Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = rhenium sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4738 KiB  
Article
An Extensive Study of the Production of Hydrogen by Cellulose and Lignin Pyrolysis Using Rhenium-Based Catalysts
by Mizraim Guillermo Granados-Fitch, Juan Manuel Quintana-Melgoza, Erick Adrian Juarez-Arellano and Miguel Avalos-Borja
Chemistry 2025, 7(2), 33; https://doi.org/10.3390/chemistry7020033 - 1 Mar 2025
Viewed by 790
Abstract
The use of rhenium-based catalysts (Re2C, Re3B, ReB2, and ReS2) obtained by mechanosynthesis in the pyrolysis of cellulose and lignin from 500 to 800 °C using 10 and 20 wt.% of catalysts is reported. The [...] Read more.
The use of rhenium-based catalysts (Re2C, Re3B, ReB2, and ReS2) obtained by mechanosynthesis in the pyrolysis of cellulose and lignin from 500 to 800 °C using 10 and 20 wt.% of catalysts is reported. The mechanosynthesis of ReS2 has been reported for the first time. The catalytic pyrolysis of cellulose resulted in maximum H2 production at 800 °C and 10 wt.% catalyst, with 44% H2 yield using a Re3B catalyst. In contrast, lignin catalytic pyrolysis also showed maximum production under the same conditions, with an 86.1% H2 yield using the NiO/SiO2 catalyst; however, the catalyst did not drastically enhance H2 production. H2 formation by cellulose pyrolysis is a thermocatalytic process, whereas lignin pyrolysis is an entirely thermic process. A reaction mechanism was proposed to explain the H2 formation by both catalytic cellulose and lignin pyrolysis. Full article
(This article belongs to the Section Catalysis)
Show Figures

Figure 1

26 pages, 8922 KiB  
Article
Comparative Study of Sulfides from Porphyry, Skarn, and Carbonate-Replacement Mineralization at the Recsk Porphyry-Mineralized Complex, Hungary
by Máté Biró, Johann G. Raith, Monika Feichter, Máté Hencz, Gabriella B. Kiss, Attila Virág and Ferenc Molnár
Minerals 2024, 14(9), 956; https://doi.org/10.3390/min14090956 - 21 Sep 2024
Cited by 1 | Viewed by 1424
Abstract
A calc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This [...] Read more.
A calc–alkaline dioritic–andesitic–dacitic intrusive–volcanic complex of Early Oligocene (30 Ma) age and its Mesozoic sedimentary basement at Recsk host a well-preserved porphyry–skarn–polymetallic carbonate-replacement–epithermal mineral system. The unique occurrence offers an exceptional possibility to study these related mineralization types at a single locality. This study presents the textural–paragenetic, compositional characteristics, and systematics of sulfide mineral assemblages for the porphyry, skarn, and carbonate-replacement ore types, which are currently situated at a depth of 500–1200 m below the present surface. Detailed petrography combined with EPMA analyses of molybdenite, galena, sphalerite, tetrahedrite-group minerals and Bi-bearing sulfosalts allows for the establishment of characteristic mineral and chemical fingerprints for each mineralization type. Rhenium concentration in molybdenite, occurring as rare disseminations and quartz–carbonate veinlets in altered host rocks in all three mineralization types, shows a decreasing trend towards the more distal mineralization types. High Re contents (x¯ = 1.04 wt.%, max. up to 4.47 wt%) are typical for molybdenite from the porphyry mineralization, but Re is not homogeneously distributed, neither within individual molybdenite crystals nor on a mineralization scale. Copper and Se show opposite behavior in molybdenite, both becoming enriched in the more distal mineralization types. Silver, Bi, and Se concentrations increase in galena and tetrahedrite-group minerals, both towards the country rocks, making them the best candidates for vectoring within the whole hydrothermal system. For tetrahedrite-group minerals, Ag, Bi, Se, together with Sb and Zn, are the suitable elements for fingerprinting; all these are significantly enriched in the distal carbonate-replacement mineralization compared to the other, more proximal ore types. Additionally, further trends can be traced within the composition of sulfosalts. Lead-bearing Bi sulfosalts preferentially occur in the polymetallic carbonate-replacement veins, while being under-represented in the skarn and porphyry mineralization. Porphyry mineralization hosts Cu-bearing Bi sulfosalts dominantly, while skarn is characterized by Bi-dominated sulfosalts. Sphalerite, although present in all mineralization types, cannot be used for fingerprinting, vectoring, or thermobarometry based on EPMA measurements only. Trace element contents of sphalerite are low, often below the detection limits of the analyses. This is further complicated by the intense “chalcopyrite disease” occurring throughout the distal mineralization types. All the above-listed major, minor, and trace element ore mineral characteristics enable the characterization of the Recsk ores by mineral geochemical fingerprints, providing a possible vectoring tool in porphyry Cu–(Mo)–Au-mineralized systems. Full article
Show Figures

