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Abstract: Paeonia species are well-known ornamental plants that are used in traditional Chinese
medicines. The seeds of these species are rich in stilbenes, which have wide-ranging health-promoting
effects. In particular, resveratrol, which is a common stilbene, is widely known for its anticancer
properties. Suffruticosol C, which is a trimer of resveratrol, is the most dominant stilbene found
in peony seeds. However, it is not clear whether suffruticosol C has cancer regulating properties.
Therefore, in the present study, we aimed to determine the effect of suffruticosol C against various
cancer cell lines. Our findings showed that suffruticosol C induces autophagy and cell cycle arrest
instead of cell apoptosis and ferroptosis. Mechanistically, suffruticosol C regulates autophagy and
cell cycle via inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Thus,
our findings imply that suffruticosol C regulates cancer cell viability by inducing autophagy and cell
cycle arrest via the inhibition of mTORC1 signaling.
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1. Introduction

Paeonia species, which are commonly known as ornamental plants, are also used
in traditional Chinese medicine. In the last two decades, studies have shown that the
seeds of peonies are abundant in functional fatty acids, includingα-linolenic acid, linoleic
acid, and oleic acid, which has various health-promoting benefits [1–3]. Lately, there has
been increasing interest in the use of peony seed oil as a health supplement, and the
Chinese Ministry of Health even approved it as a novel food. In addition to nutritional
unsaturated fatty acids, there are other bioactive constituents in peony seeds that have at-
tracted the attention of researchers. Recently, peony seeds were found to be rich in stilbene
compounds. Trans-resveratrol (trans-3,4′,5-trihydroxistilbene), the most common stilbene
compound, has wide-ranging health-promoting properties, including antioxidant, anti-
cancer, anti-atherosclerotic, anti-diabetic, estrogenic, anti-osteoporosis, anti-inflammatory,
neuroprotective, cardioprotective, anti-aging, and anti-obesity effects [4,5]. Up until now,
over 20 stilbenes have been reported in the species of genus, Paeonia, most of which are
glycosylated, methylated, and oligomeric forms of resveratrol [6–9]. Suffruticosol C, a
trimer of resveratrol, is one of the most dominant stilbenes in peony seeds that may have
potential health benefits, and this needs to be explored further [10,11].

It has been reported that resveratrol has antitumor potential in various human tumor
models [12], and its antitumor effect is linked with its ability to regulate autophagy and
the cell cycle progression of cancer cells. The cellular process known as autophagy, which
removes damaged organelles or cellular components, draws our interest due to its strong
correlation with many diseases, including cancer [13,14]. In the context of autophagy,
the mechanistic target of rapamycin complex 1 (mTORC1) received substantial research
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interest [15]. In detail, some early autophagy associated proteins, such as autophagy-related
protein 13 (ATG13) and unc-51-like kinase 1 (ULK1), can be phosphorylated and inactivated
by mTORC1 [16–19]. Furthermore, two transcription factors, EB and E3 (TFEB and TFE3),
are vital elements regulating the lysosome biogenesis-related genes and the autophagosome
initiation [20]. Cancer is a group of diseases of uncontrolled cell division, which is tightly
regulated by a series of multiple cell cycle regulators [21]. The cell cycle is divided into
four sequential phases. The most important phases are the S phase, the period of DNA
replication, and the M phase, the period when the cell divides into two daughter cells. The
gap between the S and M phases is called the G2 phase. The G1 phase is the onset of mitosis,
the period in which cells sense positive and negative signals from the growth signaling
network. Cells in the G0 phase are only temporarily out of the cell cycle. Once instructed
by signals, cells in the G0 phase will quickly return to the cell cycle [21]. The progression
of the cell cycle in cancer cells is primarily regulated by three protein families: cyclins,
cyclin-dependent kinases (CDKs), and CDK inhibitors (CDKIs) [22]. However, changes can
occur in cells including cyclin amplification, CDK mutation, and the inactivation of tumor
suppressor genes, leading to aberrant CDK activities, the amplification of growth signals,
and the loss of control over cellular growth [23]. Recently, evidence suggested that the
health-promoting properties of resveratrol are attributed to its ability to induce autophagy
and cell growth arrest [12,24]. Although there is evidence linking resveratrol directly with
autophagy and the cell’s cycle, it remains unclear whether suffruticosol C has an antitumor
effect or whether it has a regulatory effect on cancer cell viability. Therefore, in the present
study, we intend to determine the anti-cancer effects and mechanisms of suffruticosol
C in various cancer cell lines. With regard to the molecular mechanisms, we tried to
investigate whether the effect of suffruticosol C is regulated via mTORC1. This is because
mTORC1 is a key regulator of autophagy and cell cycle progression [20,25,26], and some
studies have reported that resveratrol may negatively regulate mTORC1 activation [27–30].
However, the biological function of suffruticosol C against cancer is still unclear, let alone
the underlying mechanisms.

