Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = reversible operating conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1424 KB  
Article
A Levelized Cost of Energy (LCOE) Analysis of a Reverse Electrodialysis (RED) Plant in Tuxpan, Mexico
by Monserrat Ortiz, Graciela Rivera and Edgar Mendoza
Energies 2025, 18(20), 5540; https://doi.org/10.3390/en18205540 - 21 Oct 2025
Abstract
The transition towards low-carbon energy systems requires the adoption of emerging renewable technologies that can diversify energy matrices and reduce greenhouse gas emissions. The present study evaluates the technical and economic feasibility of implementing a Reverse Electrodialysis (RED) plant for Salinity Gradient Energy [...] Read more.
The transition towards low-carbon energy systems requires the adoption of emerging renewable technologies that can diversify energy matrices and reduce greenhouse gas emissions. The present study evaluates the technical and economic feasibility of implementing a Reverse Electrodialysis (RED) plant for Salinity Gradient Energy (SGE) generation on the coast of Tuxpan, Veracruz, Mexico. This area has significant freshwater and seawater resources but high fossil-fuel dependence. A conceptual design was developed considering local hydrological and salinity conditions, membrane performance, and pre-treatment requirements. The analysis applied Levelized Cost of Energy (LCOE) and Net Present Value (NPV) methodologies to six water source combinations. Results indicate that the most favorable scenario, combining effluents from the municipal wastewater treatment plant and the Tuxpan river mouth, achieved the highest potential energy yield. However, high capital (USD 1.54 million) and operational costs resulted in negative NPVs, limiting short-term economic viability. Environmental assessment suggests RED could improve water quality and reduce pollutant discharge, though potential construction and operational impacts require mitigation. Despite current cost barriers, RED integration in coastal regions with similar characteristics offers a promising pathway for clean energy generation and environmental restoration, particularly if coupled with cost-reduction strategies and policy incentives. Full article
(This article belongs to the Special Issue Studies in Renewable Energy Production and Distribution)
Show Figures

Figure 1

21 pages, 4360 KB  
Article
Research on the CSODC Strategy Based on Impedance Model Prediction and SSO Stability Assessment of DFIGs
by Xiao Wang, Yina Ren, Linlin Wu, Xiaoyang Deng, Xu Zhang and Qun Wang
Appl. Sci. 2025, 15(20), 11218; https://doi.org/10.3390/app152011218 - 20 Oct 2025
Viewed by 24
Abstract
As wind power penetration continues to increase, the sub-synchronous control interaction (SSCI) problem caused by the interaction between doubly fed induction generators (DFIGs) and series-compensated transmission lines has become increasingly prominent, posing a serious threat to power system stability. To address this problem, [...] Read more.
As wind power penetration continues to increase, the sub-synchronous control interaction (SSCI) problem caused by the interaction between doubly fed induction generators (DFIGs) and series-compensated transmission lines has become increasingly prominent, posing a serious threat to power system stability. To address this problem, this research proposes a centralized sub-synchronous oscillation damping controller (CSODC) for wind farms. First, a DFIG impedance model was constructed based on multi-operating-point impedance scanning and a Taylor series expansion, achieving impedance prediction with an error of less than 2% under various power conditions. Subsequently, a CSODC comprising a sub-synchronous damping calculator (SSDC) and a power electronic converter is designed. By optimizing feedback signals, phase shift angles, gain parameters, and filter parameters, dynamic adjustment of controllable impedance in the sub-synchronous frequency band is achieved. Frequency-domain impedance analysis demonstrates that the CSODC significantly enhances the system’s equivalent resistance, reversing it from negative to positive at the resonance frequency point. Time-domain simulations validated the CSODC’s effectiveness in scenarios involving series capacitor switching and wind speed disturbances, demonstrating rapid sub-synchronous current decay. The results confirm that the proposed strategy effectively suppresses sub-synchronous oscillations across multiple scenarios, offering an economical and efficient solution to stability challenges in high-penetration renewable energy grids. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 773 KB  
Article
Moderating Effects of Telework Intensity on the Relationship Between Ethical Climate, Affective Commitment and Burnout in the Colombian Electricity Sector Amid the COVID-19 Pandemic
by Carlos Santiago-Torner
Behav. Sci. 2025, 15(10), 1409; https://doi.org/10.3390/bs15101409 - 16 Oct 2025
Viewed by 113
Abstract
Background: Ethical leadership and ethical climate are generally considered protective factors against burnout, while affective commitment has traditionally been understood as a personal resource that enhances employee well-being. However, recent evidence suggests that, under specific contextual conditions, these variables may also operate as [...] Read more.
Background: Ethical leadership and ethical climate are generally considered protective factors against burnout, while affective commitment has traditionally been understood as a personal resource that enhances employee well-being. However, recent evidence suggests that, under specific contextual conditions, these variables may also operate as demands that intensify emotional strain. Objective: This study examines how telework intensity moderates the relationships between ethical leadership, affective commitment, principle-based ethical climate, and burnout. Methods: Data were drawn from a doctoral study conducted in the Colombian electricity sector. Moderation analyses were performed to assess whether the number of telework days per week altered the strength and direction of associations between organizational variables and the dimensions of burnout. Results: Telework intensity did not moderate the relationship between ethical leadership and affective commitment, but it strengthened the positive association between affective commitment and emotional exhaustion. Moreover, it reversed the role of a principle-based ethical climate: from being positively associated with emotional exhaustion and depersonalization to acting as a protective factor under medium to high telework intensity. Conclusions: The findings challenge conventional assumptions about affective commitment and ethical climate, highlighting the ambivalent role of telework. They underscore the need for more nuanced theoretical frameworks and management practices that are sensitive to emerging psychosocial risks in virtual work environments. Full article
Show Figures

