Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,603)

Search Parameters:
Keywords = response aberration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2179 KB  
Review
Interferons in Autoimmunity: From Loss of Tolerance to Chronic Inflammation
by Grigore Mihaescu, Gratiela Gradisteanu Pircalabioru, Claudiu Natanael Roznovan, Lia-Mara Ditu, Mihaela Maria Comanici and Octavian Savu
Biomedicines 2025, 13(10), 2472; https://doi.org/10.3390/biomedicines13102472 (registering DOI) - 11 Oct 2025
Abstract
Interferons (IFNs) are key cytokines at the intersection of innate and adaptive immunity. While their antiviral and antitumor roles are well recognized, emerging evidence implicates IFNs—particularly types I, II, and III—in the initiation and progression of autoimmune diseases (ADs). This review synthesizes current [...] Read more.
Interferons (IFNs) are key cytokines at the intersection of innate and adaptive immunity. While their antiviral and antitumor roles are well recognized, emerging evidence implicates IFNs—particularly types I, II, and III—in the initiation and progression of autoimmune diseases (ADs). This review synthesizes current data on IFN biology, their immunoregulatory and pathogenic mechanisms, and their contributions to distinct AD phenotypes. We conducted a comprehensive review of peer-reviewed literature on IFNs and autoimmune diseases, focusing on publications indexed in PubMed and Scopus. Studies on molecular pathways, immune cell interactions, disease-specific IFN signatures, and clinical correlations were included. Data were extracted and thematically organized by IFN type, signaling pathway, and disease context, with emphasis on rheumatic and systemic autoimmune disorders. Across systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, systemic sclerosis, idiopathic inflammatory myopathies, multiple sclerosis, type 1 diabetes, psoriasis, and inflammatory bowel diseases, IFNs were consistently associated with aberrant activation of pattern recognition receptors, sustained expression of interferon-stimulated genes (ISGs), and dysregulated T cell and B cell responses. Type I IFNs often preceded clinical onset, suggesting a triggering role, whereas type II and III IFNs modulated disease course and severity. Notably, IFNs exhibited dual immunostimulatory and immunosuppressive effects, contingent on tissue context, cytokine milieu, and disease stage. IFNs are central mediators in autoimmune pathogenesis, functioning as both initiators and amplifiers of chronic inflammation. Deciphering the context-dependent effects of IFN signaling may inform targeted therapeutic strategies and advance precision immunomodulation in autoimmune diseases. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
20 pages, 1203 KB  
Review
Central Roles of Glucosylceramide in Driving Cancer Pathogenesis
by Xueheng Zhao and Manoj Kumar Pandey
Int. J. Mol. Sci. 2025, 26(20), 9879; https://doi.org/10.3390/ijms26209879 - 10 Oct 2025
Abstract
Glucosylceramide (GlcCer), a central glycosphingolipid derived from ceramide, is increasingly recognized as a bioactive lipid that intersects with key metabolic, inflammatory, and oncogenic pathways. While its dysregulation has long been associated with lysosomal storage disorders such as Gaucher disease (GD), growing evidence implicates [...] Read more.