In the current study, we propose determining the anti-cancer effects and cell death
mechanisms of suffruticosol C in various cancer cell lines. We found a dose-dependent
manner of cell death when there was exposure to suffruticosol C. Furthermore, the treatment
of cells with suffruticosol C induced autophagy and cell cycle arrest, suggesting that
autophagy and the cell’s growth arrest was involved in suffruticosol C-associated anti-
cancer effects. Finally, we show that suffruticosol C triggers autophagy and cell growth
arrest by inhibiting mTORC1 signaling.

2. Materials and Methods
2.1. Reagents

Suffruticosol C and resveratrol were isolated from the seeds of the tree peony. The
concentration was chosen based on previous studies [27,28,31,32] and considering that
suffruticosol C is a trimer of resveratrol. The secondary antibodies and Erastin (E7781)
were provided by Sigma-Aldrich (St. Louis, MO, USA). RSL3 (1219810-16-8) was obtained
from Cayman (Ann Arbor, MI, USA), and Bafilomycin A1 (S1413) was obtained from
Selleck Chemicals (Houston, TX, USA). PBS and trypsin were obtained from HyClone
(Logan, UT, USA). The RPMI 1640 and DMEM media, streptomycin, β-mercaptoethanol,
penicillin, and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY,
USA). The TB Green qRT-PCR kit (RR820A), PrimeScript™ RT reagent Kit (RR047A) and
TRIzol were provided by Takara (Dalian, China). The primary antibodies used are listed as
follows: Bcl-2 (12789-1-AP), Bax (50599-2-Ig), LC3II (18725-1-AP), p62 (18420-1-AP), and
Actin (20536-1-AP) were purchased from Proteintech (Rosemont, IL, USA); S6 (2217S), p-S6
(4858S), AKT (9272), pT389-S6K (9234S/L), S6K (9202S), and Cleaved Caspase-3 (D175)
were purchased from Cell Signaling Technology (Danvers, MA, USA).
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2.2. Cell Culture

HT29, H1299, Caco2, HepG2, HCT116, and PC3 cells were purchased from National
Science and Technology Infrastructure (NSTI, Shanghai, China). H1299 and HT29 were
cultured in the RPMI 1640 medium with 10% FBS, while Caco2, HCT116, and HepG2 were
cultured in the DMEM medium with 10% FBS following the ATCC guidelines.

2.3. Quantitative RT-PCR Analysis

TRIzol reagents were used to isolate total RNA. RNase-free Dnase was added to
remove DNA. The RNA was then reverse transcribed. Sequentially, qRT-PCR analysis
was conducted in technical triplicate in a Roche LightCycler®96 qRT-PCR system (Roche,
Penzberg, Germany) to determine the relative levels of target mRNA [33]. The primers of
the target genes used are listed in Table 1.

Table 1. Primer sequences for qRT-PCR.