Figure 1

15 pages, 2827 KiB  
Article
Interactions of Perrhenate (Re(VII)O4) with Fe(II)-Bearing Minerals
by Anthony W. N. Kilber, Maxim I. Boyanov, Kenneth M. Kemner and Edward J. O’Loughlin
Minerals 2024, 14(2), 181; https://doi.org/10.3390/min14020181 - 7 Feb 2024
Cited by 3 | Viewed by 1867
Abstract
Rhenium (Re) is an extremely rare element, with a crustal abundance of approximately 0.4 parts per billion (ppb) and a sea water concentration of 8.3 parts per trillion (ppt). However, Re concentrations in anoxic marine sediments range from 2 to 184 ppb, which [...] Read more.
Rhenium (Re) is an extremely rare element, with a crustal abundance of approximately 0.4 parts per billion (ppb) and a sea water concentration of 8.3 parts per trillion (ppt). However, Re concentrations in anoxic marine sediments range from 2 to 184 ppb, which is attributed to reduction of the highly soluble perrhenate ion (Re(VII)O4) to insoluble Re(IV) species. Anoxic sediments typically contain Fe(II) and sulfide species, which could potentially reduce Re(VII) to Re(IV). In this study, we examined the interactions of KReO4 with magnetite (Fe3O4), siderite (FeCO3), vivianite (Fe3(PO4)2•8H2O), green rust (mixed Fe(II)/Fe(III) layered double hydroxide), mackinawite (FeS), and chemically reduced nontronite (NAu-1) using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy to determine the valence state and speciation of Re. Uptake of Re by green rust was rapid, with ~50% associated with the solids within 2 days. In contrast, there was <10% uptake by the other Fe(II) phases over 48 days. Reduction of Re(VII) to Re(IV) was only observed in the presence of green rust, producing clusters of bidentate-coordinated Re(IV)O6 octahedra.. These results suggest that except for green rust, the potential for other Fe(II)-bearing minerals to act as reductants for ReO4 in sedimentary environments requires further investigation. Full article
(This article belongs to the Special Issue Redox Reactivity of Iron Minerals in the Geosphere, 2nd Edition)
Show Figures

Figure 1

15 pages, 19087 KiB  
Article
Occurrence State and Enrichment Mechanism of Rhenium in the Qianjiadian Uranium Deposit in the Southwestern Songliao Basin, Northeast China
by Songlin Yang, Xingzhou Liu, Zhibo Shan, Angui Lei, Yong Liu, Da Wei, Shijiao Zhu, Yong Fu and Long Zhang
Minerals 2024, 14(1), 67; https://doi.org/10.3390/min14010067 - 5 Jan 2024
Cited by 1 | Viewed by 2031
Abstract
Rhenium is an extremely rare critical metal element in Earth’s continental crust. Owing to its extremely high melting point and heat-stable crystalline structure, rhenium is an essential component of alloy materials used in high-performance aircraft engines. Demand for rhenium resources is therefore growing. [...] Read more.
Rhenium is an extremely rare critical metal element in Earth’s continental crust. Owing to its extremely high melting point and heat-stable crystalline structure, rhenium is an essential component of alloy materials used in high-performance aircraft engines. Demand for rhenium resources is therefore growing. Currently, most rhenium is produced as a byproduct of molybdenum mining in porphyry copper–molybdenum deposits. Research has therefore focused on the enrichment characteristics of rhenium in this type of deposit, with little attention paid to rhenium in other types of deposits. This study reports the occurrence state and enrichment mechanism of rhenium in the Qianjiadian sandstone-type uranium deposit in the Songliao Basin, Northeast China. Sequential extraction revealed that the average proportions of different forms of rhenium are as follows: water-soluble (57.86%) > organic-sulfide-bound (13.11%) > residual (12.26%) > Fe/Mn oxide-bound (10.67%) > carbonate-bound (6.10%). Combining mineralogical analysis techniques such as SEM-EDS, EMPA, and XRD, it has been established that rhenium does not occur as a substitute in sulfides (e.g., molybdenite) or uranium minerals in various types of deposits. Instead, it is mainly adsorbed onto clay minerals and Fe-Ti oxides, and in a small number of other minerals (pyrite, organic matter, and pitchblende). Rhenium is similar to redox-sensitive elements such as uranium and vanadium, and it is transported in a water-soluble form by oxidizing groundwater to the redox transition zone for enrichment. However, unlike uranium, which generally forms as uranium minerals, rhenium is mainly adsorbed and enriched onto clay minerals (kaolinite and interlayered illite–smectite). Most of the rhenium in sandstone-type uranium deposits occurs in an ion-adsorption state, and is easily leached and extracted during in-situ leaching mining of uranium ores. This type of deposit demonstrates excellent production potential and will become a crucial recoverable resource for future rhenium supply. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