Glucosylceramide (GlcCer), a central glycosphingolipid derived from ceramide, is increasingly recognized as a bioactive lipid that intersects with key metabolic, inflammatory, and oncogenic pathways. While its dysregulation has long been associated with lysosomal storage disorders such as Gaucher disease (GD), growing evidence implicates GlcCer in cancer initiation and progression, particularly within tumor-predisposing conditions. GlcCer modulates membrane microdomains, intracellular trafficking, and cell signaling, counteracting ceramide-induced apoptosis and promoting cellular survival. In cancer, aberrant upregulation of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme responsible for GlcCer synthesis, drives tumor growth, metastasis, and multidrug resistance through activation of pathways such as phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), canonical Wnt pathway (Wnt/β-catenin), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Specific GlcCer species (e.g., C16:0, C18:0, C24:1) display tissue-dependent functions, adding structural specificity to their oncogenic potential. Moreover, emerging links between GlcCer metabolism and chronic inflammation, oxidative stress, and altered glucose utilization highlight its role as a metabolic node bridging inherited metabolic disorders and malignancy. This review integrates recent advances in GlcCer biology, emphasizing its roles in tumor-predisposing diseases and exploring its potential as a biomarker and therapeutic target in oncology. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 1800 KB  
Review
Genomic, Epigenomic, and Immuno-Genomic Regulations of Vitamin D Supplementation in Multiple Sclerosis: A Literature Review and In Silico Meta-Analysis
by Preetam Modak, Pritha Bhattacharjee and Krishnendu Ghosh
DNA 2025, 5(4), 48; https://doi.org/10.3390/dna5040048 (registering DOI) - 10 Oct 2025
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disorder characterized by progressive demyelination and axonal degeneration within the central nervous system, driven by complex genomic and epigenomic dysregulation. Its pathogenesis involves aberrant DNA methylation patterns at CpG islands of numbers of genes like [...] Read more.
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disorder characterized by progressive demyelination and axonal degeneration within the central nervous system, driven by complex genomic and epigenomic dysregulation. Its pathogenesis involves aberrant DNA methylation patterns at CpG islands of numbers of genes like OLIG1 and OLIG2 disrupting protein expression at myelin with compromised oligodendrocyte differentiation. Furthermore, histone modifications, particularly H3K4me3 and H3K27ac, alter the promoter regions of genes responsible for myelination, affecting myelin synthesis. MS exhibits chromosomal instability and copy number variations in immune-regulatory gene loci, contributing to the elevated expression of genes for pro-inflammatory cytokines (TNF-α, IL-6) and reductions in anti-inflammatory molecules (IL-10, TGF-β1). Vitamin D deficiency correlates with compromised immune regulation through hypermethylation and reduced chromatin accessibility of vitamin D receptor (VDR) dysfunction and is reported to be associated with dopaminergic neuronal loss. Vitamin D supplementation demonstrates therapeutic potential through binding with VDR, which facilitates nuclear translocation and subsequent transcriptional activation of target genes via vitamin D response elements (VDREs), resulting in suppression of NF-κB signalling, enhancement of regulatory T-cell (Treg) responses due to upregulation of specific genes like FOXP3, downregulation of pro-inflammatory pathways, and potential restoration of the chromatin accessibility of oligodendrocyte-specific gene promoters, which normalizes oligodendrocyte activity. Identification of differentially methylated regions (DMRs) and differentially expressed genes (DEGs) that are in proximity to VDR-mediated gene regulation supports vitamin D supplementation as a promising, economically viable, and sustainable therapeutic strategy for MS. This systematic review integrates clinical evidence and eventual bioinformatical meta-analyses that reference transcriptome and methylome profiling and identify prospective molecular targets that represent potential genetic and epigenetic biomarkers for personalized therapeutic intervention. Full article
Show Figures