Gene Forward Primer Sequence (5′→3′) Reverse Primer Sequence (5′→3′)

CTSA CAGGCTTTGGTCTTCTCTCCA TCACGCATTCCAGGTCTTTG
TPP1 GATCCCAGCTCTCCTCAATACG GCCATTTTTGCACCGTGTG
SGSH TGACCGGCCTTTCTTCCTCTA GCTCTCTCCGTTGCCAAACTT
CSTB AGTGGAGAATGGCACACCCTA AAGAAGCCATTGTCACCCCA
GLA AGCCAGATTCCTGCATCAGTG ATAACCTGCATCCTTCCAGCC
SCPEP1 GATCTCCCCTGTTGATTCGGT AGCCCCTTATTTACGGCATTC
CTSF ACAGAGGAGGAGTTCCGCACTA GCTTGCTTCATCTTGTTGCCA
ATP6V1H GGAAGTGTCAGATGATCCCCA CCGTTTGCCTCGTGGATAAT
GAPDH CAACGAATTTGGCTACAGCA AGGGGTCTACATGGCAACTG

2.4. EdU Assay

The EdU (5-ethynyl-2-deoxyuridine) assay protocol was conducted as outlined in a
previous study [34]. The Click-iT EdU Cell Proliferation Kit (C10337) was obtained from
Thermo Fisher Scientific (Waltham, MA, USA). Cells were seeded in 96-well plates at a
density of 1 × 104 cells/well. When cells reached 60−70% confluence, cells were given
either the 20 µM suffruticosol C treatment or not. Next, 10µM EdU was added, and cells
were added in each well for 2 h. After incubation, the media were removed and 80 µL of
3.7% formaldehyde was added (3.7% in PBS solution) in PBS for 15 min and maintained
at room temperature for 15 min. The fixative was removed and the cells were washed
twice with 80 µL of 3% BSA (3% in PBS solution). The wash solution was removed, and
Triton X-100 (0.3% in PBS solution) was added for 20 min. Sequentially, the endogenous
peroxidase’s activity was blocked before EdU detection.

2.5. Cell Cycle Analysis

The cell cycle analysis protocol was conducted as outlined in a previous study [35].
Cells were plated in a 6-well plate at a density of 1 × 106 cells/well. When cells reached
60−70% confluence, cold PBS was used to wash the collected cells that were treated with
or without 20 µM suffruticosol C for 24 h. The cells were then fixed in 75% ethyl alcohol
and kept at 4 ◦C for 24 h. Sequentially, a Cell Cycle and Apoptosis Analysis Kit (C6031,
BI-OSCIENCE, Shanghai, China) was used to stain the fixed cells. Cell cycle analyses were
performed on a flow cytometry (BD FACSAriaTM III, San Jose, CA, USA).

2.6. Ferroptosis Analysis

Ferroptosis analyses were performed by monitoring the viability of cells (50−60%
confluence) that were treated with various concentrations of suffruticosol C. To reduce the
impact of additional forms of programmed cell death, cells were treated with the ferroptosis
initiator, RSL3, or erastin coupled with suffruticosol C in a brief period of time.
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2.7. Autophagy Analysis

An autophagy assay was conducted according to the previous description [36]. Cells
were plated in a 24-well plate at a density of 3 × 105 cells/well and reached 70−80%
confluence before suffruticosol C treatment. Briefly, the GFP-LC3 plasmid was used to
transfect the H1299 cells, which were then treated with 20 µM of suffruticosol C for 24 h.
Paraformaldehyde (4%) was used to fix the cells, and it was maintained for 15 min. Cell
permeabilization was performed using Triton X-100 (0.5% in PBS solution) and kept for
another 15 min. Sequentially, it was blocked at room temperature using 1% BSA for 1 h
and then stained with DAPI. Finally, the GFP-LC3-containing puncta were measured using
a laser scanning confocal microscope (Leica, Wetzlar, Germany).