11 pages, 2202 KiB  
Article
Substantiation of New Reagent Compositions for the Effective Extraction of Rhenium in the Processing of Complex Molybdenum Ores
by Valentine A. Chanturiya, Tamara N. Matveeva, Viktoriya V. Getman, Anna Yu. Karkeshkina and Nadezhda K. Gromova
Minerals 2023, 13(3), 372; https://doi.org/10.3390/min13030372 - 7 Mar 2023
Cited by 6 | Viewed by 2479
Abstract
Modern trends in technological improvement for producing high-quality rhenium-containing molybdenum concentrates are aimed at developing environmentally friendly solutions com-pared to traditional ones, involving a reduction in consumption or complete replacement of toxic substances and the use of plant reagents and microorganisms and make [...] Read more.
Modern trends in technological improvement for producing high-quality rhenium-containing molybdenum concentrates are aimed at developing environmentally friendly solutions com-pared to traditional ones, involving a reduction in consumption or complete replacement of toxic substances and the use of plant reagents and microorganisms and make it possible to eliminate energy-intensive processes of steaming and roasting. It is known that up to 25%–30% of Mo, Cu and Re goes to rough flotation tailings and is lost in wastes. Those losses are a consequence of the ore composition variability, chalcopyrite–molybdenite ratio, an increase in the proportion between primary copper sulfide and finely disseminated molybdenite and the recovery of floating pyrite. High rates of valuable metal recovery into bulk concentrate can be achieved by using new compositions of flotation reagents that selectively change the hydrophobic properties of the target minerals. The application of new reagent compositions, including novel chemicals—dithiopyrylmethane (DTM), composite reagent (CR) and conventional butyl xanthate (ButX)—was theoretically and experimentally substantiated for the effective rhenium extraction in the processing of hard-to-beneficiate complex molybdenum ores. It is identified that DTM forms a complex DTM–Re compound and chemically adsorbed on rhenium-containing molybdenite providing an increase in Re recovery into the bulk Cu–Mo–Re concentrate by 17%, reducing by two times the loss of rhenium with flotation tailings, and the subsequent 97.6% Re extraction of the molybdenum concentrate by autoclave leaching. Full article
(This article belongs to the Special Issue Valuable Metals Recovery by Mineral Processing and Hydrometallurgy)
Show Figures

Figure 1

12 pages, 2967 KiB  
Article
New van der Waals Heterostructures Based on Borophene and Rhenium Sulfide/Selenide for Photovoltaics: An Ab Initio Study
by Michael M. Slepchenkov, Dmitry A. Kolosov and Olga E. Glukhova
Appl. Sci. 2021, 11(24), 11636; https://doi.org/10.3390/app112411636 - 8 Dec 2021
Cited by 2 | Viewed by 3735
Abstract
One of the urgent tasks of modern materials science is the search for new materials with improved optoelectronic properties for various applications of optoelectronics and photovoltaics. In this paper, using ab initio methods, we investigate the possibility of forming new types of van [...] Read more.
One of the urgent tasks of modern materials science is the search for new materials with improved optoelectronic properties for various applications of optoelectronics and photovoltaics. In this paper, using ab initio methods, we investigate the possibility of forming new types of van der Waals heterostructures based on monolayers of triangulated borophene, and monolayers of rhenium sulfide (ReS), and rhenium selenide (ReSe2), and predict their optoelectronic properties. Energy stable atomic configurations of borophene/ReS2 and borophene/ReSe2 van der Waals heterostructures were obtained using density functional theory (DFT) calculations in the Siesta software package. The results of calculating the density of electronic states of the obtained supercells showed that the proposed types of heterostructures are characterized by a metallic type of conductivity. Based on the calculated optical absorption and photocurrent spectra in the wavelength range of 200 to 2000 nm, it is found that borophene/ReS2 and borophene/ReSe2 heterostructures demonstrate a high absorption coefficient in the near- and far-UV(ultraviolet) ranges, as well as the presence of high-intensity photocurrent peaks in the visible range of electromagnetic radiation. Based on the obtained data of ab initio calculations, it is predicted that the proposed borophene/ReS2 and borophene/ReSe2 heterostructures can be promising materials for UV detectors and photosensitive materials for generating charge carriers upon absorption of light. Full article
(This article belongs to the Special Issue Novel Organic-Inorganic Photovoltaic Materials)
Show Figures

