Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = resveratrol trimers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1069 KiB  
Article
Stilbenes in Carex acuta and Carex lepidocarpa
by Jan Tříska, Naděžda Vrchotová, Štěpán Horník, Jan Sýkora and Andrea Kučerová
Molecules 2024, 29(16), 3840; https://doi.org/10.3390/molecules29163840 - 13 Aug 2024
Cited by 1 | Viewed by 1136
Abstract
Stilbenes in the roots of Carex acuta and Carex lepidocarpa were studied. Root samples were extracted with 100% methanol and analyzed by HPLC and LC-MS. In this way, trans-resveratrol dimers (m/z 455 Da [M + H]+), trimers [...] Read more.
Stilbenes in the roots of Carex acuta and Carex lepidocarpa were studied. Root samples were extracted with 100% methanol and analyzed by HPLC and LC-MS. In this way, trans-resveratrol dimers (m/z 455 Da [M + H]+), trimers (m/z 681 Da [M + H]+) and tetramers (m/z 907 Da [M + H]+) were identified in the extracts. Using LC-NMR in stop-flow mode, pallidol and trans-ε-viniferin as dimers were identified. After the separation of individual peaks and their measurement by 1H NMR, cis and trans-miyabenol A as a tetramer and cis-miyabenol C as a trimer were identified. In the case of miyabenol A, it is a chromatographically inseparable mixture of cis and trans isomers in the ratio of 2:3 according to 1H NMR measurement. In the case of cis-miyabenol C, the Z-trans-trans-miyabenol C configuration was confirmed. The remaining unidentified peak with a practically identical UV-VIS spectrum to that of cis-miyabenol C is most likely another isomer of miyabenol C. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Graphical abstract

16 pages, 3504 KiB  
Article
Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina
by Nikola Gligorijević, Zorana Jovanović, Ilija Cvijetić, Miloš Šunderić, Luka Veličković, Jaroslav Katrlík, Alena Holazová, Milan Nikolić and Simeon Minić
Int. J. Mol. Sci. 2024, 25(1), 229; https://doi.org/10.3390/ijms25010229 - 22 Dec 2023
Cited by 6 | Viewed by 1919
Abstract
Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to [...] Read more.
Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular docking. Among twelve examined ligands, the protein fluorescence quenching revealed that only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105 M–1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer, with the binding sites located at the interface of two (αβ)3 trimers. UV/VIS absorption spectroscopy demonstrated the changes in the C-PC absorption spectra in a complex with quercetin and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect the secondary structure content, but they induced changes in the tertiary protein structure in the CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10 increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents for C-PC in the food industry. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

15 pages, 1801 KiB  
Article
Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors
by Veronica D’Eusanio, Lorenzo Morelli, Andrea Marchetti and Lorenzo Tassi
Molecules 2023, 28(22), 7676; https://doi.org/10.3390/molecules28227676 - 20 Nov 2023
Cited by 2 | Viewed by 1511
Abstract
In this study, we compared the polyphenolic composition of the roasted grapevine wood chips of four Vitis vinifera cultivars—namely, Sorbara, Grasparossa, Malbo Gentile, and Spergola. These waste byproducts have the potential as infusion chips for the aging of alcoholic beverages and vinegars, contributing [...] Read more.
In this study, we compared the polyphenolic composition of the roasted grapevine wood chips of four Vitis vinifera cultivars—namely, Sorbara, Grasparossa, Malbo Gentile, and Spergola. These waste byproducts have the potential as infusion chips for the aging of alcoholic beverages and vinegars, contributing to an enriched sensory profile. Roasting amplifies aromatic nuances and triggers the depletion of crucial bioactive compounds, including polyphenols. We investigated the extent of polyphenolic loss in the ethanolic extract of roasted grapevine chips to repurpose this waste byproduct and assess its potential. We assessed the levels of trans-resveratrol, trans-ε-viniferin, trans-piceatannol, and the main resveratrol trimer. Our findings indicated a significant decrease in polyphenol content as the roasting temperature increased, from 16.85–21.12 mg GAE/g for grapevine chips roasted at 120 °C to 3.10–7.77 mg GAE/g for those roasted at 240 °C. This study also highlights notable genotypic differences in polyphenolic content. Among the red grape cultivars analyzed, Sorbara exhibited the highest levels (7.77–21.12 mg/GAEg), whereas the white grape cultivar Spergola showed the lowest polyphenolic content (3.10–16.85 mg/GAEg). These findings not only contribute to the scientific understanding of polyphenol stability but also hold practical implications for the enhancement of aged beverages, as well as advancing sustainable practices in the viticulture industries. Full article
(This article belongs to the Special Issue Biological Activity of Phenolics and Polyphenols in Nature Products)
Show Figures