2.8. Cell Apoptosis

The cells were plated in a 6-well plate at a density of 1 × 106 cells/well. When cells
reached 70−80% confluence, 20 µM suffruticosol C was given to HT29 and HCT116 cells for
a 24 h incubation. The cells were then stained using the YF®488-Annexin V/PI apoptosis
Detection Kit, after which flow cytometry (BD FACSAriaTM III, San Jose, CA, USA) was
employed to measure apoptotic cells.

2.9. Cell Viability Assay

The cells were seeded in 96-well plates at a density of 1 × 104 cells/well. The cells are
on a complete medium containing different concentrations of resveratrol or suffruticosol C
for 72 h. To replace the original medium, 100 µL of fresh medium containing 10% CCK-8
reagent was given and kept for a 3 h incubation at a temperature of 37 ◦C. Finally, the
absorbance of each well was read at 450 nm.

2.10. Western-Blotting (WB)

The Western-blotting protocol was the same as outlined in our previous study [37].
Briefly, cells were plated in a 24-well plate at a density of 3 × 105 cells/well and reached
70−80% confluence before suffruticosol C treatment. After different concentrations of
suffruticosol C treatments for 24 h, the collected cells were washed with PBS and sus-
pended in a Radio Immune Precipitation Assay (RIPA) buffer on ice for 30 min. Proteins
were separated using SDS-PAGE and transferred onto nitrocellulose (NC) membranes
(0.45 µM, GE). The NC membrane was exposed to the primary antibody for an overnight
incubation, followed by three PBS washes. Sequentially, the membranes were then exposed
to a horseradish peroxidase (HRP)-conjugated secondary antibody for an incubation of
2 h at room temperature and washed with PBST three times. Finally, the proteins were
detected and quantified using the Imaging System (Bio-Rad, Hercules, CA, USA) and
ImageJ software (National Institutes of Health, Silver Springs, MD, USA), respectively.

2.11. Statistical Analysis

GraphPad Prism 9.0 software (GraphPad Software, La Jolla, CA, USA) was conducted
for data analysis. Statistical analyses, including the unpaired two-tailed Student’s t-test
and a one-way or two-way analysis of variance (ANOVA), were conducted with a p value
at the 0.05 level. p values less than 0.05, 0.01, and 0.001 are marked with *, **, and *** in the
graphed data, respectively.

3. Results
3.1. Effect of Suffruticosol C on the Growth of Various Cancer Cells

Since resveratrol was established as an anti-cancer drug, it was used as a comparator
group. The results showed that resveratrol suppressed the cell viability in the colon cancer
cell lines HCT116 and HT29 (Figure 1A,B), and the cell viability was reduced by more
than 50% when resveratrol’s concentration reached 100 µM (Figure 1A). To investigate
whether suffruticosol C had any effect on cellular functions, we evaluated the growth rate
of suffruticosol C-treated cells belonging to the colon cancer cell line HCT116 (Figure 1C).



Nutrients 2022, 14, 5000 5 of 15

The results of our cell proliferation assay demonstrated that suffruticosol C significantly
inhibited HCT116 cell growth, and the cell viability was reduced by more than 50% when
the suffruticosol C concentration reached 20 µM (Figure 1C). Additionally, we investigated
the cell viability of other cancer cells treated by suffruticosol C, such as colon cancer cells
(HT29 and Caco2), lung cancer cells (H1299), prostate cancer cells (PC3), and primary hepa-
tocellular carcinoma cells (HepG2). The results confirmed that suffruticosol C remarkably
affected the cell viability of these cancer cell lines as well (Figure 1D–H). Thus, our findings
suggest that suffruticosol C is more potent than resveratrol in inhibiting the cell viability of
diverse types of cancer cells.
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Figure 1. Effect of suffruticosol C and resveratrol on the growth of various cancer cells. HCT116
(A) and HT29 (B) cells were treated with different concentrations of resveratrol for 72 h, and the
viability of cells was detected by CCK-8. HCT116 (C), HT29 (D), Caco2 (E), H1299 (F), PC3 (G), and
HepG2 (H) cells were treated with different concentrations of suffruticosol C for 72 h, and the viability
of cells was detected by CCK-8. All samples were normalized to cell number and conducted with
three independent replicates. Data were analyzed by one-way ANOVA (A–H) were expressed as
Mean ± SD (A–H). Different colors represent the different concentration of resveratrol or suffruticosol
C. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Ctr: normal control group.
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3.2. Apoptosis-Independent Inhibitory Property of Suffruticosol C on the Growth of Various
Cancer Cells

