Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = rigid–flexible coupled human

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10333 KiB  
Article
Design of a Bionic Self-Insulating Mechanical Arm for Concealed Space Inspection in the Live Power Cable Tunnels
by Jingying Cao, Jie Chen, Xiao Tan and Jiahong He
Appl. Sci. 2025, 15(13), 7350; https://doi.org/10.3390/app15137350 - 30 Jun 2025
Viewed by 236
Abstract
Adopting mobile robots for high voltage (HV) live-line operations can mitigate personnel casualties and enhance operational efficiency. However, conventional mechanical arms cannot inspect concealed spaces in the power cable tunnel because their joint integrates metallic motors or hydraulic serial-drive mechanisms, which limit the [...] Read more.
Adopting mobile robots for high voltage (HV) live-line operations can mitigate personnel casualties and enhance operational efficiency. However, conventional mechanical arms cannot inspect concealed spaces in the power cable tunnel because their joint integrates metallic motors or hydraulic serial-drive mechanisms, which limit the arm’s length and insulation performance. Therefore, this study proposes a 7-degree-of-freedom (7-DOF) bionic mechanical arm with rigid-flexible coupling, mimicking human arm joints (shoulder, elbow, and wrist) designed for HV live-line operations in concealed cable tunnels. The arm employs a tendon-driven mechanism to remotely actuate joints, analogous to human musculoskeletal dynamics, thereby physically isolating conductive components (e.g., motors) from the mechanical arm. The arm’s structure utilizes dielectric materials and insulation-optimized geometries to reduce peak electric field intensity and increase creepage distance, achieving intrinsic self-insulation. Furthermore, the mechanical design addresses challenges posed by concealed spaces (e.g., shield tunnels and multi-circuit cable layouts) through the analysis of joint kinematics, drive mechanisms, and dielectric performance. The workspace of the proposed arm is an oblate ellipsoid with minor and major axes measuring 1.25 m and 1.65 m, respectively, covering the concealed space in the cable tunnel, while the arm’s quality is 4.7 kg. The maximum electric field intensity is 74.3 kV/m under 220 kV operating voltage. The field value is less than the air breakdown threshold. The proposed mechanical arm design significantly improves spatial adaptability, operational efficiency, and reliability in HV live-line inspection, offering theoretical and practical advancements for intelligent maintenance in cable tunnel environments. Full article
Show Figures

Figure 1

32 pages, 6286 KiB  
Article
Synthesis and In Vitro Evaluation of the Anticancer Effect of Novel Phosphonium Vindoline Derivatives
by Mónika Halmai, Viktória Donkó-Tóth, Péter Keglevich, Károly Kánai, Márton Weber, Miklós Dékány, Ejlal A. Abdallah, Noémi Bózsity, István Zupkó, Andrea Nehr-Majoros, Éva Szőke, Zsuzsanna Helyes and László Hazai
Int. J. Mol. Sci. 2025, 26(8), 3775; https://doi.org/10.3390/ijms26083775 - 16 Apr 2025
Viewed by 690
Abstract
The Vinca alkaloid vindoline was coupled at position 17 with several trisubstituted phosphine derivatives and their in vitro anticancer activities on 60 human tumor cell lines (NCI60) were investigated. This phosphonium-type ionic side chain is beneficial because it allows therapeutic molecules to pass [...] Read more.
The Vinca alkaloid vindoline was coupled at position 17 with several trisubstituted phosphine derivatives and their in vitro anticancer activities on 60 human tumor cell lines (NCI60) were investigated. This phosphonium-type ionic side chain is beneficial because it allows therapeutic molecules to pass through the cell membrane. Thus, the candidates coupled to it can exert their activities in the mitochondria. The coupling of vindoline with the trisubstituted phosphines was achieved through flexible or rigid linkers. Instead of the ionic phosphonium structural part, a neutral moiety, namely the triphenylmethyl group, was also added to the side chain, being sterically similar but without a charge and phosphorus atom. In addition, the triphenylphosphine element was also built at position 10 of vindoline. Most of the derivatives showed low micromolar growth inhibition (GI50) values against most cell lines. Among them, conjugate 9e was outstanding: it exhibited nanomolar anticancer activity on the RPMI-8226 leukemia cell line (GI50 = 20.0 nM). Compound 9g elicited cell cycle disturbance and apoptosis on A2780 ovary cancer cells and inhibited their migration at subantiproliferative concentrations. The selectivity of the conjugates was determined by their effects on non-tumor Chinese hamster ovary (CHO) cells in the CellTiter-Glo Luminescent Cell Viability Assay. Compound 9e showed an estimated half-maximal inhibitory concentration (IC50) value of 1.36 µM, suggesting good selectivity on cancer cells. These results open new perspectives of novel phosphonium-based vindoline derivatives as anticancer compounds. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