Figure 1

10 pages, 1312 KiB  
Article
Separation and Isolation of a New Hydroxylated Resveratrol Trimer Together with Other Stilbenoid Compounds from the Lianas of Gnetum microcarpum Blume and Their Inhibitory Effects of Prostaglandin E2
by Nik Fatini Nik Azmin, Norizan Ahmat, Juriyati Jalil, Carla Wulandari Sabandar, Nik Khairunissa’ Nik Abdullah Zawawi, Siti Norafiqah Mohd Sazali, Mohd Izwan Mohamad Yusof, Aisyah Salihah Kamarozaman and Mulyadi Tanjung
Separations 2023, 10(9), 496; https://doi.org/10.3390/separations10090496 - 12 Sep 2023
Cited by 2 | Viewed by 1780
Abstract
A new oligostilbene trimer, malaysianol F (1), together with ten known stilbenes (2–11), were successfully separated and purified from the acetone extract of the lianas of Gnetum microcarpum. Malaysianol D (2) was isolated for the first [...] Read more.
A new oligostilbene trimer, malaysianol F (1), together with ten known stilbenes (2–11), were successfully separated and purified from the acetone extract of the lianas of Gnetum microcarpum. Malaysianol D (2) was isolated for the first time in Gnetum plants. The tanninless crude extract (52.5 g) was fractionated using a vacuum liquid chromatography (VLC) technique to give five major fractions. Fraction 2 (4.68 g), 3 (4.79 g) and 4 (9.29 g) were all subjected to further isolation and purification using VLC, column chromatography (CC) and repetitive radial chromatography (RC) techniques with the best solvent system to yield malaysianol F (1) (6.2 mg), malaysianol D (2) (62.5 mg), malaysianol E (3) (2.4 mg), ε-viniferin (4) (10 mg), resveratrol (5) (6.5 mg), gnetol (6) (3.5 mg), gnetucleistol C (7) (12.2 mg), isorhapontigenin (8) (8 mg), cuspidan B (9) (3.2 mg), parvifolol D (10) (4.8 mg) and gnetifolin M (11) (2.5 mg). Their structures were determined on the basis of the analysis of spectral evidence by extensive NMR data analyses and comparison with the related published data. Several compounds were tested for anti-inflammatory activity. Their inhibitory effect on Prostaglandin E2 (PGE2) was tested using radioimmunoassay techniques. Compound 6 exhibited significant concentration-dependent inhibitory effects on PGE2 production with IC50 values of 1.84 µM comparable with the positive control, indomethacin (IC50 1.29 µM). Full article
(This article belongs to the Special Issue Isolation, Elucidation and Synthesis of Bioactive Natural Products)
Show Figures

Figure 1

15 pages, 3518 KiB  
Article
Suffruticosol C-Mediated Autophagy and Cell Cycle Arrest via Inhibition of mTORC1 Signaling
by Senlin Qin, Huijun Geng, Guoyan Wang, Lei Chen, Chao Xia, Junhu Yao, Zhangzhen Bai and Lu Deng
Nutrients 2022, 14(23), 5000; https://doi.org/10.3390/nu14235000 - 24 Nov 2022
Cited by 5 | Viewed by 2199
Abstract
Paeonia species are well-known ornamental plants that are used in traditional Chinese medicines. The seeds of these species are rich in stilbenes, which have wide-ranging health-promoting effects. In particular, resveratrol, which is a common stilbene, is widely known for its anticancer properties. Suffruticosol [...] Read more.
Paeonia species are well-known ornamental plants that are used in traditional Chinese medicines. The seeds of these species are rich in stilbenes, which have wide-ranging health-promoting effects. In particular, resveratrol, which is a common stilbene, is widely known for its anticancer properties. Suffruticosol C, which is a trimer of resveratrol, is the most dominant stilbene found in peony seeds. However, it is not clear whether suffruticosol C has cancer regulating properties. Therefore, in the present study, we aimed to determine the effect of suffruticosol C against various cancer cell lines. Our findings showed that suffruticosol C induces autophagy and cell cycle arrest instead of cell apoptosis and ferroptosis. Mechanistically, suffruticosol C regulates autophagy and cell cycle via inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Thus, our findings imply that suffruticosol C regulates cancer cell viability by inducing autophagy and cell cycle arrest via the inhibition of mTORC1 signaling. Full article
(This article belongs to the Special Issue Natural Products and Health)
Show Figures