Figure 1

18 pages, 4588 KiB  
Article
Supramolecular Frameworks Based on Rhenium Clusters Using the Synthons Approach
by Nathalie Audebrand, Antoine Demont, Racha El Osta, Yuri V. Mironov, Nikolay G. Naumov and Stéphane Cordier
Molecules 2021, 26(9), 2662; https://doi.org/10.3390/molecules26092662 - 1 May 2021
Cited by 5 | Viewed by 2665
Abstract
The reaction of the K4[{Re6Si8}(OH)a6]·8H2O rhenium cluster salt with pyrazine (Pz) in aqueous solutions of alkaline or alkaline earth salts at 4 °C or at room temperature leads to apical ligand [...] Read more.
The reaction of the K4[{Re6Si8}(OH)a6]·8H2O rhenium cluster salt with pyrazine (Pz) in aqueous solutions of alkaline or alkaline earth salts at 4 °C or at room temperature leads to apical ligand exchange and to the formation of five new compounds: [trans-{Re6Si8}(Pz)a2(OH)a2(H2O)a2] (1), [cis-{Re6Si8}(Pz)a2(OH)a2(H2O)a2] (2), (NO3)[cis-{Re6Si8}(Pz)a2(OH)a(H2O)a3](Pz)·3H2O (3), [Mg(H2O)6]0.5[cis-{Re6Si8}(Pz)a2(OH)a3(H2O)a]·8.5H2O (4), and K[cis-{Re6Si8}(Pz)a2(OH)a3(H2O)a]·8H2O (5). Their crystal structures are built up from trans- or cis-[{Re6Si8}(Pz)a2(OH)a4−x(H2O)ax]x−2 cluster units. The cohesions of the 3D supramolecular frameworks are based on stacking and H bonding, as well as on H3O2−bridges in the cases of (1), (2), (4), and (5) compounds, while (3) is built from stacking and H bonding only. This evidences that the nature of the synthons governing the cluster unit assembly is dependent on the hydration rate of the unit. Full article
(This article belongs to the Special Issue Molecular Metal Clusters: Fundamental and Applied Aspects)
Show Figures

Graphical abstract

21 pages, 5853 KiB  
Article
Re-Os Isotope Systematics of Sulfides in Chromitites and Host Lherzolites of the Andaman Ophiolite, India
by José María González-Jiménez, Sisir K. Mondal, Biswajit Ghosh, William L. Griffin and Suzanne Y. O’Reilly
Minerals 2020, 10(8), 686; https://doi.org/10.3390/min10080686 - 31 Jul 2020
Cited by 8 | Viewed by 4979
Abstract
Laser ablation MC-ICP-MS was used to measure the Os-isotope compositions of single sulfide grains, including laurite (RuS2) and pentlandite [(Fe,Ni)9S8], from two chromitite bodies and host lherzolites from ophiolites of North Andaman (Indo-Burma-Sumatra subduction zone). The results [...] Read more.
Laser ablation MC-ICP-MS was used to measure the Os-isotope compositions of single sulfide grains, including laurite (RuS2) and pentlandite [(Fe,Ni)9S8], from two chromitite bodies and host lherzolites from ophiolites of North Andaman (Indo-Burma-Sumatra subduction zone). The results show isotopic heterogeneity in both laurite (n = 24) and pentlandite (n = 37), similar to that observed in other chromitites and peridotites from the mantle sections of ophiolites. Rhenium-depletion model ages (TRD) of laurite and pentlandite reveal episodes of mantle magmatism and/or metasomatism in the Andaman mantle predating the formation of the ophiolite (and the host chromitites), mainly at ≈0.5, 1.2, 1.8, 2.1 and 2.5 Ga. These ages match well with the main tectonothermal events that are documented in the continental crustal rocks of South India, suggesting that the Andaman mantle (or its protolith) had a volume of lithospheric mantle once underlaying this southern Indian continental crust. As observed in other oceanic lithospheres, blocks of ancient subcontinental lithospheric mantle (SCLM) could have contributed to the development of the subduction-related Andaman–Java volcanic arc. Major- and trace-element compositions of chromite indicate crystallization from melts akin to high-Mg IAT and boninites during the initial stages of development of this intra-oceanic subduction system. Full article
Show Figures