Figure 1

17 pages, 5472 KB  
Article
An Automated Approach for Calibrating Gafchromic EBT3 Films and Mapping 3D Doses in HDR Brachytherapy
by Labinot Kastrati, Burim Uka, Polikron Dhoqina, Gezim Hodolli, Sehad Kadiri, Behar Raci, Faton Sermaxhaj, Kjani Guri and Hekuran Sejdiu
Appl. Sci. 2025, 15(19), 10833; https://doi.org/10.3390/app151910833 - 9 Oct 2025
Viewed by 86
Abstract
The accurate calibration of radiochromic films is critical for high dose rate (HDR) brachytherapy dosimetry. Conventional workflows frequently rely on manually determined regions of interest (ROIs), which might increase operator variability. In this investigation, Gafchromic EBT3 films were irradiated under clinical settings at [...] Read more.
The accurate calibration of radiochromic films is critical for high dose rate (HDR) brachytherapy dosimetry. Conventional workflows frequently rely on manually determined regions of interest (ROIs), which might increase operator variability. In this investigation, Gafchromic EBT3 films were irradiated under clinical settings at nominal doses of 0–10 Gy and evaluated using a MATLAB (R2024b)-based tool that allows for both manual and automated ROI selection. The calibration curves were modeled with a second-order polynomial and rational model, and performance was assessed using statistical measures. The study found that the rational model fits better than the polynomial model. Additionally, the automatic ROI approach outperformed the manual method in both models, resulting in higher calibration accuracy and reproducibility (R2 = 0.999, RMSE = 0.118 Gy, MAE = 0.103 Gy vs. R2 = 0.986, RMSE = 0.448 Gy, MAE = 0.388 Gy). Although manual ROI occasionally produced greater dose–response slopes at higher doses, it was more susceptible to operator bias and film non-uniformity. In contrast, automatic ROI reduced variability by consistently picking homogeneous sections, resulting in steady curve fitting across the entire dose range. Furthermore, a companion module transformed calibrated films into 2D false-color maps and 3D dosage surfaces, allowing for visual assessment of dose uniformity, detection of scanner-related aberrations, and quantitative verification for quality assurance. These findings demonstrate that automated ROI selection provides a more stable and reproducible foundation for film calibration in HDR brachytherapy, minimizing operator dependency while facilitating routine clinical quality assurance. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 1799 KB  
Review
Mechanotransduction-Epigenetic Coupling in Pulmonary Regeneration: Multifunctional Bioscaffolds as Emerging Tools
by Jing Wang and Anmin Xu
Pharmaceuticals 2025, 18(10), 1487; https://doi.org/10.3390/ph18101487 - 2 Oct 2025
Viewed by 275
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present [...] Read more.
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present a promising therapeutic strategy through targeted modulation of critical cellular processes, including proliferation, migration, and differentiation. This review synthesizes recent advances in scaffold-based interventions for PF, with a focus on their dual mechano-epigenetic regulatory functions. We delineate how scaffold properties (elastic modulus, stiffness gradients, dynamic mechanical cues) direct cell fate decisions via mechanotransduction pathways, exemplified by focal adhesion–cytoskeleton coupling. Critically, we highlight how pathological mechanical inputs establish and perpetuate self-reinforcing epigenetic barriers to regeneration through aberrant chromatin states. Furthermore, we examine scaffolds as platforms for precision epigenetic drug delivery, particularly controlled release of inhibitors targeting DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) to disrupt this mechano-reinforced barrier. Evidence from PF murine models and ex vivo lung slice cultures demonstrate scaffold-mediated remodeling of the fibrotic niche, with key studies reporting substantial reductions in collagen deposition and significant increases in alveolar epithelial cell markers following intervention. These quantitative outcomes highlight enhanced alveolar epithelial plasticity and upregulating antifibrotic gene networks. Emerging integration of stimuli-responsive biomaterials, CRISPR/dCas9-based epigenetic editors, and AI-driven design to enhance scaffold functionality is discussed. Collectively, multifunctional bioscaffolds hold significant potential for clinical translation by uniquely co-targeting mechanotransduction and epigenetic reprogramming. Future work will need to resolve persistent challenges, including the erasure of pathological mechanical memory and precise spatiotemporal control of epigenetic modifiers in vivo, to unlock their full therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 1747 KB  
Review
Targeting NLRP10 in Atopic Dermatitis: An Emerging Strategy to Modulate Epidermal Cell Death and Barrier Function
by Yi Zhou
Int. J. Mol. Sci. 2025, 26(19), 9623; https://doi.org/10.3390/ijms26199623 - 2 Oct 2025
Viewed by 342
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, characterized by pruritic and eczematous lesions. Skin barrier dysfunction and aberrant inflammatory responses are hallmark features of AD. Recent genome-wide association studies have implicated NLRP10, a unique member of the NOD-like receptors [...] Read more.
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, characterized by pruritic and eczematous lesions. Skin barrier dysfunction and aberrant inflammatory responses are hallmark features of AD. Recent genome-wide association studies have implicated NLRP10, a unique member of the NOD-like receptors (NLRs) lacking a leucine-rich repeat (LRR) domain, in AD susceptibility. Unlike other NLRs, the physiological role of NLRP10 in skin remains incompletely understood. Emerging evidence shows that NLRP10 regulates keratinocyte survival and differentiation, acts as a molecular sensor for mitochondrial damage, enhances anti-microbial response and contributes to skin barrier function. This review summarizes current insights into NLRP10′s functions in skin homeostasis, its interplay with cell death pathways, and its role in maintaining skin barrier function. Furthermore, therapeutic opportunities to target NLRP10 as a novel strategy for modulating epidermal cell death and restoring barrier function in AD are highlighted. Full article
(This article belongs to the Special Issue Advanced Research of Skin Inflammation and Related Diseases)
Show Figures