Graphical abstract

33 pages, 4601 KiB  
Review
A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves
by Piebiep Goufo, Rupesh Kumar Singh and Isabel Cortez
Antioxidants 2020, 9(5), 398; https://doi.org/10.3390/antiox9050398 - 8 May 2020
Cited by 186 | Viewed by 11290
Abstract
Due to their biological activities, both in plants and in humans, there is a great interest in finding natural sources of phenolic compounds or ways to artificially manipulate their levels. During the last decade, a significant amount of these compounds has been reported [...] Read more.
Due to their biological activities, both in plants and in humans, there is a great interest in finding natural sources of phenolic compounds or ways to artificially manipulate their levels. During the last decade, a significant amount of these compounds has been reported in the vegetative organs of the vine plant. In the roots, woods, canes, stems, and leaves, at least 183 phenolic compounds have been identified, including 78 stilbenes (23 monomers, 30 dimers, 8 trimers, 16 tetramers, and 1 hexamer), 15 hydroxycinnamic acids, 9 hydroxybenzoic acids, 17 flavan-3-ols (of which 9 are proanthocyanidins), 14 anthocyanins, 8 flavanones, 35 flavonols, 2 flavones, and 5 coumarins. There is great variability in the distribution of these chemicals along the vine plant, with leaves and stems/canes having flavonols (83.43% of total phenolic levels) and flavan-3-ols (61.63%) as their main compounds, respectively. In light of the pattern described from the same organs, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and caftaric acid are the main flavonols and hydroxycinnamic acids in the leaves; the most commonly represented flavan-3-ols and flavonols in the stems and canes are catechin, epicatechin, procyanidin B1, and quercetin-3-O-galactoside. The main stilbenes (trans-ε-viniferin, trans-resveratrol, isohopeaphenol/hopeaphenol, vitisin B, and ampelopsins) accumulate primarily in the woods, followed by the roots, the canes, and the stems, whereas the leaves, which are more exposed to environmental stresses, have a low concentration of these compounds. Data provided in this review could be used as (i) a metabolomic tool for screening in targeted and untargeted analyses and (ii) a reference list in studies aimed at finding ways to induce naturally occurring polyphenols on an industrial scale for pant and human disease control. Full article
(This article belongs to the Special Issue Phenolics as Antioxidant Agents)
Show Figures