19 pages, 5716 KiB  
Article
Reconstruction of a Car–Running Pedestrian Accident Based on a Humanoid Robot Method
by Qian Wang, Bo Wei, Zheng Wei, Shang Gao, Xianlong Jin and Peizhong Yang
Sensors 2023, 23(18), 7882; https://doi.org/10.3390/s23187882 - 14 Sep 2023
Cited by 1 | Viewed by 2184
Abstract
Due to the characteristics of multibody (MB) and finite element (FE) digital human body models (HBMs), the reconstruction of running pedestrians (RPs) remains a major challenge in traffic accidents (TAs) and new innovative methods are needed. This study presents a novel approach for [...] Read more.
Due to the characteristics of multibody (MB) and finite element (FE) digital human body models (HBMs), the reconstruction of running pedestrians (RPs) remains a major challenge in traffic accidents (TAs) and new innovative methods are needed. This study presents a novel approach for reconstructing moving pedestrian TAs based on a humanoid robot method to improve the accuracy of analyzing dynamic vehicle–pedestrian collision accidents. Firstly, we applied the theory of humanoid robots to the corresponding joints and centroids of the TNO HBM and implemented the pedestrian running process. Secondly, we used rigid–flexible coupling HBMs to build pedestrians, which can not only simulate running but also analyze human injuries. Then, we validated the feasibility of the RP reconstruction method by comparing the simulated dynamics with the pedestrian in the accident. Next, we extracted the velocity and posture of the pedestrian at the moment of collision and further validated the modeling method through a comparison of human injuries and forensic autopsy results. Finally, by comparing two other cases, we can conclude that there are relative errors in both the pedestrian injury results and the rest position. This comparative analysis is helpful for understanding the differences in injury characteristics between the running pedestrian and the other two cases in TAs. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

17 pages, 5342 KiB  
Article
Design and Analysis of a Novel Actuator with a Double-Roller Gear Drive
by Xuan Li, Yang Li, Weilong Niu and Ran Guo
Actuators 2023, 12(7), 292; https://doi.org/10.3390/act12070292 - 18 Jul 2023
Viewed by 2848
Abstract
In recent years, with the development of robot transmission technology, the market demand for high-performance actuators, which can be applied to lower limb exoskeleton assist robots, is increasing. These robots help achieve human–robot interaction through rigid and flexible coupling, and they can ensure [...] Read more.
In recent years, with the development of robot transmission technology, the market demand for high-performance actuators, which can be applied to lower limb exoskeleton assist robots, is increasing. These robots help achieve human–robot interaction through rigid and flexible coupling, and they can ensure the flexibility of the elderly or patients in daily walking and rehabilitation training. A novel actuator with a double-roller gear drive structure is proposed with high bearing capability and high transmission efficiency due to multi-tooth rolling contact with small tooth difference such that friction is greatly reduced in the transmission process compared to what occurs in involute planetary transmission. The bearing capacity of the tooth surface was analyzed by using the loaded contact analysis method. Finally, a prototype was manufactured with the 3D printer, and the maximum output torque of the developed actuator was tested with an experimental setup. The results show that this novel actuator, with its double-roller gear drive, has huge potential for use in the hip joint of an exoskeleton robot. Full article
Show Figures

Figure 1

13 pages, 6022 KiB  
Article
Prediction of Ride Comfort of High-Speed Trains Based on Train Seat–Human Body Coupled Dynamics Model
by Heng Li, Xu Zheng, Wenqiang Dai and Yi Qiu
Appl. Sci. 2022, 12(24), 12900; https://doi.org/10.3390/app122412900 - 15 Dec 2022
Cited by 5 | Viewed by 2636
Abstract
A train seat–human body coupled dynamics model was established to predict the ride comfort of high-speed trains. The train and track and the seat and human body were both coupled in the model. An on-site vibration experiment in a high-speed train was carried [...] Read more.
A train seat–human body coupled dynamics model was established to predict the ride comfort of high-speed trains. The train and track and the seat and human body were both coupled in the model. An on-site vibration experiment in a high-speed train was carried out to calibrate each part of the train seat–human body coupled dynamics model. Based on the evaluation method proposed by BS EN 12299:2009, the distribution of ride comfort in the carriage and the effect of seat cushion stiffness and damping on ride comfort were analyzed systematically. The results showed that the seats in the middle of the carriage had the best comfort performance, while those near the side wall and close to the position where the suspension force of the second series was acting were less comfortable. The seat cushion stiffness and damping had great effect on ride comfort. Full article
(This article belongs to the Special Issue Recent Advances in Autonomous Systems and Robotics)
Show Figures

