkyl substances (PFASs) in the Daku River, Taoyuan, with a particular focus on source apportionment and associated ecological and human health risks. The total PFAS concentrations ranged from below the detection limits to 185 ng/L, with perfluorooctanoic acid (PFOA) emerging as the predominant compound, followed by perfluorobutanesulfonic acid (PFBS). Elevated PFAS levels were observed downstream of the confluence between the Daku River and Litouzhou ditch, suggesting contributions from industrial activities. Principal component analysis (PCA) and positive matrix factorization (PMF) were employed to identify important components and factors that explain different compounds. Factor 1 (dominated by PFUnA) was attributed to sources such as food packaging and textiles. Factor 2 (PFBS, PFHxS, PFOS) originated from agricultural inputs and wastewater discharges linked to the semiconductor and photonics industries. Factor 3 (PFOA, PFNA, PFDA) was primarily associated with fluoropolymer manufacturing, electronics, chemical engineering, machinery, and coating production. Ecological risk assessments showed no significant threats (RQ < 0.1) for PFBS, PFPA, PFNA, PFOS, and PFDA. Human health risk evaluations based on the Health Risk Index (HRI < 1), likewise, indicated negligible risk from crop and vegetable consumption in the Daku River area. These findings underscore the importance of continued monitoring and targeted pollution management strategies to safeguard environmental quality and public health. Full article
Show Figures

Figure 1

15 pages, 17735 KiB  
Article
A Roman Fortlet and Medieval Lowland Castle in the Upper Rhine Graben (Germany): Archaeological and Geoarchaeological Research on the Zullestein Site and the Fluvioscape of Lorsch Abbey
by Roland Prien, Elena Appel, Thomas Becker, Olaf Bubenzer, Peter Fischer, Bertil Mächtle, Timo Willershäuser and Andreas Vött
Heritage 2025, 8(5), 180; https://doi.org/10.3390/heritage8050180 - 19 May 2025
Viewed by 631
Abstract
This study examines the Roman burgus and medieval lowland castle ‘Zullestein’ near Biblis (Bergstraße district/Hessen/Germany) and its surrounding fluvio-scape. The aim of the study is to reassess the appearance of the fortifications and the surrounding area at the confluence of the River Weschnitz [...] Read more.
This study examines the Roman burgus and medieval lowland castle ‘Zullestein’ near Biblis (Bergstraße district/Hessen/Germany) and its surrounding fluvio-scape. The aim of the study is to reassess the appearance of the fortifications and the surrounding area at the confluence of the River Weschnitz and the River Rhine based on the excavation results from the 1970s and current geoarchaeological research on site. Our approach encompasses electrical resistivity tomography, direct push sensing, sediment coring and the use of a high-resolution digital elevation model in combination with historical depictions of the Zullestein site from the 17th century AD. The findings of this integrative approach indicate that the Roman fort was likely located at a secondary channel of the River Rhine. With the renewed occupation of the Zullestein site by Lorsch Abbey during Carolingian times and the expansion into a lowland castle in the 11th century, the site was now located at the Weschnitz mouth into the Rhine, likely as part of anthropogenic interventions related to the Weschnitz fluvioscape. Traces of the final phase of the castle at the time of the Thirty Years’ War can still be seen in the terrain today and their attribution to individual elements of the historical account can be confirmed by the geoarchaeological results. The combination of methods presented in this study is a suitable option if excavations are not possible. Full article
Show Figures

Figure 1

21 pages, 7385 KiB  
Article
Exceptional Backwater Effects on Wedge Storages and Flood Stages in a Large River-Type Reservoir: HEC-RAS Modeling of Feilaixia Gorge in the North River, South China
by Zhiwei Zhong, Xianwei Wang, Yong He, Silong Cai and Hongfu Tong
Water 2025, 17(10), 1447; https://doi.org/10.3390/w17101447 - 11 May 2025
Viewed by 623
Abstract
Backwater effects of the Feilaixia Reservoir caused frequent inundations in the reservoir tail and complicated flood regulations in the North River basin. Currently, how backwater effects impact wedge storages and flood stages in the Feilaixia Reservoir remains unknown. This study established the 1D [...] Read more.
Backwater effects of the Feilaixia Reservoir caused frequent inundations in the reservoir tail and complicated flood regulations in the North River basin. Currently, how backwater effects impact wedge storages and flood stages in the Feilaixia Reservoir remains unknown. This study established the 1D HEC-RAS model to simulate the water level profile and dynamic storage capacity in the Feilaixia Reservoir during two flood events and in 25 regulation scenarios. The results show that the simulated water levels aligned well with the measured data during the flood events in June 2022 and April 2024. The impact of backwater effects on flood stages, i.e., the water level difference between reservoir regulation and natural river, gradually diminished from the dam to the reservoir tail. The larger flood flow and higher water levels in front of the dam triggered greater wedge storages and higher flood stages and inundation risks in the reservoir. The narrow Mangzaixia Gorge produced a secondary backwater effect in the reservoir tail, resulting in distinct water level profile patterns above the Lianjiangkou confluence in the main stream and in the Lian River tributary. The backwater effects on wedge storage and flood stages were exceptionally large, and the ratios of wedge storages to static water storages in the Feilaixia Reservoir were 125% and 147% during both flood events, and even up to 199% as inflow reaches 20,000 m3/s, which should be carefully considered in operational flood regulation and levee height design in the reservoir. Full article
(This article belongs to the Special Issue Flood Risk Assessment on Reservoirs)
Show Figures

