Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Re Uptake by Fe(II)-Bearing Minerals
3.2. Chemical Speciation of Mineral-Associated Re
3.2.1. Average Valence State of Re in the Solids (XANES)
3.2.2. Local Atomic Coordination around Re(VII) (EXAFS)
3.2.3. Local Atomic Coordination around Re(IV) (EXAFS)
4. Discussion
4.1. Reactivity of the Fe(II)-Bearing Minerals with Re(VII)
4.2. Comparrison of the Reactivity of Re and Tc
4.3. Implications for Re Biogeochemistry
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, D.A.; Seal, R.R., II; Polyak, D.E. Rhenium. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply: U.S. Geological Survey Professional Paper 1802-P; Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, Bradley, D.C., Eds.; Government Printing Office: Washington, DC, USA, 2017; pp. P1–P49. [Google Scholar] [CrossRef]
- Koide, M.; Hodge, V.F.; Yang, J.S.; Stallard, M.; Goldberg, E.G.; Calhoun, J.; Bertine, K.K. Some comparative marine chemistries of rhenium, gold, silver and molybdenum. Appl. Geochem. 1986, 1, 705–714. [Google Scholar] [CrossRef]
- Ravizza, G.; Turekian, K.K.; Hay, B.J. The geochemistry of rhenium and osmium in recent sediments from the Black Sea. Geochim. Cosmochim. Acta 1991, 55, 3741–3752. [Google Scholar] [CrossRef]
- Colodner, D.; Sachs, J.; Ravizza, G.; Turekian, K.; Edmond, J.; Boyle, E. The geochemical cycle of rhenium: A reconnaissance. Earth Planet. Sci. Lett. 1993, 117, 205–221. [Google Scholar] [CrossRef]
- Tagami, K.; Uchida, S. Rhenium. Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takahashi, Y.; Haba, H.; Enomoto, S.; Shimizu, H. Comparison of reductive accumulation of Re and Os in seawater–sediment systems. Geochim. Cosmochim. Acta 2007, 71, 3458–3475. [Google Scholar] [CrossRef]
- Chappaz, A.; Gobeil, C.; Tessier, A. Sequestration mechanisms and anthropogenic inputs of rhenium in sediments from Eastern Canada lakes. Geochim. Cosmochim. Acta 2008, 72, 6027–6036. [Google Scholar] [CrossRef]
- Anbar, A.D.; Creaser, R.A.; Papanastassiou, D.A.; Wasserburg, G.J. Rhenium in seawater: Confirmation of generally conservative behavior. Geochim. Cosmochim. Acta 1992, 56, 4099–4103. [Google Scholar] [CrossRef]
- Crusius, J.; Calvert, S.; Pedersen, T.; Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 1996, 145, 65–78. [Google Scholar] [CrossRef]
- Kendall, B.; Reinhard, C.T.; Lyons, T.W.; Kaufman, A.J.; Poulton, S.W.; Anbar, A.D. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 2010, 3, 647–652. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Slack, J.F.; Cannon, W.F.; O’Connell, B.; Isson, T.T.; Asael, D.; Jackson, J.C.; Hardisty, D.S.; Lyons, T.W.; Bekker, A. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chem. Geol. 2018, 483, 581–594. [Google Scholar] [CrossRef]
- Sheen, A.I.; Kendall, B.; Reinhard, C.T.; Creaser, R.A.; Lyons, T.W.; Bekker, A.; Poulton, S.W.; Anbar, A.D. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 2018, 227, 75–95. [Google Scholar] [CrossRef]
- Bennett, W.W.; Canfield, D.E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments. Earth-Sci. Rev. 2020, 204, 103175. [Google Scholar] [CrossRef]
- Helz, G.R. The Re/Mo redox proxy reconsidered. Geochim. Cosmochim. Acta 2022, 317, 507–522. [Google Scholar] [CrossRef]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1997; p. 600. [Google Scholar]
- Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 2000, 16, 41–84. [Google Scholar]