Figure 1

16 pages, 8706 KiB  
Article
A Research on Accident Reconstruction of Bus–Two-Wheeled Vehicle Based on Vehicle Damage and Human Head Injury
by Shang Gao, Mao Li, Qian Wang, Xianlong Jin, Xinyi Hou, Chuang Qin and Shuangzhi Fu
Int. J. Environ. Res. Public Health 2022, 19(22), 14950; https://doi.org/10.3390/ijerph192214950 - 13 Nov 2022
Cited by 3 | Viewed by 2447
Abstract
The problem of large calculation models in bus–two-wheeled vehicle traffic accidents (TA) leads to the difficulty of balancing the calculation efficiency and accuracy, as well as difficulties in accident reconstruction. Herein, two typical accidents were reconstructed, based on the rigid–flexible coupled human model [...] Read more.
The problem of large calculation models in bus–two-wheeled vehicle traffic accidents (TA) leads to the difficulty of balancing the calculation efficiency and accuracy, as well as difficulties in accident reconstruction. Herein, two typical accidents were reconstructed, based on the rigid–flexible coupled human model (HM) and the Facet vehicle model, and the vehicle damage conditions and the human head biomechanical injury were analyzed. The simulation results showed that the physical process of the human–vehicle collision was basically consistent with the accident video, the windshield fracture was consistent with the actual vehicle report, and the human biomechanical injury characteristics were also consistent with the autopsy report, which verified the feasibility of the simulation model, and provides a basis and reference for forensic identification and for traffic police to deal with accident disputes. Full article
(This article belongs to the Topic Vehicle Safety and Automated Driving)
Show Figures

Figure 1

16 pages, 3866 KiB  
Article
Effects of Flexural Rigidity on Soft Actuators via Adhering to Large Cylinders
by Liuwei Wang, Qijun Jiang, Zhiyuan Weng, Qingsong Yuan and Zhouyi Wang
Actuators 2022, 11(10), 286; https://doi.org/10.3390/act11100286 - 7 Oct 2022
Cited by 5 | Viewed by 2689
Abstract
This study proposes a soft pneumatic actuator with adhesion (SPAA) consisting of a top fluidic-driven elastic actuator and four bottom adhesive pads for adhering to large cylinders. Finite element models were developed to investigate the bending properties under positive air pressure and the [...] Read more.
This study proposes a soft pneumatic actuator with adhesion (SPAA) consisting of a top fluidic-driven elastic actuator and four bottom adhesive pads for adhering to large cylinders. Finite element models were developed to investigate the bending properties under positive air pressure and the effect of “rib” height on the flexural rigidity of the SPAA. A synchronous testing platform for the adhesive contact state and mechanics was developed, and the bending curvature and flexural rigidity of the SPAA were experimentally measured relative to the pressure and “rib” height, respectively, including the adhesion performance of the SPAA with different rigidities on large cylinders. The obtained results indicate that the SPAA can continuously bend with controllable curvature under positive air pressure and can actively envelop a wide range of cylinders of different curvatures. The increase in the “rib” height from 4 to 8 mm increases the flexural rigidity of the SPAA by approximately 230%, contributing to an average increase of 54% in the adhesion performance of the SPAA adhering to large cylinders. The adhesion performance increases more significantly with an increase in the flexural rigidity at a smaller peeling angle. SPAA has a better adhesion performance on large cylinders than most existing soft adhesive actuators, implying that is more stable and less affected by the curvature of cylinders. To address the low contact ratio of the SPAA during adhesion, the optimization designs of the rigid–flexible coupling hierarchical and differentiated AP structures were proposed to increase the contact ratio to more than 80% in the simulation. In conclusion, this study improved the adhesion performance of soft adhesive actuators on large cylinders and extended the application scope of adhesion technology. SPAA is a basic adhesive unit with a universal structure and large aspect ratio similar to that of the human finger. According to working conditions requirements, SPAAs can be assembled to a multi-finger flexible adhesive gripper with excellent maneuverability. Full article
(This article belongs to the Special Issue Soft Actuators and Robotics)
Show Figures