Figure 1

20 pages, 2323 KB  
Article
Stanniocalcin2, A Promising New Target for Identifying Patients with Stroke/Ictus
by Nuria Bermejo, José Javier López, Alejandro Berna-Erro, Esperanza Fernández, Antonio Jesús Corbacho, Maria Teresa Vázquez, Maria Purificación Granados and Pedro Cosme Redondo
Int. J. Mol. Sci. 2025, 26(20), 9999; https://doi.org/10.3390/ijms26209999 - 14 Oct 2025
Viewed by 244
Abstract
STC2 (stanniocalcin 2) controls calcium (Ca2+) homeostasis in human platelets and other cell lines. The regulation of intracellular Ca2+ homeostasis is crucial for platelet activation; thus, the alteration in intracellular Ca2+ concentration or the mechanism involved in its regulation [...] Read more.
STC2 (stanniocalcin 2) controls calcium (Ca2+) homeostasis in human platelets and other cell lines. The regulation of intracellular Ca2+ homeostasis is crucial for platelet activation; thus, the alteration in intracellular Ca2+ concentration or the mechanism involved in its regulation has been proposed to underlie some thrombotic disorders. Our previous studies evidenced that the knockdown of STC2 altered murine platelet activation; furthermore, a reduction in STC2 expression resulted in enhanced Ca2+ homeostasis in diabetic patients and, therefore, would contribute to the prothrombotic condition as a hallmark of diabetes mellitus type 2 (DM2). In this study, we examine a possible link between the expression of stanniocalcins (STCs) and different thrombotic events in humans. The expression of STCs was determined by Western blotting (WB); meanwhile, the analysis of protein interaction and phosphorylation was performed by completing a previous immunoprecipitation protocol (IP) of the proteins of interest. Thus, our results from patients with stroke/ictus presented a clear reduction in STC2 expression in their platelets, finding less STC2 content in the youngest thrombotic patients. Furthermore, acetyl-salicylic acid (ASA) administration reversed the decrease in the expression of STC2 in patients who did not suffer additional thrombotic episodes, as evidenced by the longitudinal analysis of up to 10 years of follow-up. Additionally, the increase in STC2 phosphorylation at the serine residues revealed increased activity of STC2 in thrombotic patients. Finally, we suggest that store-operated Ca2+ entry (SOCE) is over-activated in patients suffering from stroke/ictus, as revealed by the increase in the STIM1/Orai1 interaction found under resting conditions and, further, because MEG-01 cells transfected with siRNA STC2 to evoke artificial reduction in the STC2 expression presented an increased SOCE with respect to the control cells transfected with siRNA A. Conversely, the expression of the non-capacitative Ca2+ channels, Orai3 and TRPC6, was found to be reduced in patients with stroke. Altogether, our data allow us to conclude that STC2 represents a promising marker of stroke/ictus in thrombotic patients. Full article
(This article belongs to the Special Issue Molecular Insights into Thrombosis)
Show Figures