- Amonette, J.E. Iron redox chemistry of clays and oxides: Environmental applications. In Electrochemical Properties of Clays; Fitch, A., Ed.; The Clay Minerals Society: Aurora, CO, USA, 2002; Volume 10, pp. 89–147. [Google Scholar]
- Wagmann, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; CHurney, K.L.; Nuttall, R.L. The NBS Tables of Chemical THermodynamic Properties; American Chemical Society and The American Institute of Physics: New York, NY, USA, 1982. [Google Scholar]
- Rard, J.A.; Rand, M.H.; Anderegg, G.; Wanner, H. Chemical Thermodynamics of Technetium; Elsevier: New York, NY, USA, 1999. [Google Scholar]
- Morford, J.L.; Martin, W.R.; Carney, C.M. Rhenium geochemical cycling: Insights from continental margins. Chem. Geol. 2012, 324–325, 73–86. [Google Scholar] [CrossRef]
- Helz, G.R.; Dolor, M.K. What regulates rhenium deposition in euxinic basins? Chem. Geol. 2012, 304–305, 131–141. [Google Scholar] [CrossRef]
- Anbar, A.D.; Duan, Y.; Lyons, T.W.; Arnold, G.L.; Kendall, B.; Creaser, R.A.; Kaufman, A.J.; Gordon, G.W.; Scott, C.; Garvin, J.; et al. A whiff of oxygen before the great oxidation event? Science 2007, 317, 1903–1906. [Google Scholar] [CrossRef]
- Jaffe, L.A.; Peucker-Ehrenbrink, B.; Petsch, S.T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering. Earth Planet. Sci. Lett. 2002, 198, 339–353. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef] [PubMed]
- Icenhower, J.P.; Qafoku, N.P.; Zachara, J.M.; Martin, W.J. The biogeochemistry of technetium: A review of the behavior of an artificial element in the natural environment. Am. J. Sci. 2011, 310, 721–752. [Google Scholar] [CrossRef]
- Dolor, M.K.; Gilmour, C.C.; Helz, G.R. Distinct microbial behavior of Re compared to Tc: Evidence against microbial Re fixation in aquatic sediments. Geomicrobiol. J. 2009, 26, 470–483. [Google Scholar] [CrossRef]
- Lloyd, J.R.; Ridley, J.; Khizniak, T.; Lyalikova, N.N.; MaCaskie, L.E. Reduction of technetium by Desulfovibrio desulfuricans: Biocatalyst characterization and use in a flowthrough bioreactor. Appl. Environ. Microbiol. 1999, 65, 2691–2696. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gorby, Y.A.; Zachara, J.M.; Fredrickson, J.K.; Brown, C.F. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 2002, 80, 637–649. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.J.; Boyanov, M.I.; Antonopoulos, D.A.; Kemner, K.M. Redox processes affecting the speciation of technetium, uranium, neptunium, and plutonium in aquatic and terrestrial environments. In Aquatic Redox Processes; Tratnyek, P.G., Grundl, T.J., Haderlein, S.B., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1071, pp. 477–517. [Google Scholar]
- Wharton, M.J.; Atkins, B.; Charnock, J.M.; Livens, F.R.; Pattrick, R.A.D.; Collison, D. An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Appl. Geochem. 2000, 15, 347–354. [Google Scholar] [CrossRef]
- Ding, Q.; Ding, F.; Qian, T.; Zhao, D.; Wang, L. Reductive Immobilization of Rhenium in Soil and Groundwater Using Pyrite Nanoparticles. Water Air Soil Pollut. 2015, 226, 409. [Google Scholar] [CrossRef]
- Wang, T.; Qian, T.; Zhao, D.; Liu, X.; Ding, Q. Immobilization of perrhenate using synthetic pyrite particles: Effectiveness and remobilization potential. Sci. Total Environ. 2020, 725, 138423. [Google Scholar] [CrossRef]