Figure 1

38 pages, 7071 KiB  
Article
Phytochemical Diversity in Rhizomes of Three Reynoutria Species and their Antioxidant Activity Correlations Elucidated by LC-ESI-MS/MS Analysis
by Izabela Nawrot-Hadzik, Sylwester Ślusarczyk, Sebastian Granica, Jakub Hadzik and Adam Matkowski
Molecules 2019, 24(6), 1136; https://doi.org/10.3390/molecules24061136 - 21 Mar 2019
Cited by 50 | Viewed by 6182
Abstract
The rhizome of Reynoutria japonica is a well-known traditional herb (Hu zhang) used in East Asia to treat various inflammatory diseases, infections, skin diseases, scald, and hyperlipidemia. It is also one of the richest natural sources of resveratrol. Although, it has been recently [...] Read more.
The rhizome of Reynoutria japonica is a well-known traditional herb (Hu zhang) used in East Asia to treat various inflammatory diseases, infections, skin diseases, scald, and hyperlipidemia. It is also one of the richest natural sources of resveratrol. Although, it has been recently included in the European Pharmacopoeia, in Europe it is still an untapped resource. Some of the therapeutic effects are likely to be influenced by its antioxidant properties and this in turn is frequently associated with a high stilbene content. However, compounds other than stilbenes may add to the total antioxidant capacity. Hence, the aim of this research was to examine rhizomes of R. japonica and the less studied but morphologically similar species, R. sachalinensis and R. x bohemica for their phytochemical composition and antioxidant activity and to clarify the relationship between the antioxidant activity and the components by statistical methods. HPLC/UV/ESI-MS studies of three Reynoutria species revealed 171 compounds, comprising stilbenes, carbohydrates, procyanidins, flavan-3-ols, anthraquinones, phenylpropanoids, lignin oligomers, hydroxycinnamic acids, naphthalenes and their derivatives. Our studies confirmed the presence of procyanidins with high degree of polymerization, up to decamers, in the rhizomes of R. japonica and provides new data on the presence of these compounds in other Reynoutria species. A procyanidin trimer digallate was described for the first time in, the studied plants. Moreover, we tentatively identified dianthrone glycosides new for these species and previously unrecorded phenylpropanoid disaccharide esters and hydroxycinnamic acid derivatives. Furthermore, compounds tentatively annotated as lignin oligomers were observed for the first time in the studied species. The rhizomes of all Reynoutria species exhibited strong antioxidant activity. Statistical analysis demonstrated that proanthocyanidins should be considered as important contributors to the total antioxidant capacity. Full article
(This article belongs to the Special Issue The Antioxidant Capacities of Natural Products 2019)
Show Figures

Figure 1

26 pages, 2649 KiB  
Review
Update on Phytochemistry and Pharmacology of Naturally Occurring Resveratrol Oligomers
by Jie Shen, Qiang Zhou, Pei Li, Zhiqiang Wang, Shuangshuang Liu, Chunnian He, Chunhong Zhang and Peigen Xiao
Molecules 2017, 22(12), 2050; https://doi.org/10.3390/molecules22122050 - 24 Nov 2017
Cited by 60 | Viewed by 8146
Abstract
Resveratrol oligomers (REVs), a major class of stilbenoids, are biosynthesized by regioselective oxidative coupling of two to eight units of resveratrol monomer. Due to their unique structures and pleiotropic biological activities, natural product chemists are increasingly focusing on REVs in the last few [...] Read more.
Resveratrol oligomers (REVs), a major class of stilbenoids, are biosynthesized by regioselective oxidative coupling of two to eight units of resveratrol monomer. Due to their unique structures and pleiotropic biological activities, natural product chemists are increasingly focusing on REVs in the last few decades. This study presents a detailed and thorough examination of REVs, including chemical structures, natural resources, and biological activities, during the period of 2010–2017. Ninety-two new REVs compounds, including 39 dimers, 23 trimers, 13 tetramers, six resveratrol monomers, six hexamers, four pentamers, and one octamer, have been reported from the families of Dipterocarpaceae, Paeoniaceae, Vitaceae, Leguminosae, Gnetaceae, Cyperaceae, Polygonaceae Gramineae, and Poaceae. Amongst these families, Dipterocarpaceae, with 50 REVs, accounts for the majority, and seven genera of Dipterocarpaceae are involved, including Vatica, Vateria, Shorea, Hopea, Neobalanocarpus, Dipterocarpus, and Dryobalanops. These REVs have shown a wide range of bioactivities. Pharmacological studies have mainly focused on potential efficacy on tumors, bacteria, Alzheimer’s disease, cardiovascular diseases, and others. The information updated in this review might assist further research and development of novel REVs as potential therapeutic agents. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 1813 KiB  
Article
Biomimetic Synthesis of Resveratrol Trimers Catalyzed by Horseradish Peroxidase
by Jian-Qiao Zhang, Gan-Peng Li, Yu-Long Kang, Bin-Hao Teng and Chun-Suo Yao
Molecules 2017, 22(5), 819; https://doi.org/10.3390/molecules22050819 - 17 May 2017
Cited by 16 | Viewed by 5144
Abstract
Biotransformation of trans-resveratrol and synthetic (±)-ε-viniferin in aqueous acetone using horseradish peroxidase and hydrogen peroxide as oxidants resulted in the isolation of two new resveratrol trimers (3 and 4), one new resveratrol derivative (5) with a dihydrobenzofuran skeleton, [...] Read more.
Biotransformation of trans-resveratrol and synthetic (±)-ε-viniferin in aqueous acetone using horseradish peroxidase and hydrogen peroxide as oxidants resulted in the isolation of two new resveratrol trimers (3 and 4), one new resveratrol derivative (5) with a dihydrobenzofuran skeleton, together with two known stilbene trimers (6 and 7), and six known stilbene dimers (813). Their structures and relative configurations were identified through spectral analysis and possible formation mechanisms were also discussed. Among these oligomers, trimers 6 and 7 were obtained for the first time through direct transformation from resveratrol. Results indicated that this reaction is suitable for the preparation of resveratrol oligomers with a complex structure. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