Graphical abstract

21 pages, 1605 KB  
Article
Risk Management Challenges in Maritime Autonomous Surface Ships (MASSs): Training and Regulatory Readiness
by Hyeri Park, Jeongmin Kim, Min Jung, Suk-young Kang, Daegun Kim, Changwoo Kim and Unkyu Jang
Appl. Sci. 2025, 15(20), 10993; https://doi.org/10.3390/app152010993 - 13 Oct 2025
Viewed by 196
Abstract
Maritime Autonomous Surface Ships (MASSs) raise safety and regulatory challenges that extend beyond technical reliability. This study builds on a published system-theoretic process analysis (STPA) of degraded operations that identified 92 loss scenarios. These scenarios were reformulated into a two-round Delphi survey with [...] Read more.
Maritime Autonomous Surface Ships (MASSs) raise safety and regulatory challenges that extend beyond technical reliability. This study builds on a published system-theoretic process analysis (STPA) of degraded operations that identified 92 loss scenarios. These scenarios were reformulated into a two-round Delphi survey with 20 experts from academic, industry, seafaring, and regulatory backgrounds. Panelists rated each scenario on severity, likelihood, and detectability. To avoid rank reversal, common in the Risk Priority Number, an adjusted index was applied. Initial concordance was low (Kendall’s W = 0.07), reflecting diverse perspectives. After feedback, Round 2 reached substantial agreement (W = 0.693, χ2 = 3265.42, df = 91, p < 0.001) and produced a stable Top 10. High-priority items involved propulsion and machinery, communication links, sensing, integrated control, and human–machine interaction. These risks are further exacerbated by oceanographic conditions, such as strong currents, wave-induced motions, and biofouling, which can impair propulsion efficiency and sensor accuracy. This highlights the importance of environmental resilience in MASS safety. These clusters were translated into five action bundles that addressed fallback procedures, link assurance, sensor fusion, control chain verification, and alarm governance. The findings show that Remote Operator competence and oversight are central to MASS safety. At the same time, MASSs rely on artificial intelligence systems that can fail in degraded states, for example, through reduced explainability in decision making, vulnerabilities in sensor fusion, or adversarial conditions such as fog-obscured cameras. Recognizing these AI-specific challenges highlights the need for both human oversight and resilient algorithmic design. They support explicit inclusion of Remote Operators in the STCW convention, along with watchkeeping and fatigue rules for Remote Operation Centers. This study provides a consensus-based baseline for regulatory debate, while future work should extend these insights through quantitative system modeling. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