Figure 1

20 pages, 1008 KB  
Review
Transcription, Maturation and Degradation of Mitochondrial RNA: Implications for Innate Immune Response
by Chaojun Yan, Jianglong Yu, Hao Lyu, Shuai Xiao, Dong Guo, Qi Zhang, Rui Zhang, Jingfeng Tang, Zhiyin Song and Cefan Zhou
Biomolecules 2025, 15(10), 1379; https://doi.org/10.3390/biom15101379 - 28 Sep 2025
Viewed by 267
Abstract
Mitochondria are crucial for a wide range of cellular processes. One of the most important is innate immunity regulation. Apart from functioning as a signaling hub in immune reactions, mitochondrial nucleic acids can themselves act as damage-associated molecular patterns (DAMPs) to participate in [...] Read more.
Mitochondria are crucial for a wide range of cellular processes. One of the most important is innate immunity regulation. Apart from functioning as a signaling hub in immune reactions, mitochondrial nucleic acids can themselves act as damage-associated molecular patterns (DAMPs) to participate in immune processes directly. This review synthesizes the current understanding of mitochondrial RNA (mtRNA) biology and its link to immune activation through aberrant accumulation. We focus on its origin through bidirectional mitochondrial transcription and metabolism, encompassing maturation (cleavage, polyadenylation, modification) and degradation. Dysregulation of mtRNA metabolism leads to mt-dsRNA (mitochondrial double-stranded RNA) accumulation, which escapes mitochondria via specific channels into the cytosol and serves as DAMPs to trigger an immune response. We discuss the critical roles of key regulatory factors, including PNPT1 (PNPase, Polyribonucleotide Nucleotidyltrans ferase 1), in controlling mt-dsRNA levels and preventing inappropriate immune activation. Finally, we review the implications of mt-dsRNA-driven inflammation in human diseases, including autoimmune disorders, cellular senescence, and viral infection pathologies, highlighting unresolved questions regarding mt-dsRNA release mechanisms. Full article
(This article belongs to the Special Issue Mitochondria as a Target for Tissue Repair and Regeneration)
Show Figures

Figure 1

24 pages, 4403 KB  
Article
Integration of Deep Learning with Molecular Docking and Molecular Dynamics Simulation for Novel TNF-α-Converting Enzyme Inhibitors
by Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Jin-Hee Han, Won Sun Park, Jongseon Choe and Wanjoo Chun
Future Pharmacol. 2025, 5(4), 55; https://doi.org/10.3390/futurepharmacol5040055 - 23 Sep 2025
Viewed by 534
Abstract
Introduction: Tumor necrosis factor-α (TNF-α) is a key regulator of inflammatory responses, and its biological activity is dependent on proteolytic processing by the tumor necrosis factor-α-converting enzyme (TACE), also known as ADAM17. Aberrant TACE activity has been associated with various inflammatory and immune-mediated [...] Read more.
Introduction: Tumor necrosis factor-α (TNF-α) is a key regulator of inflammatory responses, and its biological activity is dependent on proteolytic processing by the tumor necrosis factor-α-converting enzyme (TACE), also known as ADAM17. Aberrant TACE activity has been associated with various inflammatory and immune-mediated diseases, positioning it as a compelling target for therapeutic intervention. Methods: While our previous study explored TACE inhibition via repositioned FDA-approved drugs, the present study aims to examine previously untested chemical scaffolds from the Enamine compound library, seeking first-in-class TACE inhibitors. We employed an integrated in silico workflow that combined ligand-based virtual screening using a graph convolutional network (GCN) model trained on known TACE inhibitors with structure-based methodologies, including molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. Results: Several enamine-derived compounds demonstrated strong predicted inhibitory potential, favorable docking scores, and stable interactions with the TACE active site. Among them, Z1459964184, Z2242870510, and Z1450394746 emerged as lead candidates based on their highly stable 300 ns RMSD and robust hydrogen bonding profile as compared to the reference compound BMS-561392. Conclusions: This study highlights the utilization of deep learning-driven screening combined with extended 300 ns molecular simulations to identify novel small-molecule scaffolds for TACE inhibition and supports further exploration of these hits as potential anti-inflammatory therapeutics. Full article
Show Figures