Figure 1

9 pages, 12376 KiB  
Article
Re Sulfides from Zhelos and Tokty-Oi Intrusions (East Sayan, Russia)
by Tatiana B. Kolotilina, Aleksey S. Mekhonoshin and Dmitriy A. Orsoev
Minerals 2019, 9(8), 479; https://doi.org/10.3390/min9080479 - 7 Aug 2019
Cited by 5 | Viewed by 3424
Abstract
Re sulfides were discovered in Cu–Ni–platinum-group elements (PGE) ores of the Zhelos and Tokty-Oi intrusions. These intrusions can be considered as products of the mantle superplume responsible for Rodinia’s break-up. The mineral compositions were determined in situ in polished samples. Electron microprobe analyses [...] Read more.
Re sulfides were discovered in Cu–Ni–platinum-group elements (PGE) ores of the Zhelos and Tokty-Oi intrusions. These intrusions can be considered as products of the mantle superplume responsible for Rodinia’s break-up. The mineral compositions were determined in situ in polished samples. Electron microprobe analyses were mostly consistent with a general formula of (Cu,Fe,Mo,Os,Re)5S8, (Cu,Fe,Mo,Os,Re)4S7, and (Cu,Fe,Mo,Re)S2. One of the major features of Re sulfide from the Zhelos intrusion is its high osmium content. The ΣMe/S ratio for a part of our data is consistent with that of the tarkianite. Re sulfides from the Tokty-Oi have a ΣMe/S ratio similar to those in rheniite or dzeskazganite, but differ from them by the presence of Fe and Cu and the metal-to-metal ratio. The localization of the Re sulfide within the chalcopyrite suggests its crystallization from the residual Cu-rich liquid. Full article
(This article belongs to the Special Issue Sulfide Geochemistry)
Show Figures

Figure 1

12 pages, 1584 KiB  
Article
High-κ Dielectric on ReS2: In-Situ Thermal Versus Plasma-Enhanced Atomic Layer Deposition of Al2O3
by Ava Khosravi, Rafik Addou, Massimo Catalano, Jiyoung Kim and Robert M. Wallace
Materials 2019, 12(7), 1056; https://doi.org/10.3390/ma12071056 - 30 Mar 2019
Cited by 16 | Viewed by 6321
Abstract
We report an excellent growth behavior of a high-κ dielectric on ReS2, a two-dimensional (2D) transition metal dichalcogenide (TMD). The atomic layer deposition (ALD) of an Al2O3 thin film on the UV-Ozone pretreated surface of ReS2 yields [...] Read more.
We report an excellent growth behavior of a high-κ dielectric on ReS2, a two-dimensional (2D) transition metal dichalcogenide (TMD). The atomic layer deposition (ALD) of an Al2O3 thin film on the UV-Ozone pretreated surface of ReS2 yields a pinhole free and conformal growth. In-situ half-cycle X-ray photoelectron spectroscopy (XPS) was used to monitor the interfacial chemistry and ex-situ atomic force microscopy (AFM) was used to evaluate the surface morphology. A significant enhancement in the uniformity of the Al2O3 thin film was deposited via plasma-enhanced atomic layer deposition (PEALD), while pinhole free Al2O3 was achieved using a UV-Ozone pretreatment. The ReS2 substrate stays intact during all different experiments and processes without any formation of the Re oxide. This work demonstrates that a combination of the ALD process and the formation of weak S–O bonds presents an effective route for a uniform and conformal high-κ dielectric for advanced devices based on 2D materials. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Devices)
Show Figures