18 pages, 5594 KB  
Article
Optimization of High-Pressure Grinding Roll (HPGR) Performance in an Industrial-Scale HPGR/Tower Mill Comminution Circuit
by Bo Wei, Zhitao Yuan, Quan Feng, Qiang Zhang, Xinyang Xu, Qingyou Meng, Bern Klein and Lixia Li
Minerals 2025, 15(10), 1065; https://doi.org/10.3390/min15101065 - 11 Oct 2025
Viewed by 425
Abstract
The integration of high-pressure grinding roller (HPGR) with pre-concentration techniques and stirred mills is recognized for its energy efficiency. Studies have suggested that the feed with a P80 around 1 mm is acceptable for stirred mills or coarse particle flotation. Nonetheless, published [...] Read more.
The integration of high-pressure grinding roller (HPGR) with pre-concentration techniques and stirred mills is recognized for its energy efficiency. Studies have suggested that the feed with a P80 around 1 mm is acceptable for stirred mills or coarse particle flotation. Nonetheless, published experimental data characterizing the comminution behavior of single-stage HPGR circuits configured with a 1 mm screen aperture remain scarce. Moreover, extant research remains confined to laboratory scale. Consequently, critical performance metrics, including production capacity, screening efficiency, and process continuity, have not been substantively documented in the literature. In this paper, the HPGR performance in an industrial-scale HPGR/tower mill comminution circuit was assessed and optimized by laboratory and industrial tests. The research meticulously analyzed the impact of feed rate on the industrial-scale flip-flow screen and HPGR performance and found that the HPGR featuring two studded rolls with a diameter of 800 mm and a width of 400 mm, operating in a reverse classification circuit with a scalped feed by a 14.64 m2 flip-flow screen while running continuously 24 h per day, is capable of producing a −1 mm comminution product suitable for tower mill feed. Under the optimal operating conditions identified, it achieved a specific energy consumption of 4.57 kWh/t with a feed rate of 27.08 t/h. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 5645 KB  
Article
Analysis and Optimization of Coagulation Efficiency for Brackish Water Reverse Osmosis Brine Based on Ensemble Approach
by Dayoung Wi, Sangho Lee, Seoyeon Lee, Song Lee, Juyoung Lee and Yongjun Choi
Water 2025, 17(20), 2928; https://doi.org/10.3390/w17202928 - 10 Oct 2025
Viewed by 292
Abstract
Reuse of wastewater through brackish water reverse osmosis presents a major challenge due to the generation of brine, which contains organic and inorganic compounds to be removed. This study focuses on analyzing and optimizing coagulation conditions for brackish reverse osmosis brine treatment by [...] Read more.
Reuse of wastewater through brackish water reverse osmosis presents a major challenge due to the generation of brine, which contains organic and inorganic compounds to be removed. This study focuses on analyzing and optimizing coagulation conditions for brackish reverse osmosis brine treatment by evaluating pollutant removal efficiencies under various scenarios and leveraging advanced modeling techniques. Jar tests were performed using polyaluminum chloride and ferric chloride, evaluating the removal of total organic carbon, turbidity, UV524, and phosphorus. Models were developed using response surface methodology, support vector machines, and random forest. Although the same data sets were used, the characteristics of these models were found to be different: Response surface methodology delivered high-fidelity, smooth response surfaces (R2 > 0.92), support vector machine pinpointed sharp threshold regions, and random forest defined robust operating plateaus. By overlaying model-specific optimum contours, the consensus regions were identified for reliable removal across total organic carbon, turbidity, and phosphate. This ensemble strategy enhanced predictive reliability and provided a comprehensive decision-support tool for multi-objective optimization. The findings underscore the potential of ensemble-based modeling to improve the design and control of brackish reverse osmosis brine treatment processes, offering a data-driven pathway for addressing one of the most critical bottlenecks in wastewater reuse systems. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