- Usman, M.; Byrne, J.M.; Chaudhary, A.; Orsetti, S.; Hanna, K.; Ruby, C.; Kappler, A.; Haderlein, S.B. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem. Rev. 2018, 118, 3251–3304. [Google Scholar] [CrossRef]
- Huang, J.; Jones, A.; Waite, T.D.; Chen, Y.; Huang, X.; Rosso, K.M.; Kappler, A.; Mansor, M.; Tratnyek, P.G.; Zhang, H. Fe(II) Redox Chemistry in the Environment. Chem. Rev. 2021, 121, 8161–8233. [Google Scholar] [CrossRef]
- Kappler, A.; Bryce, C.; Mansor, M.; Lueder, U.; Byrne, J.M.; Swanner, E.D. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 2021, 19, 360–374. [Google Scholar] [CrossRef]
- Boyanov, M.I.; Kemner, K.M. Application of synchrotron X-ray absorption spectroscopy and microscopy techniques to the study of biogeochemical processes. In Analytical Geomicrobiology: A Handbook of Instrumental Techniques; Kenney, J.P.L., Veeramani, H., Alessi, D.S., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 238–261. [Google Scholar] [CrossRef]
- Johnson, C.R.; Antonopoulos, D.A.; Boyanov, M.I.; Flynn, T.M.; Koval, J.C.; Kemner, K.M.; O’Loughlin, E.J. Reduction of Sb(V) by coupled biotic-abiotic processes under sulfidogenic conditions. Heliyon 2021, 7, e06275. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Boyanov, M.I.; Kemner, K.M.; Thalhammer, K.O. Reduction of Hg(II) by Fe(II)-bearing smectite clay minerals. Minerals 2020, 10, 1079. [Google Scholar] [CrossRef]
- Kropf, A.J.; Katsoudas, J.; Chattopadhyay, S.; Shibata, T.; Lang, E.A.; Zyryanov, V.N.; Ravel, B.; McIvor, K.; Kemner, K.M.; Scheckel, K.G.; et al. The new MRCAT (Sector 10) bending magnet beamline at the Advanced Photon Source. AIP Conf. Proc. 2010, 1234, 299–302. [Google Scholar] [CrossRef]
- Choe, J.K.; Boyanov, M.I.; Liu, J.; Kemner, K.M.; Werth, C.J.; Strathmann, T.J. X-ray Spectroscopic Characterization of Immobilized Rhenium Species in Hydrated Rhenium–Palladium Bimetallic Catalysts Used for Perchlorate Water Treatment. J. Phys. Chem. C 2014, 118, 11666–11676. [Google Scholar] [CrossRef]
- Dickson, J.; Conroy, N.A.; Xie, Y.; Powell, B.A.; Seaman, J.C.; Boyanov, M.I.; Kemner, K.M.; Kaplan, D.I. Surfactant-modified siliceous zeolite Y for pertechnetate remediation. Chem. Eng. J. 2020, 402, 126268. [Google Scholar] [CrossRef]
- Ankudinov, A.L.; Ravel, B.; Conradson, S.D. Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576. [Google Scholar] [CrossRef]
- Newville, M.; Ravel, B.; Haskel, D.; Stern, E.A. Analysis of multiple scattering XAFS data using theoretical standards. Phys. B 1995, 208/209, 154–156. [Google Scholar] [CrossRef]
- Corrêa, H.P.S.; Cavalcante, I.P.; Martinez, L.G.; Orlando, C.G.P.; Orlando, M.T.D. Refinement of monoclinic ReO2 structure from XRD by Rietveld method. Braz. J. Phys. 2004, 34, 1208–1210. [Google Scholar] [CrossRef]
- Fung, A.S.; Kelley, M.J.; Koningsberger, D.C.; Gates, B.C. γ-Al2O3-Supported Re−Pt Cluster Catalyst Prepared from [Re2Pt(CO)12]: Characterization by Extended X-ray Absorption Fine Structure Spectroscopy and Catalysis of Methylcyclohexane Dehydrogenation. J. Am. Chem. Soc. 1997, 119, 5877–5887. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Lack, J.G.; Coates, J.D. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 2001, 67, 2844–2848. [Google Scholar] [CrossRef]
- Pantke, C.; Obst, M.; Benzerara, K.; Morin, G.; Ona-Nguema, G.; Dippon, U.; Kappler, A. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 2012, 46, 1439–1446. [Google Scholar] [CrossRef]