Graphical abstract

16 pages, 1915 KB  
Article
Effects of Mn Deficiency on Hepatic Oxidative Stress, Lipid Metabolism, Inflammatory Response, and Transcriptomic Profile in Mice
by Yaodong Hu, Shi Tang, Silu Wang, Caiyun Sun, Binlong Chen, Binjian Cai and Heng Yin
Nutrients 2025, 17(19), 3030; https://doi.org/10.3390/nu17193030 - 23 Sep 2025
Viewed by 342
Abstract
Introduction: Mn is a trace element essential for growth and development in organisms, and adequate Mn levels are crucial for maintaining normal liver function. This study aimed to investigate the effects of Mn deficiency on the liver and elucidate the underlying mechanisms using [...] Read more.
Introduction: Mn is a trace element essential for growth and development in organisms, and adequate Mn levels are crucial for maintaining normal liver function. This study aimed to investigate the effects of Mn deficiency on the liver and elucidate the underlying mechanisms using transcriptomics. Methods: Weanling mice were fed a Mn-deficient diet, and Mn chloride (MnCl2) was administered intraperitoneally to correct the deficiency. Liver pathological changes were evaluated through histological examination. Liver function and key lipid metabolism markers were assessed using biochemical assays, while hepatic oxidative stress levels were measured via flow cytometry and biochemical kits. Alterations in inflammatory factors were detected using ELISA and qPCR. The mechanisms underlying Mn’s effects on liver function were further explored through Western blot, qPCR, and transcriptome sequencing. Results: Mn deficiency impaired liver morphology and structure. Serum levels of ALT, AST, and ALP were significantly elevated, while ALB decreased, confirming hepatic dysfunction. This dysfunction led to oxidative stress, characterized by increased hepatic ROS and MDA levels, alongside reduced Mn-SOD, GSH-Px, and T-AOC activities. Additionally, Mn deficiency elevated serum TG, TC, and LDL-C levels, indicating abnormal lipid metabolism. Hepatic pro-inflammatory factors (IL-6, IL-1β, and TNF-α) were significantly upregulated. Transcriptomic analysis revealed distinct gene expression patterns under different Mn conditions, with KEGG pathway analysis identifying the PPAR signaling pathway as a key regulatory target. Conclusions: Our findings suggest a potential pathogenic cascade in which manganese deficiency may initially induce hepatic oxidative stress, potentially leading to suppression of the PPAR signaling pathway. This inhibition of PPARα/γ could subsequently orchestrate downstream manifestations of aberrant lipid metabolism and inflammatory responses. Thus, the PPAR signaling pathway is proposed as a plausible central hub for translating oxidative damage into metabolic and inflammatory dysfunction in the manganese-deficient liver. Full article
(This article belongs to the Special Issue A New Perspective: The Effect of Trace Elements on Human Health)
Show Figures