24 pages, 3777 KB  
Article
Study on a Fault Diagnosis Method for Heterogeneous Chiller Units Based on Transfer Learning
by Qiaolian Feng, Yongbao Liu, Yanfei Li, Guanghui Chang, Xiao Liang, Yongsheng Su and Gelin Cao
Entropy 2025, 27(10), 1049; https://doi.org/10.3390/e27101049 - 9 Oct 2025
Viewed by 202
Abstract
As the core refrigeration equipment in cooling systems, the operational state of chiller units is crucial for ship support, equipment cooling, and mission stability. However, because of their sensitivity and the complexity of operating environments, obtaining large volumes of complete, fault-labeled data is [...] Read more.
As the core refrigeration equipment in cooling systems, the operational state of chiller units is crucial for ship support, equipment cooling, and mission stability. However, because of their sensitivity and the complexity of operating environments, obtaining large volumes of complete, fault-labeled data is difficult in practical engineering appli-cations. This limitation makes it challenging for traditional data-driven approaches to deliver accurate fault diagnoses. Furthermore, data collected from different devices or under varying operating conditions often differ significantly in both feature dimensions and distributions, i.e., data heterogeneity, which further complicates model transfer. To address these challenges, this study proposes a deep transfer learning–based fault di-agnosis method designed to leverage abundant knowledge from the source domain while adaptively learning features of the target domain. Given the persistent difficulties in collecting sufficient high-quality labeled fault data, traditional data-driven models continue to face restricted diagnostic performance on target equipment. At the same time, data heterogeneity across devices or operating conditions intensifies the challenge of cross-domain knowledge transfer. To overcome these issues, this study develops a heterogeneous transfer learning method that integrates a dual-channel autoencoder, domain adversarial training, and pseudo-label self-training. This combination enables precise small-sample knowledge transfer from the source to the target domain. Specifi-cally, the dual-channel autoencoder is first applied to align heterogeneous feature di-mensions. Then, a Gradient Reversal Layer (GRL) and a domain discriminator are in-troduced to extract domain-invariant features. In parallel, high-confidence pseu-do-labeled samples from the target domain are incorporated into joint training to im-prove generalization and robustness. Experimental results confirm that the method achieves high fault diagnosis accuracy in typical industrial application scenarios, ena-bling effective identification of common faults in various types of chiller units under conventional operating conditions, the proposed method achieves higher accuracy and F1-scores in multi-class fault diagnosis tasks compared with both traditional approaches and existing transfer learning methods. These findings provide a novel perspective for advancing the intelligent operation and maintenance of chiller units. Full article
Show Figures

Figure 1

12 pages, 2582 KB  
Communication
Intergranular Crack of Cathode Materials in Lithium-Ion Batteries Subjected to Rapid Cooling During Transient Thermal Runaway
by Siqi Li, Changchun Ye, Ming Jin, Guobin Zhong, Shi Liu, Yajie Liu and Zhixin Tai
Batteries 2025, 11(10), 363; https://doi.org/10.3390/batteries11100363 - 30 Sep 2025
Viewed by 295
Abstract
In metallurgy, the quenching process often induces changes in certain material properties, such as hardness and ductility, through the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids. Given that lithium-ion batteries operate under relatively benign conditions, conventional [...] Read more.
In metallurgy, the quenching process often induces changes in certain material properties, such as hardness and ductility, through the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids. Given that lithium-ion batteries operate under relatively benign conditions, conventional rapid cooling does not significantly affect the property variations in their internal electrode materials during normal use. However, thermal runaway presents an exception due to its dramatic temperature fluctuations from room temperature to several hundred degrees Celsius. In this study, we investigated NCM811 cathodes in 18,650 batteries subjected to transient thermal runaway followed by rapid cooling using several advanced analytical techniques. The results reveal a phenomenon characterized by intergranular cracking within NCM811 cathode materials when exposed to rapid cooling during transient thermal runaway. Furthermore, lithium-ion cells utilizing reused NCM-182.4 electrodes in fresh electrolyte demonstrate a reversible capacity of 231.4 mAh/g after 30 cycles at 0.1 C, highlighting the potential for reusing NCM811 cathodes in the lithium-ion battery recycling process. These findings not only illustrate that NCM811 particles may experience intergranular cracking when subjected to rapid cooling during transient thermal runaway, but also the rapidly cooled NCM811 electrodes exhibit potential for reuse. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
Show Figures