- Etique, M.; Jorand, F.P.; Zegeye, A.; Gregoire, B.; Despas, C.; Ruby, C. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis). Environ. Sci. Technol. 2014, 48, 3742–3751. [Google Scholar] [CrossRef]
- Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J.M.; Obst, M.; Kleindienst, S.; Behrens, S.; Kappler, A. Insights into nitrate-reducing Fe(II) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS. Appl. Environ. Microbiol. 2017, 83, e00752-17. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, J.K.; Zachara, J.M.; Kennedy, D.W.; Dong, H.; Onstott, T.C.; Hinman, N.W.; Li, S.-M. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 1998, 62, 3239–3257. [Google Scholar] [CrossRef]
- Hansel, C.M.; Benner, S.G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R.K.; Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 2003, 67, 2977–2992. [Google Scholar] [CrossRef]
- Borch, T.; Masue, Y.; Kukkadapu, R.K.; Fendorf, S. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environ. Sci. Technol. 2007, 41, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Zhou, J.; Schroder, C.; Obst, M.; Kappler, A.; Borch, T. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environ. Sci. Technol. 2013, 47, 13375–13384. [Google Scholar] [CrossRef] [PubMed]
- Ona-Nguema, G.; Abdelmoula, M.; Jorand, F.; Benali, O.; Géhin, A.; Block, J.-C.; Génin, J.-M.R. Iron(II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction. Environ. Sci. Technol. 2002, 36, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Jorand, F.; Zegeye, A.; Landry, F.; Ruby, C. Reduction of ferric green rust by Shewanella putrefaciens. Lett. Appl. Microbiol. 2007, 45, 515–521. [Google Scholar] [CrossRef]
- Jung, J.; Bae, S.; Lee, W. Indirect contact of bio-transformation of lepidocrocite: Role of electron transfer mediator. Sustain. Environ. Res. 2012, 23, 193–198. [Google Scholar]
- Boyanov, M.I.; O’Loughlin, E.J.; Kemner, K.M. Iron phase transformations resulting from the respiration of Shewanella putrefaciens on a mixed mineral phase. J. Phys. Conf. Ser. 2009, 190, 012193. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Boyanov, M.I.; Flynn, T.M.; Gorski, C.; Hofmann, S.M.; McCormick, M.L.; Scherer, M.M.; Kemner, K.M. Effects of bound phosphate on the bioreduction of lepidocrocite (g-FeOOH) and maghemite (g-Fe2O3) and formation of secondary minerals. Environ. Sci. Technol. 2013, 47, 9157–9166. [Google Scholar] [CrossRef]
- Dong, Y.; Sanford, R.A.; Boyanov, M.I.; Flynn, T.M.; O’Loughlin, E.J.; Kemner, K.M.; George, S.; Fouke, K.E.; Li, S.; Huang, D.; et al. Controls on iron reduction and biomineralization over broad environmental conditions as suggested by the Firmicutes Orenia metallireducens strain Z6. Environ. Sci Technol 2020, 54, 10128–10140. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Boyanov, M.I.; Gorski, C.A.; Scherer, M.M.; Kemner, K.M. Effects of Fe(III) oxide mineralogy and phosphate on Fe(II) secondary mineral formation during microbial iron reduction. Minerals 2021, 11, 149. [Google Scholar] [CrossRef]
- Bigham, J.M.; Tuovinen, O.H. Mineralogical, morphological, and microbiological characteristics of tubercles in cast iron water mains as related to their chemical activity. In Planetary Ecology; Caldwell, D.E., Brierley, J.A., Brierley, C.L., Eds.; Van Nostrand Reinhold Co.: New York, NY, USA, 1985; pp. 239–250. [Google Scholar]