Figure 1

22 pages, 1248 KB  
Review
From Viral Infection to Genome Reshaping: The Triggering Role of HPV Integration in Cervical Cancer
by Junlan Li and Shuang Li
Int. J. Mol. Sci. 2025, 26(18), 9214; https://doi.org/10.3390/ijms26189214 - 21 Sep 2025
Viewed by 878
Abstract
Human papillomavirus (HPV) integration is recognized as a hallmark event in cervical carcinogenesis. However, it does not represent a routine phase of the viral life cycle but rather a stochastic occurrence, often constituting a dead-end pathway for the virus. High-risk human papillomavirus (hr-HPV) [...] Read more.
Human papillomavirus (HPV) integration is recognized as a hallmark event in cervical carcinogenesis. However, it does not represent a routine phase of the viral life cycle but rather a stochastic occurrence, often constituting a dead-end pathway for the virus. High-risk human papillomavirus (hr-HPV) exhibits a greater propensity for integration. The progression from initial infection to genomic integration constitutes a dynamic multi-step oncogenic process in the development of cervical cancer (CC). This process involves viral entry, immune evasion, persistent infection, and ultimately integration. This article innovatively provides a comprehensive overview of this multi-stage mechanism: HPV, via the L1/L2 proteins, mediates internalization and establishes infection. Subsequently, under the influence of factors such as the host’s genetic background, vaginal microbiota imbalance, and immune evasion, the host’s DNA damage response (DDR) pathways are activated. Viral DNA integrates into host genome vulnerable sites (e.g., 3q28 and 8q24) through microhomology-mediated end joining (MMEJ) or other alternative pathways. Following integration, the expression of viral oncogenes persists, triggering host genomic rearrangements, aberrant epigenetic modifications, and immune microenvironment remodeling, all of which collectively drive cervical cancer progression. The study further reveals the clinical potential of HPV integration as a highly specific molecular biomarker, offering new perspectives for precision screening and targeted therapy. This dynamic model deepens our understanding of the HPV carcinogenic mechanism and provides a theoretical basis for intervention strategies. Full article
Show Figures

Figure 1

24 pages, 8488 KB  
Article
Identification of Amino Acids That Regulate Angiogenesis and Alter Pathogenesis of a Mouse Model of Choroidal Neovascularization
by Chenchen Li, Jiawen Wu, Yingke Zhao, Jing Zhu, Xinyu Zhu, Yan Chen and Jihong Wu
Nutrients 2025, 17(18), 3006; https://doi.org/10.3390/nu17183006 - 19 Sep 2025
Cited by 1 | Viewed by 430
Abstract
Background: Metabolic stress from amino acid (AA) insufficiency is increasingly linked to pathological angiogenesis, but specific essential AA (EAA) roles remain undefined. Neovascular age-related macular degeneration (AMD), a major cause of blindness driven by aberrant ocular neovascularization, has limited efficacy with current [...] Read more.
Background: Metabolic stress from amino acid (AA) insufficiency is increasingly linked to pathological angiogenesis, but specific essential AA (EAA) roles remain undefined. Neovascular age-related macular degeneration (AMD), a major cause of blindness driven by aberrant ocular neovascularization, has limited efficacy with current VEGFA-targeting therapies. We sought to identify specific EAAs that regulate pathological angiogenesis and dissect their mechanisms to propose new therapeutic strategies. Methods: Human retinal microvascular endothelial cells (HRMVECs) were used to identify angiogenesis-regulating amino acids through systematic EAA screening. The molecular mechanism was investigated using shRNA-mediated knockdown of key stress response regulators (HRI, PKR, PERK, GCN2) and ATF4. Angiogenesis was assessed via tubule formation and migration assays. Therapeutic potential was examined in a laser-induced choroidal neovascularization (CNV) mouse model, evaluated by fluorescein angiography and histomorphometry. Results: Deprivation of methionine, lysine, and threonine potently induced capillary-like tube formation (p < 0.01). Mechanistically, restriction of these three EAAs activated HRI and GCN2 kinases, converging on eIF2α phosphorylation to induce ATF4 and its target VEGFA. Dual, but not single, knockdown of HRI and GCN2 abolished eIF2α-ATF4 signaling and angiogenic responses. Restricting these EAAs exacerbated CNV area in mice. Conclusions: Our findings reveal a coordinated HRI/GCN2-ATF4-VEGFA axis linking EAA scarcity to vascular remodeling, establishing proof-of-concept for targeting this pathway in CNV. This work highlights the therapeutic potential of modulating specific AA availability or targeting the HRI/GCN2-ATF4 axis to treat CNV. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