Figure 1

19 pages, 2292 KB  
Article
Analysis and Prediction of Concentration Polarization in a Pilot Reverse Osmosis Plant with Seawater at Different Concentrations Using Python Software
by Jesús Álvarez-Sánchez, Germán Eduardo Dévora-Isiordia, Yedidia Villegas-Peralta, Luis Enrique Chaparro-Valdez, Sebastian Alonso Meza-Tarin, Claudia Rosario Muro-Urista, Reyna Guadalupe Sánchez-Duarte, Sergio Pérez-Sicairos, Emilio Medina-Bojorquez and Salvador Rascon-Leon
Processes 2025, 13(10), 3139; https://doi.org/10.3390/pr13103139 - 30 Sep 2025
Viewed by 338
Abstract
Reverse osmosis (RO) is the most widely used technology in seawater desalination, accounting for around 70% of installations worldwide due to its efficiency and lower energy consumption compared to conventional thermal processes. However, a major challenge for RO is concentration polarization (CP), a [...] Read more.
Reverse osmosis (RO) is the most widely used technology in seawater desalination, accounting for around 70% of installations worldwide due to its efficiency and lower energy consumption compared to conventional thermal processes. However, a major challenge for RO is concentration polarization (CP), a phenomenon that reduces permeate flow, increases osmotic pressure, and compromises salt rejection, affecting the useful life of the membranes. In this work, an RO pilot plant was operated with synthetic solutions ranging from 4830 to 39,850 mg L−1 at pressures between 0.69 and 5.79 MPa, to analyze and predict CP behavior. The results obtained showed salt rejection percentages ranging from 98.80% to 99.63%. The adjusted polynomial models presented correlation coefficients close to unity, which supports their high predictive capacity and statistical robustness for estimating the behavior of CP as a function of pressure. These models were implemented in Python software, allowing for the simulation of non-experimental scenarios and the anticipation of critical conditions that could compromise the RO process. Therefore, this work provides a robust predictive simulation tool to optimize RO processes and ensure the sustainable supply of drinking water in regions with water availability problems. Full article
Show Figures

Figure 1

35 pages, 2479 KB  
Article
Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(19), 2855; https://doi.org/10.3390/w17192855 - 30 Sep 2025
Viewed by 1146
Abstract
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, [...] Read more.
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, Br, B, Li, Rb, and Sr in comparison to conventional mining and chemical production of these commodities. Data from recent literature and case studies are compiled to quantify the composition of a typical SWRO brine and the potential yield of valuable products. A life-cycle cost framework is applied, incorporating capital expenditure (CAPEX), operational expenditure (OPEX), and total water cost (TWC) impacts. A representative simulation for a large 100,000 m3/day SWRO plant shows that integrated “brine mining” systems could recover on the order of 3.8 million tons of salts per year. At optimistic recovery efficiencies, the gross annual revenue from products (NaCl, Mg(OH)2/MgO, CaCO3, KCl, Br2, Li2CO3, etc.) can reach a few hundred million USD. This revenue is comparable to or exceeds the added costs of recovery processes under favorable conditions, potentially offsetting desalination costs by USD 0.5/m3 or more. We compare these projections with the economics of obtaining the same materials through conventional mining and chemical processes worldwide. Major findings indicate that recovery of abundant low-value salts (especially NaCl) can supply bulk revenue to cover processing costs, while extraction of scarce high-value elements (Li, Rb, Sr, etc.) can provide significant additional profit if efficient separation is achieved. The energy requirements and unit costs for brine recovery are analyzed against those of terrestrial or conventional mining; in many cases, brine-derived production is competitive due to avoided raw material extraction and potential use of waste or renewable energy. CAPEX for adding mineral recovery to a desalination plant is significant but can be justified by revenue and by strategic benefits such as reduced brine disposal. Our analysis, drawing on global data and case studies (e.g., projects in Europe and the Middle East), suggests that metals and salts recovery from SWRO brine is technically feasible and, at sufficient scale, economically viable in many regions. We provide detailed comparisons of cost, yield, and market value for each target element, along with empirical models and formulas for profitability. The results offer a roadmap for integrating brine mining into desalination operations and highlight key factors such as commodity prices, scale economies, energy integration, and policy incentives that influence the competitiveness of brine recovery against traditional mining. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