- Génin, J.-M.R.; Refait, P.; Olowe, A.A.; Abdelmoula, M.; Fall, I.; Drissi, S.H. Identification of green rust compounds in the aqueous corrosion processes of steels; the case of microbially induced corrosion and use of 78 K CEMS. Hyperfine Interact. 1998, 112, 47–50. [Google Scholar] [CrossRef]
- Kumar, A.V.R.; Singh, R.; Nigam, R.K. Mössbauer spectroscopy of corrosion products of mild steel due to microbiologically influenced corrosion. J. Radioanal. Nucl. Chem. 1999, 242, 131–137. [Google Scholar] [CrossRef]
- Refait, P.; Abdelmoula, M.; Génin, J.-M.R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros. Sci. 1998, 40, 1547–1560. [Google Scholar] [CrossRef]
- Hansen, H.C.B.; Bender Koch, C.; Nancke-Krogh, H.; Borggaard, O.K.; Sorensen, J. Abiotic nitrate reduction to ammonium: Key role of green rust. Environ. Sci. Technol. 1996, 30, 2053–2056. [Google Scholar] [CrossRef]
- Christiansen, B.C.; Geckeis, H.; Marquardt, C.M.; Bauer, A.; Römer, J.; Wiss, T.; Schild, D.; Stipp, S.L.S. Neptunyl (NpO2+) interaction with green rust, GRNa,SO4. Geochim. Cosmochim. Acta 2011, 75, 1216–1226. [Google Scholar] [CrossRef]
- Heasman, D.M.; Sherman, D.M.; Ragnarsdottir, K.V. The reduction of aqueous Au3+ by sulfide minerals and green rust phases. Am. Mineral. 2003, 88, 725–738. [Google Scholar] [CrossRef]
- Myneni, S.C.B.; Tokunaga, T.K.; Brown, G.E., Jr. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science 1997, 278, 1106–1109. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Kelly, S.D.; Kemner, K.M.; Csencsits, R.; Cook, R.E. Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere 2003, 53, 437–446. [Google Scholar] [CrossRef]
- Pepper, S.E.; Bunker, D.J.; Bryan, N.D.; Livens, F.R.; Charnock, J.M.; Pattrick, R.A.D.; Collison, D. Treatment of radioactive wastes: An X-ray adsorption spectroscopy study of the treatment of technetium with green rust. J. Colloid Interface Sci. 2003, 268, 408–412. [Google Scholar] [CrossRef]
- Choi, J.; Lee, W. Enhanced degradation of tetrachloroethylene by green rusts with platinum. Environ. Sci. Technol. 2008, 42, 3356–3362. [Google Scholar] [CrossRef]
- Refait, P.; Simon, L.; Génin, J.-M.R. Reduction of SeO42− anions and anoxic formation of iron(II)-iron(III) hydroxy-selenate green rust. Environ. Sci. Technol. 2000, 34, 819–825. [Google Scholar] [CrossRef]
- Williams, A.G.B.; Scherer, M.M. Kinetics of Cr(VI) reduction by carbonate green rust. Environ. Sci. Technol. 2001, 35, 3488–3494. [Google Scholar] [CrossRef]
- Yan, S.; Boyanov, M.I.; Mishra, B.; Kemner, K.M.; O’Loughlin, E.J. U(VI) reduction by biogenic and abiotic hydroxycarbonate green rusts: Impacts on U(IV) speciation and stability over time. Environ. Sci. Technol. 2018, 52, 4601–4609. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.J.; Boyanov, M.I.; Kemner, K.M. Reduction of vanadium(V) by iron(II)-bearing minerals. Minerals 2021, 11, 316. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, W.; Messan, O.; Fang, J.; Jackson, W.A. Abiotic Reduction of Nitrate and Chlorate by Green Rust. ACS Earth Space Chem. 2021, 5, 2042–2051. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Boyanov, M.I.; Kemner, K.M. Tellurium goes for a ride on the “Ferrous” Wheel: Interactions of Te(VI) and Te(IV) with iron(II)-bearing minerals. ACS Earth Space Chem. 2023, 7, 1825–1836. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Q.; Deng, J.; Li, L.; Dai, Y.; Zhu, L.; Huang, L.-Z. Intervention timing of H* and •OH determines the catalytical degradation of tribromophenol by palladium(II) doped green rust in redox-alternating environments. Appl. Catal. B Environ. 2024, 343, 123510. [Google Scholar] [CrossRef]