Figure 1

19 pages, 8359 KiB  
Article
Driving Effects of Coal Mining Activities on Microbial Communities and Hydrochemical Characteristics in Different Zones
by Zongkui Zhu, Yating Gao, Li Zhang and Yajun Sun
Sustainability 2025, 17(9), 4000; https://doi.org/10.3390/su17094000 - 29 Apr 2025
Viewed by 366
Abstract
Elucidating the microbial–hydrochemical interactions in distinct functional zones of coal mines holds significant implications for groundwater pollution mitigation strategies in mining regions. Taking Xinji No. 2 Coal Mine as an example, 15 water samples (including surface water, goaf water, sump water, working face [...] Read more.
Elucidating the microbial–hydrochemical interactions in distinct functional zones of coal mines holds significant implications for groundwater pollution mitigation strategies in mining regions. Taking Xinji No. 2 Coal Mine as an example, 15 water samples (including surface water, goaf water, sump water, working face drainage, rock roadway water, and coal roadway water) were collected from six surface and underground areas for hydrochemical and microbial detection analysis. The results show that bacterial genera such as Exiguobacterium and Mycobacterium cannot adapt to high-salinity environments with elevated K+ + Na+ concentrations, showing negative correlation with TDS. Microbial communities related to sulfate serve as important indicators for microbial technology-based pollution control in coal mine groundwater, where sulfate-reducing bacteria (e.g., norank_f__Desulfuromonadaceae) can reduce SO42− concentrations and improve mine water quality. Low dissolved oxygen (DO) concentrations lead to decreased abundance of aerobic microorganisms, hindering the formation of stable microbial communities in mines. Affected by mine water quality, the confluence of mine drainage into rivers results in HCO3 and SO42− concentrations at the confluence being higher than upstream, which gradually return to upstream concentrations after entering the downstream. However, due to the influx of nitrogen cycle-related bacteria and organic matter from mine water into surface water, increased microbial physiological activities and carbon sources cause NO3 concentrations to increase more than tenfold. The formation stages of mine water quality exhibit regional characteristics, with goaf areas showing distinct hydrochemical components and microbial communities compared to other zones. Based on this research, new microbial approaches for groundwater pollution control in coal mining areas are proposed: (1) selecting and cultivating functional microorganisms (such as SRB and organic matter-degrading bacteria) to develop biological materials for mine water remediation; (2) regulating the transformation of elements by adjusting carbon sources and oxygen supply according to indigenous microbial requirements, thereby reducing pollutant concentrations in water bodies. Full article
Show Figures

Figure 1

16 pages, 6011 KiB  
Article
Sedimentation Pattern as a Response to Hydrodynamics in a Near-Symmetric River Confluence
by João Nuno Fernandes and Leila Alizadeh
Sustainability 2025, 17(9), 3790; https://doi.org/10.3390/su17093790 - 23 Apr 2025
Cited by 1 | Viewed by 502
Abstract
River confluences are dynamic zones where hydrodynamic interactions between tributary flows—varying in velocity, direction, and sediment concentration—can significantly alter hydro morphology. These changes feature substantial consequences for the stability of riverbanks, nearby hydraulic structures, and the surrounding environment. This paper investigates flow mechanisms [...] Read more.
River confluences are dynamic zones where hydrodynamic interactions between tributary flows—varying in velocity, direction, and sediment concentration—can significantly alter hydro morphology. These changes feature substantial consequences for the stability of riverbanks, nearby hydraulic structures, and the surrounding environment. This paper investigates flow mechanisms and sediment dynamics in a symmetric 50° confluence through laboratory experiments on a scaled physical model of a real confluence located on Madeira Island, Portugal. Acoustic Doppler velocity measurements were used to analyze the hydrodynamic characteristics, while bathymetry was surveyed using an RGB sensor and the Structure from Motion technique. Sedimentation patterns were correlated with key flow zones within the confluence. This study highlights how variations in discharge and momentum ratios influence sediment distribution and morphology, potentially destabilizing riverbanks and contributing to sediment deposition and erosion patterns. Understanding these mechanisms is critical for improving the sustainable management of water resources and minimizing anthropogenic impacts on fluvial systems. The findings provide valuable insights for enhancing river resilience, protecting natural watercourses, and supporting sustainable development by promoting informed planning of hydraulic structures and sediment management strategies. Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