14 pages, 1242 KB  
Article
Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power
by Deivis Avila, Ángela Hernández and Graciliano Nicolás Marichal
Processes 2025, 13(10), 3127; https://doi.org/10.3390/pr13103127 - 29 Sep 2025
Viewed by 323
Abstract
This study models different hybrid systems based on renewable energies that can be supported by diesel generators to meet the energy needs of isolated homes in the Canary Islands. The research will cover the energy requirements of a residential house, including the production [...] Read more.
This study models different hybrid systems based on renewable energies that can be supported by diesel generators to meet the energy needs of isolated homes in the Canary Islands. The research will cover the energy requirements of a residential house, including the production of fresh water using a reverse osmosis desalination plant. The system is designed to operate independently of the electrical grid. The HOMER software package was used to model and optimize the hybrid systems. The model was fed with data on the electrical demands of residential homes (including the consumption by the small reverse osmosis desalination plant) as well as the technical specifications of the various devices and renewable energy sources, such as solar radiation and wind speed potentials. The software considers various configurations to optimize hybrid systems, selecting the most suitable one based on the available renewable energy sources at the selected location. The data used in the research were collected on the eastern islands of the Canary Islands (Gran Canaria, Lanzarote and Fuerteventura). Based on the system input parameters, the simulation and optimization performed in HOMER, taking into account the lowest “Levelized Cost of Energy”, it can be concluded that the preferred hybrid renewable energy system for this region is a small wind turbine with a nominal power of 1.9 kW, eight batteries, and a small diesel generator with a nominal power of 1.0 kW. The knowledge from this research could be applied to other geographical areas of the world that have similar conditions, namely a shortage of water and plentiful renewable energy sources. Full article
Show Figures

Figure 1

15 pages, 3391 KB  
Article
A Method of Analyzing the Component Reactions of an Overall Reaction: Autothermal Reforming of Acetic Acid Example
by James Manganaro, Yujia Liu, Jiazhun Huang, Bi Chen and Adeniyi Lawal
Processes 2025, 13(10), 3112; https://doi.org/10.3390/pr13103112 - 28 Sep 2025
Viewed by 315
Abstract
Using Excel and its Solver feature, a novel method of analyzing the component reactions of an overall reaction is outlined. As an example, autothermal reforming (300–700 °C) of acetic acid (AA), a significant component of pyrolysis oil, was considered. The overall reaction can [...] Read more.
Using Excel and its Solver feature, a novel method of analyzing the component reactions of an overall reaction is outlined. As an example, autothermal reforming (300–700 °C) of acetic acid (AA), a significant component of pyrolysis oil, was considered. The overall reaction can be viewed as comprising five individual reactions: reforming, oxidation, water–gas shift, reverse Boudouard, and methanation. A laboratory apparatus was set up in which acetic acid, air, and water were continuously fed to a BASF dual-layer catalytic reactor in plug flow at 1 atm. For this setup, it is easy to construct a material balance in Excel in which five factors, fi, are defined which represent the fraction of reactant going to each of the individual five reactions. Using the Solver feature of Excel, it can readily be determined which of the five factors fi produce the best match of the calculated exit gas composition with the measured gas concentrations for CO, CO2, H2, CH4, and O2. Furthermore, a program such as GasEq or Aspen can then be used to calculate the theoretical equilibrium gas composition at a given condition. Using this equilibrium gas composition and Solver, the individual (fi)equilb can be calculated. Thus, the ratio fi/(fi)equilb is an indication of how close each component reaction is to equilibrium. In this way, an idea is gained of which of the individual component reactions need to be improved or inhibited or if operating parameters should be adjusted. For the specific case of autothermal reforming of acetic acid, the steam reforming reaction requires at least 600 °C to approach equilibrium. In contrast, the oxidation reaction goes to equilibrium throughout the temperature range, completely consuming oxygen. The water–gas shift reaction appears to approach equilibrium to the extent of 71–90% throughout the temperature range. The reverse Boudouard reaction is favored at lower temperatures; in fact, coking was predicted and found at the low temperature of 300 °C. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 2687 KB  
Article
Mixed-Fleet Goods-Distribution Route Optimization Minimizing Transportation Cost, Emissions, and Energy Consumption
by Mohammad Javad Jafari, Luca Parodi, Giulio Ferro, Riccardo Minciardi, Massimo Paolucci and Michela Robba
Energies 2025, 18(19), 5147; https://doi.org/10.3390/en18195147 - 27 Sep 2025
Viewed by 442
Abstract
At the international level, new measures, policies, and technologies are being developed to reduce greenhouse gas emissions and, more broadly, air pollutants. Road transportation is one of the main contributors to such emissions, as vehicles are extensively used in logistics operations, and many [...] Read more.
At the international level, new measures, policies, and technologies are being developed to reduce greenhouse gas emissions and, more broadly, air pollutants. Road transportation is one of the main contributors to such emissions, as vehicles are extensively used in logistics operations, and many fleet owners of fossil-fueled trucks are adopting new technologies such as electric, hybrid, and hydrogen-based vehicles. This paper addresses the Hybrid Fleet Capacitated Vehicle Routing Problem with Time Windows (HF-CVRPTW), with the objectives of minimizing costs and mitigating environmental impacts. A mixed-integer linear programming model is developed, incorporating split deliveries, scheduled arrival times at stores, and a carbon cap-and-trade mechanism. The model is tested on a real case study provided by Decathlon, evaluating the performance of internal combustion engine (ICE), electric (EV), and hydrogen fuel cell (HV) vehicles. Results show that when considering economic and emission trading costs, the optimal fleet deployment priority is to use ICE vehicles first, followed by EVs and then HVs, but considering only total emissions, the result is the reverse. Further analysis explores the conditions under which alternative fuel, electricity, or hydrogen prices can achieve competitiveness, and a further analysis investigates the impact of different electricity generation and hydrogen production pathways on overall indirect emissions. Full article
Show Figures