It is widely known that autophagy, apoptosis, and ferroptosis are major mechanisms
involved in cell viability. Therefore, the function of suffruticosol C on apoptosis in HT29
and HCT116 cells by FCAS was evaluated. After treatments with 20 µM suffruticosol C,
we did not observe an obvious function on the apoptosis of H1299 cells (Figure 2A,B).
To confirm that suffruticosol C did not affect the apoptosis of cancer cells, we further
investigated the levels of apoptotic proteins of the caspase family and the Bcl-2 family.
Caspase 3 is considered to be the most important caspase in the induction of apoptosis and
is, therefore, used as an apoptotic marker. Accordingly, the level of cleaved caspase 3 was
assessed in cancer cells after treatment with various concentrations of suffruticosol C. As
shown in Figure 2C,D, there was no detectable difference in apoptosis rate between the
control and suffruticosol C-treated Caco2 and H1299 cells. Moreover, suffruticosol C did
not have a significant effect on the anti-apoptotic protein Bcl-2 and pro-apoptotic protein
Bax in HT29 and HCT116 cells (Figure 2E,F).
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Figure 2. The apoptosis-independent inhibitory effect of suffruticosol C on the growth of various
cancer cells. HT29 (A) and HCT116 (B) cells were treated with suffruticosol C for 24 h, and apoptosis
was examined using FACS. Caco2 (C) and H1299 (D) cells were treated with suffruticosol C for 24 h,
and the level of cleaved caspase-3 was detected by WB. HT29 (E) and HCT116 (F) cells were treated
with suffruticosol C for 24 h, and the level of Bcl-2 and Bax were detected by WB.
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3.3. Ferroptosis-Independent Inhibitory Property of Suffruticosol C on the Growth of Various
Cancer Cells

Next, we investigated whether suffruticosol C affects sensitivity to ferroptosis initiated
by RSL3 or erastin in HT29 and H1299 cells. First, we measured the viability of HT29 cells
that had been treated for six hours with various concentrations of RSL3. The viability of
cells treated with RSL3 or erastin alone was not significantly different from that of cells
treated with the suffruticosol C and RSL3 or the suffruticosol C and erastin combination
(Figure 3A,B). Similar to these findings in HT29 cells, suffruticosol C also did not affect the
sensitivity of H1299 cells to RSL3/erastin-initiated ferroptosis (Figure 3C,D). These results
suggest that cancer cell death induced by suffruticosol C was not dependent on ferroptosis.
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Figure 3. Ferroptosis-independent inhibitory effect of suffruticosol C on the growth of various cancer
cells. (A,B). HT29 cells were treated with different concentrations of RSL3 (A) or erastin (B) for 24 h
in combination with indicated concentrations of suffruticosol C, and the viability of indicated cells
was examined using CCK-8. (C,D). H1299 cells were treated with different concentrations of RSL3
(C) or erastin (D) for 24 h in combination with indicated concentrations of suffruticosol C, and the
viability of indicated cells was examined using CCK-8. Data were analyzed by two-way ANOVA
(A–D) and the results were expressed as Mean ± SD (A–D).