18 pages, 5765 KiB  
Article
River Meanders, Tributary Junctions, and Antecedent Morphology
by Jonathan D. Phillips
Hydrology 2025, 12(5), 101; https://doi.org/10.3390/hydrology12050101 - 22 Apr 2025
Viewed by 773
Abstract
Tributaries to meandering rivers rarely join the river on the interior of bends. The limited drainage area on bend interiors explains why tributaries seldom form there, but not why existing tributaries are redirected as meanders develop. Other relevant factors include flow dynamics at [...] Read more.
Tributaries to meandering rivers rarely join the river on the interior of bends. The limited drainage area on bend interiors explains why tributaries seldom form there, but not why existing tributaries are redirected as meanders develop. Other relevant factors include flow dynamics at junctions, runoff partitioning on inner vs. outer bends, and tributary deflection as the main channel migrates laterally. This study investigated whether the lack of confluences on bend interiors applies to lower coastal plain rivers in South and North Carolina, USA, where the factors above are not necessarily active, and if so how tributaries at sites of developing meanders are redirected. Of the 121 confluences examined using GIS data supplemented with field observations, none occurred on meander bend interiors. A total of 17 cases of potentially deflected tributaries were identified. Of these, 11 had sufficient evidence for a confident interpretation of how redirection occurred. In all 11 cases, pre-bend river paleochannels were involved in redirecting the tributaries away from the bend interior. This is explained by a model showing that the local slope gradient and mean depth advantages of the paleochannels provide velocity, stream power, and shear stress advantages over extension of the tributary channel into the bend interior. The results illustrate the importance of local hydraulic selection, and the influence of antecedent morphology on river hydrology and geomorphology. Full article
Show Figures

Figure 1

15 pages, 3278 KiB  
Article
How Does Extreme Drought Affect Phytoplankton Community Assembly in Aquatic Reserves? A Study from the Confluence of Poyang Lake and Yangtze River, China
by Yufei Jiang, Wenting Shen, Lei Fang, Bao Zhang, Chiping Kong, Wei Zhang and Qun Xu
Diversity 2025, 17(4), 301; https://doi.org/10.3390/d17040301 - 21 Apr 2025
Cited by 1 | Viewed by 577
Abstract
Extreme drought events, intensified by climate change, critically threaten aquatic ecosystem stability by restructuring phytoplankton communities. However, the mechanisms underlying drought-driven community assembly remain poorly understood. This study investigated the impacts of extreme drought on phytoplankton community dynamics in the aquatic reserves of [...] Read more.
Extreme drought events, intensified by climate change, critically threaten aquatic ecosystem stability by restructuring phytoplankton communities. However, the mechanisms underlying drought-driven community assembly remain poorly understood. This study investigated the impacts of extreme drought on phytoplankton community dynamics in the aquatic reserves of Jiujiang City, China, a critical ecotone of the Yangtze River and Poyang Lake. Through multi-temporal sampling (2022–2023) across 12 sites, we integrated taxonomic, functional group, and co-occurrence network analyses with environmental driver assessments. The results revealed that extreme drought significantly reduced phytoplankton species diversity and triggered a functional shift from disturbance-adapted (e.g., MP group) to pollution-tolerant taxa (e.g., W1 group). Deterministic processes dominated community assembly, driven by drought-induced environmental filtering through water temperature, dissolved oxygen, and nutrient fluctuations. Copper emerged as a key stressor, correlating with the abundance of Cryptophyta. Co-occurrence networks, cohesion, and robustness exhibited heightened complexity and stability under extreme drought, emphasizing stress-induced mutualistic interactions. Our findings elucidate how drought reshapes phytoplankton communities via nutrient dynamics and deterministic species interactions, offering critical insights for managing aquatic ecosystems under escalating climatic extremes. Full article
(This article belongs to the Special Issue Studies on Biodiversity and Ecology of Algae in China—2nd Edition)
Show Figures

Figure 1

Back to TopTop