Figure 1

29 pages, 2736 KB  
Article
Damage Assessment and Fatigue Life Prediction in Exhaust Manifolds Through a Unified Method Using the FEM and XFEM
by Nouhaila Ouyoussef, Hassane Moustabchir, Maria Luminita Scutaru and Ovidiu Vasile
Appl. Sci. 2025, 15(19), 10410; https://doi.org/10.3390/app151910410 - 25 Sep 2025
Viewed by 288
Abstract
This study investigates the structural and fracture behavior of an automotive exhaust manifold with a predefined semi-elliptical surface crack under realistic thermo-mechanical loading. A combined FEM–XFEM workflow was applied; the FEM identified the critical stress concentration zone, where the maximum Von Mises stress [...] Read more.
This study investigates the structural and fracture behavior of an automotive exhaust manifold with a predefined semi-elliptical surface crack under realistic thermo-mechanical loading. A combined FEM–XFEM workflow was applied; the FEM identified the critical stress concentration zone, where the maximum Von Mises stress reached 165.6 MPa at 700 °C, and the XFEM was used to model crack growth with a refined mesh. The computed Mode I stress intensity factors ranged from 21 to 24 MPa√m, remaining below the temperature-dependent fracture toughness of AISI 321 stainless steel, which confirmed stable crack behavior under service conditions. Fatigue life was assessed using the Smith–Watson–Topper (SWT) parameter. Two scenarios were considered: a quasi-pulsating case, giving a predicted life of 3.8 × 108 cycles, and a fully reversed case, reducing the life to 6.7 × 107 cycles. These results confirm that the manifold operates within the high-cycle fatigue regime, while also demonstrating the strong sensitivity of life predictions to the applied stress ratio. This combined FEM–XFEM methodology provides a reliable numerical framework for assessing crack driving forces and guiding durability-based design of exhaust manifolds. Full article
Show Figures

Figure 1

Back to TopTop