3.4. Autophagy-Dependent Induction of Cell Death by Suffruticosol C

The treatment of cancer cells with suffruticosol C promoted autophagy, because an
increasing number of punctate GFP-LC3 foci were observed after bafilomycin A1 treat-
ment in HT29 and HCT116 cells (Figure 4A–D). Moreover, we investigated the autophagy
markers LC3II and p62. A sharp increasing level of LC3II and a sharp decreasing level of
p62 were observed in response to treatments with different concentrations of suffruticosol
C (Figure 4E–G). This indicates that suffruticosol C mainly affects cell viability through
its effects on autophagy. Therefore, we further investigated the function of suffruticosol
C in regulating the genes associated with lysosome biogenesis and the restoration of au-
tophagosome initiation. We found that the expression of TPP1, SGSH, SCPEP1, CSTB,
ATP6V1H, CTSA, CTSF, and GLA was significantly enhanced after 24 h treatments with
suffruticosol C (Figure 4H). This indicates that autophagy is essential for suffruticosol
C-initiated cell death.
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Figure 4. Autophagy-dependent induction of cell death by suffruticosol C. HT29 (A,B) and H1299
(C,D) cells were treated with suffruticosol C for 24 h, after which cell autophagy was analyzed by
examining GFP-LC3 puncta (A,C). Quantitative data for the GFP-LC3 puncta are presented (B,D).
Caco2 (E), H1299 (F), and PC3 (G) cells were treated with different concentrations of suffruticosol
C for 24 h, after which autophagy was analyzed by examining LC3II and P62 levels. (H). HT29
cells were treated with suffruticosol C for 24 h, and the expression of TPP1, SGSH, CSTB, SCPEP1,
ATR6V1H, GLA, GTSA, and CTSF was detected by qRT-PCR. Data were analyzed by unpaired two-
tailed Student’s t-test (B,D) or two-way ANOVA (H), and the results were expressed as Mean ± SEM
(B,D) or Mean ± SD (H). *, p < 0.05; **, p < 0.01; ***, p < 0.001.



Nutrients 2022, 14, 5000 9 of 15

3.5. Induction of Cell Death by Suffruticosol C via Cell Cycle Arrest

To determine the possible mechanism of suffruticosol C-induced cell growth inhibition
in cancer cells, we analyzed the function of suffruticosol C on cell cycle progression. HT29
and HCT116 cells were examined after suffruticosol C exposure with EdU, which is a
marker of cell division. Compared with the controls, we observed that the dividing cells
significantly decreased after exposure to suffruticosol C for 24 h (Figure 5A,B). To confirm
that suffruticosol C interrupted cell division, HepG2 and PC3 cells were treated with
suffruticosol C for 24 h, and flow cytometry was employed for analyzing the distribution
of cells across cell cycle phases. The results exhibited that the percentage of cells in the
G2/M phase increased after suffruticosol C treatments of four cancer cell lines: from 2.13%
to 30.4% in HepG2 cells (Figure 5C) and from 3.02% to 30.8% in PC3 cells (Figure 5D). This
change was accompanied by an increment in the proportion of suffruticosol C-treated cells
in the S phase: from 21.8% to 10.3% in HepG2 cells (Figure 5C) and from 33.5% to 12.8% in
PC3 cells (Figure 5D). Overall, these findings suggest that suffruticosol C inhibits cell cycle
progression by arresting cells in the G2/M phase.
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Figure 5. Induction of cell death by suffruticosol C via cell cycle arrest. HT29 (A) and H1299 (B) cells
were treated with suffruticosol C for 24 h, and the cell proliferation analysis was undertaken using an
EdU (5-ethynyl-2-deoxyuridine) assay. HepG2 (C) and PC3 (D) cells were treated with suffruticosol
C for 24 h, the cell cycle analysis using flow cytometry after staining with propidium iodide (PI).