8 pages, 220 KiB  
Article
Resveratrol Trimers from Seed Cake of Paeonia rockii
by Pu Liu, Yiran Wang, Jiayu Gao, Zongyuan Lu, Weiping Yin and Ruixue Deng
Molecules 2014, 19(12), 19549-19556; https://doi.org/10.3390/molecules191219549 - 26 Nov 2014
Cited by 23 | Viewed by 6997
Abstract
In the course of screening natural products for antibacterial activities, a total acetone extract of the seed cake of Paeonia rockii showed significant effects against bacterial strains. Bioactivity-guided fractionation of the EtOAc-soluble fraction of the total acetone extract resulted in the isolation [...] Read more.
In the course of screening natural products for antibacterial activities, a total acetone extract of the seed cake of Paeonia rockii showed significant effects against bacterial strains. Bioactivity-guided fractionation of the EtOAc-soluble fraction of the total acetone extract resulted in the isolation and identification of five resveratrol trimers, including rockiiol C (1), gnetin H (2), suffruticosol A (3), suffruticosol B (4) and suffruticosol C (5). The relative configuration of these compounds was elucidated mainly by comprehensive 1D and 2D-NMR experiments. Compound 1 was a new compound. All isolated compounds exhibited strong antibacterial activities against Gram-positive bacteria. Full article
(This article belongs to the Special Issue Resveratrol)
Show Figures

Graphical abstract

6 pages, 181 KiB  
Communication
A New Resveratrol Trimer from the Roots and Stems of Vitis wenchowensis
by Binbin Gu, Yaru Xu and Shan He
Molecules 2013, 18(7), 7486-7491; https://doi.org/10.3390/molecules18077486 - 27 Jun 2013
Cited by 9 | Viewed by 5190
Abstract
Phytochemical constituents of Vitis wenchowensis were investigated for the first time. A new resveratrol trimer, wenchowenol (1), was isolated from the roots and stems of Vitis wenchowensis along with four known stilbenoids 2–5. The structure and relative configuration of 1 [...] Read more.
Phytochemical constituents of Vitis wenchowensis were investigated for the first time. A new resveratrol trimer, wenchowenol (1), was isolated from the roots and stems of Vitis wenchowensis along with four known stilbenoids 2–5. The structure and relative configuration of 1 were established on the basis of spectral evidence, especially HMBC and NOESY experiments. It showed potent antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

10 pages, 270 KiB  
Article
New Resveratrol Oligomer Derivatives from the Roots of Rheum lhasaense
by Wen-Bo Liu, Lin Hu, Qun Hu, Na-Na Chen, Qing-Song Yang and Fang-Fang Wang
Molecules 2013, 18(6), 7093-7102; https://doi.org/10.3390/molecules18067093 - 18 Jun 2013
Cited by 25 | Viewed by 6888
Abstract
Two new resveratrol trimer derivatives, named rheumlhasol A (1) and rheumlhasol B (2) were isolated from the methanolic extract of roots of Rheum lhasaense A. J. Li et P. K. Hsiao together with four known resveratrol dimer derivatives, including [...] Read more.
Two new resveratrol trimer derivatives, named rheumlhasol A (1) and rheumlhasol B (2) were isolated from the methanolic extract of roots of Rheum lhasaense A. J. Li et P. K. Hsiao together with four known resveratrol dimer derivatives, including maximol A (3), gnetin C (4), e-viniferin (5), and pallidol (6). The structures were determined by combined spectroscopic methods and by comparison of their spectral data with those reported in the literature. All the compounds isolated from R. lhasaense were tested for their ability to scavenge1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Full article
Show Figures

Figure 1

Back to TopTop