Graphical abstract

12 pages, 1834 KiB  
Technical Note
Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile
by Jorge Crespo, Martin Reich, Fernando Barra, Juan José Verdugo and Claudio Martínez
Minerals 2018, 8(11), 519; https://doi.org/10.3390/min8110519 - 9 Nov 2018
Cited by 28 | Viewed by 6439
Abstract
Porphyry copper–molybdenum deposits (PCDs) are the world’s most important source of copper, molybdenum and rhenium. Previous studies have reported that some PCDs can have sub-economic to economic grades of critical metals, i.e., those elements that are both essential for modern societies and subject [...] Read more.
Porphyry copper–molybdenum deposits (PCDs) are the world’s most important source of copper, molybdenum and rhenium. Previous studies have reported that some PCDs can have sub-economic to economic grades of critical metals, i.e., those elements that are both essential for modern societies and subject to the risk of supply restriction (e.g., platinum group elements (PGE), rare earth elements (REE), In, Co, Te, Ge, Ga, among others). Even though some studies have reported measured concentrations of Pd and Pt in PCDs, their occurrence and mineralogical forms remain poorly constrained. Furthermore, these reconnaissance studies have focused predominantly on porphyry Cu–Au deposits, but very limited information is available for porphyry Cu–Mo systems. In this contribution, we report the occurrence of critical metal (Pd, Pt, Au, Ag, and Te) inclusions in copper sulfides from one of the largest PCDs in the world, the supergiant Río Blanco-Los Bronces deposit in central Chile. Field emission scanning electron microscope (FESEM) observations of chalcopyrite and bornite from the potassic alteration zone reveal the presence of micro- to nano-sized particles (<1–10 μm) containing noble metals, most notably Pd, Au, and Ag. The mineralogical data show that these inclusions are mostly tellurides, such as merenskyite ((Pd, Pt) (Bi, Te)2), Pd-rich hessite (Ag2Te), sylvanite ((Ag,Au)Te2) and petzite (Ag3AuTe2). The data point to Pd (and probably Pt) partitioning in copper sulfides during the high-temperature potassic alteration stage, opening new avenues of research aimed at investigating not only the mobility of PGE during mineralization and partitioning into sulfides, but also at exploring the occurrence of critical metals in porphyry Cu–Mo deposits. Full article
(This article belongs to the Special Issue Minerals Down to the Nanoscale: A Glimpse at Ore-Forming Processes)
Show Figures

Figure 1

11 pages, 2855 KiB  
Communication
Low-Dimensional ReS2/C Composite as Effective Hydrodesulfurization Catalyst
by Juan Antonio Aliaga, Trino Zepeda, Juan Francisco Araya, Francisco Paraguay-Delgado, Eglantina Benavente, Gabriel Alonso-Núñez, Sergio Fuentes and Guillermo González
Catalysts 2017, 7(12), 377; https://doi.org/10.3390/catal7120377 - 5 Dec 2017
Cited by 10 | Viewed by 5879
Abstract
Single-layer, ultrasmall ReS2 nanoplates embedded in amorphous carbon were synthesized from a hydrothermal treatment involving ammonium perrhenate, thiourea, tetraoctylammonium bromide, and further annealing. The rhenium disulfide, obtained as a low dimensional carbon composite (ReS2/C), was tested in the hydrodesulfurization of [...] Read more.
Single-layer, ultrasmall ReS2 nanoplates embedded in amorphous carbon were synthesized from a hydrothermal treatment involving ammonium perrhenate, thiourea, tetraoctylammonium bromide, and further annealing. The rhenium disulfide, obtained as a low dimensional carbon composite (ReS2/C), was tested in the hydrodesulfurization of light hydrocarbons, using 3-methylthiophene as the model molecule, and showed enhanced catalytic activity in comparison with a sulfide CoMo/γ-Al2O3 catalyst. The ReS2/C composite was characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption–desorption isotherms, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The improved catalytic performance of this ReS2/C composite may be ascribed to the presence of a non-stoichiometric sulfur species (ReS2−x), the absence of stacking along the c-axis, and the ultra-small basal planes, which offer a higher proportion of structural sulfur defects at the edge of the layers, known as a critical parameter for hydrodesulfurization catalytic processes. Full article
(This article belongs to the Special Issue Nanostructured Materials for Applications in Heterogeneous Catalysis)
Show Figures

Graphical abstract

Back to TopTop