18 pages, 551 KB  
Review
Histotripsy: Recent Advances, Clinical Applications, and Future Prospects
by Mustaqueem Pallumeera, Marcus Hong, Jonathan C Giang and Mina S Makary
Cancers 2025, 17(18), 3072; https://doi.org/10.3390/cancers17183072 - 19 Sep 2025
Viewed by 1060
Abstract
Histotripsy is a novel, non-invasive ultrasound-based ablative therapy that destroys tissue through focused cavitation. As solid tumors continue to be a major global health burden, there is interest in image-guided ablation techniques that reduce collateral damage and promote immune activation. This narrative review [...] Read more.
Histotripsy is a novel, non-invasive ultrasound-based ablative therapy that destroys tissue through focused cavitation. As solid tumors continue to be a major global health burden, there is interest in image-guided ablation techniques that reduce collateral damage and promote immune activation. This narrative review aims to synthesize current advancements, clinical applications, limitations, and future directions of histotripsy in both oncologic and non-oncologic contexts. A comprehensive literature search was conducted from database inception to July 2025. Search terms included combinations of subject headings and keywords such as “histotripsy,” “mechanical ablation,” “ultrasound,” and “solid tumors.” Boolean operators and truncation were used to increase sensitivity. Peer-reviewed studies were included, encompassing preclinical, clinical, and review articles. Reference lists of relevant articles were examined to identify additional sources. Histotripsy has shown strong potential in the treatment of tumors involving the liver, pancreas, kidney, brain, and cardiovascular system. It offers real-time imaging guidance, sharp lesion boundaries, and minimal damage to surrounding structures. Early clinical trials have demonstrated encouraging safety and efficacy, particularly in liver and kidney tumors. Its ability to preserve critical anatomy and stimulate innate and adaptive immune responses through the release of cellular debris and cytokines offers advantages over thermal ablation. Limitations include acoustic aberration, motion-related targeting challenges, and the need for further long-term clinical data. Histotripsy represents a promising advancement in noninvasive tumor ablation. Continued clinical investigation and technological refinement are necessary to validate its therapeutic value and define its role within comprehensive cancer care. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

17 pages, 648 KB  
Article
Somatic Mutations in DNA Mismatch Repair Genes, Mutation Rate and Neoantigen Load in Acute Lymphoblastic Leukemia
by Diana Karen Mendiola-Soto, Laura Gómez-Romero, Juan Carlos Núñez-Enríquez, Janet Flores-Lujano, Elva Jiménez-Hernández, Aurora Medina-Sansón, Vilma Carolina Bekker-Méndez, Minerva Mata-Rocha, María Luisa Pérez-Saldívar, David Aldebarán Duarte-Rodríguez, José Refugio Torres-Nava, José Gabriel Peñaloza-González, Luz Victoria Flores-Villegas, Raquel Amador-Sánchez, Martha Margarita Velázquez-Aviña, Jorge Alfonso Martín-Trejo, Laura Elizabeth Merino-Pasaye, Karina Anastacia Solís-Labastida, Rosa Martha Espinosa-Elizondo, Carlos Jhovani Pérez-Amado, Didier Ismael May-Hau, Omar Alejandro Sepúlveda-Robles, Haydee Rosas-Vargas, Juan Manuel Mejía-Aranguré and Silvia Jiménez-Moralesadd Show full author list remove Hide full author list
Pharmaceuticals 2025, 18(9), 1405; https://doi.org/10.3390/ph18091405 - 18 Sep 2025
Viewed by 539
Abstract
Background/Objectives: During cancer development, tumor cells accumulate somatic mutations, which could generate tumor-specific neoantigens. The aberrant protein can be recognized by the immune system as no-self, triggering an immune response against cells expressing this aberrant protein which could mediate tumor control or [...] Read more.
Background/Objectives: During cancer development, tumor cells accumulate somatic mutations, which could generate tumor-specific neoantigens. The aberrant protein can be recognized by the immune system as no-self, triggering an immune response against cells expressing this aberrant protein which could mediate tumor control or rejection. Since the expression of this mutated protein is exclusive to tumor cells, great efforts are being made to identify neoantigens of relevance in the development of new cancer treatment strategies. In comparison to adulthood tumors, pediatric malignancies present fewer mutations and thus fewer potential neoantigens. Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy worldwide that can be benefited by the identification of neoantigens for immunotherapy approaches, the landscape of neoantigens in ALL is not well known, therefore the aim of our study was to identify potential neoantigens in ALL pediatric patients. Methods: To identify neoantigens in ALL, whole-exome sequencing of matched tumor-normal cells from pediatric cases was performed, with these data HLA-I alleles predicted and somatic mutations identified to propose potential neoantigens based on binding affinity of mutated peptide-HLA-I. Results: We found a strong correlation between tumor mutational burden (TMB) and neoantigen load (p < 0.001) but no correlation with prognosis. Furthermore, TMB and neoantigens were greater in ALL patients with at least one mutated DNA mismatch repair gene (p < 0.001). Also, differences between B- and T-cell ALL were found but statistical significance did not remain after permutation. Conclusions: The presence of neoantigens in pediatric cases with ALL makes the neoantigen-based immunotherapy a promising new strategy for the treatment of this malignancy, especially for patients with relapse. Full article
(This article belongs to the Special Issue Immunogenomics for Drug Discovery in Leukemia)
Show Figures