3.6. Inhibition of mTORC1 Activation by Suffruticosol C

To investigate the potential regulatory function of suffruticosol C on mTORC1 acti-
vation, we treated H1299 cells with suffruticosol C for 24 h. pT389-S6K or S6, the well-
characterized phosphorylation sites of mTORC1, was monitored. We observed that sufru-
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ticosol C inhibited the activation of mTORC1 in a dose-dependent manner on activation
of mTORC1 inhibited as detected by the phosphorylation of S6K1 and S6 (Figure 6A), as
well as in Caco2, H1299, PC3, and HepG2 cells (Figure 6B–F). Based on these findings, we
speculated that mTORC1 is involved in suffruticosol C-induced cell death.
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Figure 6. Suffruticosol C inhibits mTORC1 activation. HT29 (A), H1299 (B), Caco2 (C), HCT116 (D),
PC3 (E), and HepG2 (F) cells were treated with different concentrations of suffruticosol C for 24 h,
and the level of pT389-S6K, p-S6, and the indicated protein were detected by WB.

3.7. Suffruticosol C-Induced Autophagy and Cell Proliferation via Inhibition of the
mTORC1 Pathway

To examine whether the function of suffruticosol C on autophagy occurs in an mTORC1-
dependent manner, rapamycin, an inhibitor of mTORC1, was used to treat the cells. The
results showed that the suffruticosol C treatment did not promote rapamycin-mediated
autophagy, as indicated by the presence of GFP-LC3II puncta (Figure 7A,B). Moreover, we
examined whether mTORC1 associated with the regulation of cell proliferation mediated
by suffruticosol C. Our EdU assay exhibited that rapamycin treatments entirely reversed
the effect of suffruticosol C on cell proliferation (Figure 7C). Based on all these findings,
we concluded that suffruticosol C induced cell autophagy and cell proliferation by the
negative regulation of mTORC1 activities.
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Figure 7. Suffruticosol C-induced autophagy and cell proliferation via inhibition of the mTORC1
pathway. HT29 cells were treated with rapamycin or in combination with suffruticosol C for 24 h,
after which autophagy was analyzed by examining GFP-LC3 puncta (A). Quantitative data for the
GFP-LC3 puncta are presented (B). (C). HT29 cells were treated with rapamycin or in combination
with suffruticosol C for 24 h, after which a cell proliferation analysis was undertaken using an EdU
assay. Data were analyzed by unpaired two-tailed Student’s t-test (B), and the results were expressed
as Mean ± SEM (B). ns, not significant.

4. Discussion

In this study, we determined that autophagy and the cell cycle were targeted by
suffruticosol C, which is proved by the fact that autophagy and cell cycle arrests are
effectively increased by suffruticosol C in various human cancer cells. With regard to
the underlying mechanism, we found that the effects of suffruticosol C are dependent on
mTORC1. Thus, our findings demonstrate that suffruticosol C has potential anti-cancer
effects.

Resveratrol is widely regarded as a promising natural anticancer agent because of its
remarkable inhibitory activity against cancer cells [38]. Considerable attention focused on
the development or identification of newly derived resveratrol to improve its bio-efficacy
and bioavailability [39]. Suffruticosol C is one of the most dominant stilbenes in peony
seeds [10,11]. In the present study, we investigated the bioactivity of peony-isolated suffru-
ticosol C, discovered the antitumor activity, including colon cancer cells (HT29, HCT116,
and Caco2), lung cancer cells (H1299), prostate cancer cells (PC3), primary hepatocellu-
lar carcinoma cells (HepG2), and dissected the underlying mechanism of suffruticosol
C against cancer. According to our results, we found that suffruticosol C has a better
inhibitory effect on cell viability than resveratrol at the same concentration. A large number
of studies suggested that resveratrol plays a crucial role in autophagy, cell cycle, ferroptosis,
and apoptosis [24,40–48]. However, in our study, we found that suffruticosol C, unlike
resveratrol, only has a specific regulatory effect on autophagy and the cell cycle, but it has
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no effect on apoptosis and ferroptosis. These findings provide the protentional utilization
of suffruticosol C in autophagy and cell-cycle-related cancer.