Figure 1

16 pages, 4990 KiB  
Article
Design and Simulation Experiment of Rigid-Flexible Soft Humanoid Finger
by Jiteng Sun, Chang Chen, Long Wang, Yuandong Liang, Guojin Chen, Ming Xu, Ruru Xi and Huifeng Shao
Machines 2022, 10(6), 448; https://doi.org/10.3390/machines10060448 - 6 Jun 2022
Cited by 6 | Viewed by 2968
Abstract
This paper is based on the “Fast Pneumatic Mesh Driver” (FPN) used to couple a silicone rubber soft body with a rigid skeleton. A rigid-flexible coupling soft-body human-like finger design scheme is proposed to solve the problem of low load on the soft-body [...] Read more.
This paper is based on the “Fast Pneumatic Mesh Driver” (FPN) used to couple a silicone rubber soft body with a rigid skeleton. A rigid-flexible coupling soft-body human-like finger design scheme is proposed to solve the problem of low load on the soft-body gripping hand. The second-order Yeoh model is used to establish the statics model of the soft humanoid finger, and the ABAQUS simulation analysis software is used for correction and comparison to verify the feasibility of the soft humanoid finger bending. The thickness of the driver cavity and the confining strain layer were determined by finite element simulation. The mold casting process is used to complete the preparation of human-like fingers and design a pneumatic control system for experiments combined with 3D printing technology. The experimental results show that the proposed rigid-flexible coupling soft body imitating the human finger structure can realize the corresponding actions, such as the multi-joint bending and side swinging, of human fingers. Compared with the traditional pure soft-body finger, the fingertip output force is significantly improved. The optimal design and simulation analysis of the human gripper and the feasibility of the application have practical guiding significance. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 3938 KiB  
Article
Electrically Driven Lower Limb Exoskeleton Rehabilitation Robot Based on Anthropomorphic Design
by Moyao Gao, Zhanli Wang, Zaixiang Pang, Jianwei Sun, Jing Li, Shuang Li and Hansi Zhang
Machines 2022, 10(4), 266; https://doi.org/10.3390/machines10040266 - 7 Apr 2022
Cited by 37 | Viewed by 8204
Abstract
To help people with impairment of lower extremity movement regain the ability to stand and walk, and to enhance limb function, this study proposes an anthropomorphic design of an electrically driven, lower-limb exoskeleton rehabilitation robot. The angular range of the robot’s motion was [...] Read more.
To help people with impairment of lower extremity movement regain the ability to stand and walk, and to enhance limb function, this study proposes an anthropomorphic design of an electrically driven, lower-limb exoskeleton rehabilitation robot. The angular range of the robot’s motion was determined according to the characteristics of the targeted lower-limb joints; the robot was given an active–passive anthropomorphic design with 12 degrees of freedom. The multi-degree-of-freedom hip exoskeleton, bionic artificial knee exoskeleton and passive rigid-flexible coupling ankle exoskeleton can assist patients in rehabilitation exercises with better wear comfort and exercise flexibility. A kinetic model of the seven-rod lower-limb exoskeleton rehabilitation robot was built, and data analysis of the dynamically captured motion trajectory was conducted. These provided a theoretical basis for gait planning and the control system of the lower-limb exoskeleton rehabilitation robot. The results show that the lower-limb exoskeleton rehabilitation robot system possesses sound wearing comfort and movement flexibility, and the degree of freedom of movement of the exoskeleton robot matches well with that of human movement. The robot can thus provide effective assistance to patients’ standing and walking rehabilitation training. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 5749 KiB  
Article
Adaptive Robust Force Position Control for Flexible Active Prosthetic Knee Using Gait Trajectory
by Fang Peng, Haiyang Wen, Cheng Zhang, Bugong Xu, Jiehao Li and Hang Su
Appl. Sci. 2020, 10(8), 2755; https://doi.org/10.3390/app10082755 - 16 Apr 2020
Cited by 8 | Viewed by 3783
Abstract
Active prosthetic knees (APKs) are widely used in the past decades. However, it is still challenging to make them more natural and controllable because: (1) most existing APKs that use rigid actuators have difficulty obtaining more natural walking; and (2) traditional finite-state impedance [...] Read more.
Active prosthetic knees (APKs) are widely used in the past decades. However, it is still challenging to make them more natural and controllable because: (1) most existing APKs that use rigid actuators have difficulty obtaining more natural walking; and (2) traditional finite-state impedance control has difficulty adjusting parameters for different motions and users. In this paper, a flexible APK with a compact variable stiffness actuator (VSA) is designed for obtaining more flexible bionic characteristics. The VSA joint is implemented by two motors of different sizes, which connect the knee angle and the joint stiffness. Considering the complexity of prothetic lower limb control due to unknown APK dynamics, as well as strong coupling between biological joints and prosthetic joints, an adaptive robust force/position control method is designed for generating a desired gait trajectory of the prosthesis. It can operate without the explicit model of the system dynamics and multiple tuning parameters of different gaits. The proposed model-free scheme utilizes the time-delay estimation technique, sliding mode control, and fuzzy neural network to realize finite-time convergence and gait trajectory tracking. The virtual prototype of APK was established in ADAMS as a testing platform and compared with two traditional time-delay control schemes. Some demonstrations are illustrated, which show that the proposed method has superior tracking characteristics and stronger robustness under uncertain disturbances within the trajectory error in ± 0 . 5 degrees. The VSA joint can reduce energy consumption by adjusting stiffness appropriately. Furthermore, the feasibility of this method was verified in a human–machine hybrid control model. Full article
Show Figures