- Brookins, D.G. Rhenium as analog for fissiogenic technetium: Eh-pH diagram (25 °C, 1 bar) constraints. Appl. Geochem. 1986, 1, 513–517. [Google Scholar] [CrossRef]
- Kim, E.; Boulègue, J. Chemistry of rhenium as an analogue of technetium: Experimental studies of the dissolution of rhenium oxides in aqueous solutions. Radiochim. Acta 2003, 91, 211–216. [Google Scholar] [CrossRef]
- Wakoff, B.; Nagy, K.L. Perrhenate uptake by iron and aluminum oxyhydroxides: An analogue for pertechnetate incorporation in Hanford waste tank sludges. Environ. Sci. Technol. 2004, 38, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, S.; Gaona, X.; Castaño, D.; Park, S.; Altmaier, M.; Geckeis, H. Redox chemistry, solubility and hydrolysis of Re in reducing aquatic systems. Thermodynamic description and comparison with Tc. Appl. Geochem. 2021, 132, 105037. [Google Scholar] [CrossRef]
- Meena, A.H.; Arai, Y. Environmental geochemistry of technetium. Environ. Chem. Lett. 2017, 15, 241–263. [Google Scholar] [CrossRef]
- Pearce, C.I.; Icenhower, J.P.; Asmussen, R.M.; Tratnyek, P.G.; Rosso, K.M.; Lukens, W.W.; Qafoku, N.P. Technetium Stabilization in Low-Solubility Sulfide Phases: A Review. ACS Earth Space Chem. 2018, 2, 532–547. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B. Removal of radionuclide (99)Tc from aqueous solution by various adsorbents: A review. J. Environ. Radioact. 2023, 270, 107267. [Google Scholar] [CrossRef]
- Cui, D.; Eriksen, T.E. Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material. Environ. Sci. Technol. 1996, 30, 2263–2269. [Google Scholar] [CrossRef]
- Kobayashi, A.; Ogra, Y. Metabolism of tellurium, antimony and germanium simultaneously administered to rats. J. Toxicol. Sci. 2009, 34, 295–303. [Google Scholar] [CrossRef]
- Yalcintas, E.; Scheinost, A.C.; Gaona, X.; Altmaier, M. Systematic XAS study on the reduction and uptake of Tc by magnetite and mackinawite. Dalton Trans. 2016, 45, 17874–17885. [Google Scholar] [CrossRef]
- McBeth, J.M.; Lloyd, J.R.; Law, G.T.W.; Livens, F.R.; Burke, I.T.; Morris, K. Redox interactions of technetium with iron-bearing minerals. Mineral. Mag. 2018, 75, 2419–2430. [Google Scholar] [CrossRef]
- Jaisi, D.P.; Dong, H.; Plymale, A.E.; Frederickson, J.K.; Zachara, J.M.; Heald, S.; Liu, C. Reduction and longterm immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chem. Geol. 2009, 264, 127–138. [Google Scholar] [CrossRef]
- Yang, J.; Kukkadapu, R.K.; Dong, H.; Shelobolina, E.S.; Zhang, J.; Kim, J. Effects of redox cycling of iron in nontronite on reduction of technetium. Chem. Geol. 2012, 291, 206–216. [Google Scholar] [CrossRef]
- Livens, F.R.; Jones, M.J.; Hynes, A.J.; Charnock, J.M.; Mosselmans, J.F.W.; Hennig, C.; Steele, H.; Collison, D.; Vaughan, D.J.; Pattrick, R.A.D.; et al. X-ray adsorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. J. Environ. Radioact. 2004, 74, 211–219. [Google Scholar] [CrossRef]
- Bruggeman, C.; Maes, A.; Vancluysen, J. The identification of FeS2 as a sorption sink for Tc(IV). Phys. Chem. Earth Parts A/B/C 2007, 32, 573–580. [Google Scholar] [CrossRef]