Existing reports have demonstrated that diseases, such as cancer, inflammation, and
neurodegenerative diseases, are closely associated with autophagy dysregulation [49]. At
the early stage of cancer formation, autophagy can eliminate cancer cells. Activated au-
tophagy, however, can shield tumor cells from injury by chemotherapy or radiation therapy
at the late stages of tumor formation, which results in therapy failure [50]. However, an
increasing number of studies have proved that activating excessive autophagy can lead
to the mass cell death of malignant tumors. Taking 6-bromo-5-trans-4-methoxy benzalde-
hyde as an example, it has a broad-spectrum effect on carcinoma cell death by inducing
autophagy [51]. It was demonstrated that T-oligos could remarkably promote LC3-ll levels
in malignant glioma cells and active autophagy by inhibiting mTOR and STAT3 signal-
ing pathways, and then lead to the autophagic death of tumor cells [52]. The anticancer
drug tamoxifen can upregulate the expression level of Beclin1 to induce autophagy [52].
Rapamycin, known as an autophagy inducer, has entered phase III of clinical trials [53].
Therefore, the application of autophagy inducers to stimulate excessive autophagy in tu-
mor cells may become a novel idea for future cancer prevention and treatment, and the
autophagy induction of suffruticosol C in a variety of malignant cell lines may exert its
anticancer activity.

The mTORC1 regulatory network has drawn attention for its important role in various
disorders [54]. Studies have shown that mTORC1 activation can be induced by various
amino acids, growth factors, and also glucose [54]. In addition, some studies reported that
resveratrol may also regulate mTORC1 activations [27–30]. Accordingly, in the current
study, we found that suffruticosol C can effectively regulate the activation of mTORC1. Our
data showed that suffruticosol C treatments could inhibit the phosphorylation levels of
S6K1. Many environmental cues, including amino acids, growth factors, cholesterol, lipids,
and glucose can influence the activation of mTORC1 [55]. However, in our study, we only
examined the effect of suffruticosol C on the baseline activation of mTORC1. We did not
investigate which signal-mediated mTORC1 pathway (glucose, growth factors, cholesterol,
lipid, or amino acid) is specifically inhibited by suffruticosol C, so this requires further
investigation.

Our findings suggest that suffruticosol C-mediated induction autophagy and cell cycle
arrest occurred via the inhibition of the mTORC1 pathway, as the function of suffruticosol C
on autophagy and cell cycle was completely abrogated in rapamycin-treated cells. Although
our results demonstrated that suffruticosol C can regulate cell cycle progression via its effect
on mTORC1 activation, we did not investigate the details of this molecular mechanism.
Published works have suggested that the inhibition of mTORC1 mainly leads to cell cycle
arrest in the G1/S phase [25,26], while in our work, we observed that suffruticosol C causes
cell cycle arrest mainly in the G2/M and S phases. Numerous studies have shown that 14-3-
3σ, cdc25C, and microRNA mir34a are essential in arresting cells in the G2/M phase [56–59],
so future studies could explore whether suffruticosol C results in cell growth arrest by
controlling the activity or expression of these factors. Accordingly, in future studies, we
plan to confirm the present findings via in vivo experiments using mouse models, including
xenograft tumors. As mTORC1 plays a critical role in many serious diseases, particularly
cancer, our findings provide an insightful understanding of the pathogenesis and progress
of various diseases.

5. Conclusions

In summary, we used a variety of biochemical and cell-based methods to demonstrate
the effects of suffruticosol C on cancer cell viability, and our results demonstrate that it
affects autophagy and the cell cycle’s progression in cancer cells via its regulatory effects
on the mTORC1 pathway (Graphical abstract). The suffruticosol C-mediated mTORC1
inactivation mechanism elucidated in this study may be useful for identifying therapeutic
targets for cancer treatments in the future.
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