Figure 1

11 pages, 2663 KiB  
Article
Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing
by Jie Wang, Shuo Qian, Junbin Yu, Qiang Zhang, Zhongyun Yuan, Shengbo Sang, Xiaohong Zhou and Lining Sun
Nanomaterials 2019, 9(9), 1304; https://doi.org/10.3390/nano9091304 - 12 Sep 2019
Cited by 66 | Viewed by 7028
Abstract
Flexible electronics devices with tactile perception can sense the mechanical property data of the environment and the human body, and they present a huge potential in the human health system. In particular, the introduction of ultra-flexible and self-powered characteristics to tactile sensors can [...] Read more.
Flexible electronics devices with tactile perception can sense the mechanical property data of the environment and the human body, and they present a huge potential in the human health system. In particular, the introduction of ultra-flexible and self-powered characteristics to tactile sensors can effectively reduce the problems caused by rigid batteries. Herein, we report a triboelectric nanogenerator (TENG), mainly consisting of an ultra-flexible polydimethylsiloxane (PDMS) film with micro-pyramid-structure and sputtered aluminum electrodes, which achieves highly conformal contact with skin and the self-powered detection of human body motions. The flexible polyethylene terephthalate (PET) film was selected as spacer layer, which made the sensor work in the contact-separation mode and endowed the perfect coupling of triboelectrification and electrostatic induction. Moreover, the controllable and uniform micro-structure PDMS film was fabricated by using the micro-electro-mechanical system (MEMS) manufacturing process, bringing a good sensitivity and high output performance to the device. The developed TENG can directly convert mechanical energy into electric energy and light up 110 green Light-Emitting Diodes (LEDs). Furthermore, the TENG-based sensor displays good sensitivity (2.54 V/kPa), excellent linearity (R2 = 0.99522) and good stability (over 30,000 cycles). By virtue of the compact size, great electrical properties, and great mechanical properties, the developed sensor can be conformally attached to human skin to monitor joint movements, presenting a promising application in wearable tactile devices. We believe that the ultra-flexible and self-powered tactile TENG-based sensor could have tremendous application in wearable electrons. Full article
Show Figures

Graphical abstract

10 pages, 5067 KiB  
Article
Insights into the Impact of Linker Flexibility and Fragment Ionization on the Design of CK2 Allosteric Inhibitors: Comparative Molecular Dynamics Simulation Studies
by Yue Zhou, Na Zhang, Xiaoqian Qi, Shan Tang, Guohui Sun, Lijiao Zhao, Rugang Zhong and Yongzhen Peng
Int. J. Mol. Sci. 2018, 19(1), 111; https://doi.org/10.3390/ijms19010111 - 1 Jan 2018
Cited by 2 | Viewed by 4384
Abstract
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as [...] Read more.
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2. Full article
Show Figures

Graphical abstract

23 pages, 2510 KiB  
Article
Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording
by Yun-Hsuan Chen, Maaike Op De Beeck, Luc Vanderheyden, Evelien Carrette, Vojkan Mihajlović, Kris Vanstreels, Bernard Grundlehner, Stefanie Gadeyne, Paul Boon and Chris Van Hoof
Sensors 2014, 14(12), 23758-23780; https://doi.org/10.3390/s141223758 - 10 Dec 2014
Cited by 197 | Viewed by 27815
Abstract
Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This [...] Read more.
Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ~10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes. Full article
Show Figures

Back to TopTop