- Rodriguez, D.M.; Mayordomo, N.; Scheinost, A.C.; Schild, D.; Brendler, V.; Muller, K.; Stumpf, T. New Insights into (99)Tc(VII) Removal by Pyrite: A Spectroscopic Approach. Environ. Sci. Technol. 2020, 54, 2678–2687. [Google Scholar] [CrossRef]
- Maset, E.R.; Sidhu, S.H.; Fisher, A.; Heydon, A.; Worsfold, P.J.; Cartwright, A.J.; Keith-Roach, M.J. Effect of organic co-contaminants on technetium and rhenium speciation and solubility under reducing conditions. Environ. Sci. Technol. 2006, 40, 5472–5477. [Google Scholar] [CrossRef] [PubMed]
- Heald, S.M.; Krupka, K.M.; Brown, C.F. Incorporation of pertechnetate and perrhenate into corroded steel surfaces studied by X-ray absorption fine structure spectroscopy. Radiochim. Acta 2012, 100, 243–253. [Google Scholar] [CrossRef]
- Li, D.; Seaman, J.C.; Hunyadi Murph, S.E.; Kaplan, D.I.; Taylor-Pashow, K.; Feng, R.; Chang, H.; Tandukar, M. Porous iron material for TcO(4)- and ReO(4)- sequestration from groundwater under ambient oxic conditions. J. Hazard. Mater. 2019, 374, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Halevy, I.; Alesker, M.; Schuster, E.M.; Popovitz-Biro, R.; Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 2017, 10, 135–139. [Google Scholar] [CrossRef]
- Russell, M.J. Green Rust: The Simple Organizing ‘Seed’ of All Life? Life 2018, 8, 35. [Google Scholar] [CrossRef]
- Duval, S.; Branscomb, E.; Trolard, F.; Bourrié, G.; Grauby, O.; Heresanu, V.; Schoepp-Cothenet, B.; Zuchan, K.; Russell, M.J.; Nitschke, W. On the why’s and how’s of clay minerals’ importance in life’s emergence. Appl. Clay Sci. 2020, 195, 105737. [Google Scholar] [CrossRef]
- Poulton, S.W.; Canfield, D.E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements 2011, 7, 107–112. [Google Scholar] [CrossRef]
- Crusius, J.; Thomson, J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim. Cosmochim. Acta 2000, 64, 2233–2242. [Google Scholar] [CrossRef]
- Sundby, B.; Martinez, P.; Gobeil, C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochim. Cosmochim. Acta 2004, 68, 2485–2493. [Google Scholar] [CrossRef]
Shell | N | R (Å) | σ2 (Å2) | ΔE (eV) | D | R-Factor |
---|---|---|---|---|---|---|
(A) ReO2 standard | ||||||
O | 6.0 a | 1.99 ± 0.01 | 0.0046 ± 0.0009 | 6.0 ± 2.9 | 4 | 0.0125 |
Re | 2.0 a | 2.57 ± 0.01 | 0.0075 ± 0.0013 | |||
O b | 7.8 ± 3.6 | 3.67 ± 0.02 | 0.0033 ± 0.0037 | |||
Re | 8.0 a | 3.69 ± 0.01 | 0.0082 ± 0.0017 | |||
(B) Re reacted with green rust for 48 days | ||||||
O | 6.0 a | 2.03 ± 0.01 | 0.0025 ± 0.0005 | 5.5 ± 1.6 | 4 | 0.0128 |
Re | 3.5 ± 1.3 c | 2.58 ± 0.01 | 0.0066 ± 0.0021 | |||
O | 3.5 c | 3.11 ± 0.04 | 0.0075 ± 0.0060 | |||
O | 7.0 c | 3.69 ± 0.07 | 0.0146 ± 0.0120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilber, A.W.N.; Boyanov, M.I.; Kemner, K.M.; O’Loughlin, E.J. Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals. Minerals 2024, 14, 181. https://doi.org/10.3390/min14020181
Kilber AWN, Boyanov MI, Kemner KM, O’Loughlin EJ. Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals. Minerals. 2024; 14(2):181. https://doi.org/10.3390/min14020181
Chicago/Turabian StyleKilber, Anthony W. N., Maxim I. Boyanov, Kenneth M. Kemner, and Edward J. O’Loughlin. 2024. "Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals" Minerals 14, no. 2: 181. https://doi.org/10.3390/min14020181
APA StyleKilber, A. W. N., Boyanov, M. I., Kemner, K. M., & O’Loughlin, E. J. (2024). Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals. Minerals, 14(2), 181. https://doi.org/10.3390/min14020181