Graphical abstract

18 pages, 4063 KB  
Article
Welander Distal Myopathy-Associated TIA1 E384K Mutation Disrupts Stress Granule Dynamics Under Distinct Stress Conditions
by Beatriz Ramos-Velasco, José Alcalde and José M. Izquierdo
Biology 2025, 14(9), 1288; https://doi.org/10.3390/biology14091288 - 18 Sep 2025
Viewed by 452
Abstract
Cellular stress triggers the formation of diverse RNA–protein aggregates, which can be associated with physiological responses, pathological conditions, or even detrimental outcomes. Under stress-induced proteostasis disruption, these RNA–protein assemblies are known as stress granules (SGs). Targeting such condensates—while sparing functional RNAs and proteins—remains [...] Read more.
Cellular stress triggers the formation of diverse RNA–protein aggregates, which can be associated with physiological responses, pathological conditions, or even detrimental outcomes. Under stress-induced proteostasis disruption, these RNA–protein assemblies are known as stress granules (SGs). Targeting such condensates—while sparing functional RNAs and proteins—remains a major therapeutic challenge in protein aggregation disorders such as myopathies and neuropathies. In this study, we investigated the cellular response to various stress conditions in the context of the TIA1 E384K mutation, a founder variant implicated in both Welander distal myopathy (WDM) and amyotrophic lateral sclerosis (ALS). Cells were exposed to different stressors, including proteotoxic, proteostatic, chemotoxic, and osmotic insults, and the behavior of TIA1-related SGs was analyzed. Our findings reveal a distinct yet conserved pattern in the dynamics of TIA1-dependent SG formation and clearance, influenced by the specific type of stressor and modulated by eIF2α Ser35 phosphorylation. These results indicate that the WDM-associated TIA1 mutation leads to aberrant SG dynamics across different stress conditions. Collectively, these observations support the idea that TIA1 E384K-associated SG dysregulation plays a role in WDM and ALS pathogenesis and underscores the importance of multiple stress contexts in disease progression. Full article
Show Figures

Figure 1

23 pages, 5731 KB  
Article
MiR-92 Controls Synaptic Development Through Glial Vha55 Regulation
by Simon M. Moe, Alicia Taylor, Alan P. Robertson, David Van Vactor and Elizabeth M. McNeill
Biomolecules 2025, 15(9), 1330; https://doi.org/10.3390/biom15091330 - 18 Sep 2025
Viewed by 454
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a [...] Read more.
MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a functional role for highly human-conserved miR-92 in synaptogenesis of the glutamatergic peripheral nervous system. Loss of miR-92 results in underdeveloped synaptic architecture, coinciding with significantly reduced physiological activity. We demonstrate a novel role for miR-92 glial-specific expression to support synaptic growth function and plasticity. Modifications of miR-92 within glial tissue result in aberrant glial barrier properties, including an increased uptake of external dyes. Within the glia, miR-92 regulates a V-ATPase subunit (Vha55), impairing the glial cells from forming appropriate insulating layers around the nervous system. These modifications may impact how the nervous system adapts to its environment, increasing immature ‘ghost bouton’ budding and impairing responses to changes in environmental conditions. Our work highlights the importance of glial-specific miR-92 on synaptic development, affecting glial health and function through its downstream target Vha55, and demonstrates a novel mechanism for glia in synaptogenesis and homeostatic plasticity. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

Back to TopTop