Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = respiration activity monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 935 KiB  
Article
Personal Exposure Assessment of Respirable Particulate Matter Among University Students Across Microenvironments During the Winter Season Using Portable Monitoring Devices
by Muhammad Jahanzaib, Sana Iqbal, Sehrish Shoukat and Duckshin Park
Toxics 2025, 13(7), 571; https://doi.org/10.3390/toxics13070571 - 7 Jul 2025
Viewed by 417
Abstract
Respirable particulate matter (RPM) is a major indoor environment concern posing direct health risks. Localized data on RPM exposure remains scarce across different microenvironments in occupational and educational settings. Students in educational settings are increasingly vulnerable to RPM, specifically in the winter season [...] Read more.
Respirable particulate matter (RPM) is a major indoor environment concern posing direct health risks. Localized data on RPM exposure remains scarce across different microenvironments in occupational and educational settings. Students in educational settings are increasingly vulnerable to RPM, specifically in the winter season when more activities are carried out indoors and meteorological conditions elevate the PM levels. This study was conducted to assess the personal exposure of university students to RPM within their frequently visited microenvironments (MEs). Forty volunteers were selected, and their exposure to RPM was measured by specifically monitoring their particle mass count (PMC) and particle number count (PNC) in commonly identified MEs. Calibrated air pumps with nylon cyclones and a Dylos DC 1100 Pro were used for this purpose. We found that the mean RPM concentration for personal exposure was 251 µg/m3, significantly exceeding the prescribed National Environmental Quality Standards (NEQS) limit of 35 µg/m3. We also observed a significant correlation between the PNC and PMC in the microenvironments. The assessment of personal exposure to RMP in this study highlights the urgent need for mitigation strategies in educational settings to reduce the personal exposure of students to RMP to reduce their health-related risks. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

22 pages, 667 KiB  
Article
Exposure to Airborne Contaminants and Respiratory Health Among Lithium Mine Workers in Western Australia
by David Gbondo, Viviana Cerpa-Perez, Ngoc Minh Pham, Yun Zhao and Krassi Rumchev
Environments 2025, 12(6), 206; https://doi.org/10.3390/environments12060206 - 17 Jun 2025
Viewed by 589
Abstract
Background: Lithium is an essential commodity; however, its mining and processing can expose miners to airborne contaminants such as inhalable dust, respirable dust and respirable crystalline silica. These exposures may adversely affect respiratory health. To protect the health of miners, exposure assessment and [...] Read more.
Background: Lithium is an essential commodity; however, its mining and processing can expose miners to airborne contaminants such as inhalable dust, respirable dust and respirable crystalline silica. These exposures may adversely affect respiratory health. To protect the health of miners, exposure assessment and control activities are required, followed by respiratory health monitoring to assess the effect of exposure on respiratory health. This study aimed to investigate the relationship between workgroup exposure to airborne contaminants and respiratory health. To determine group exposure levels, exposure data was collected at the group level, which limits individual-level inference, followed by health monitoring. Methods: Industry health monitoring data were collected from miners in three surface lithium mines in Western Australia for the period between October 2023 and October 2024. Miners from Management Administration & Technical, Crusher/Dry/Wet Plant, and Laboratory Operations participated in a pulmonary function test, completed a health and exposure questionnaire and underwent a low dose high-resolution computed tomography. Multivariable linear and logistic regression models were fitted to identify factors associated with lung function and respiratory symptoms. Results: Older age, smoking and pre-existing respiratory conditions were correlated with poor respiratory airflow. The odds of having a respiratory obstruction or restriction were significantly higher by 3.942 and 2.165 times respectively, for miners who were 40 years old or above, and those who had existing diagnosed respiratory medical conditions. The risk of coughing among current smokers was more than four times higher compared to non-smokers. In addition, working in Crushing and Processing was significantly associated with the risk of experiencing respiratory symptoms compared to working in Management Administration & Technical and Laboratory Operations. Conclusions: The study demonstrated that respiratory health was influenced by non-work-related risk factors. Based on these results, it is recommended that health promotion programs be developed and implemented to empower miners to cease smoking and to manage non-work-related respiratory conditions. Full article
(This article belongs to the Special Issue Environmental Pollutant Exposure and Human Health)
Show Figures

Figure 1

19 pages, 26737 KiB  
Article
Caffeic Acid Phenethyl Ester Protects Against Doxorubicin-Induced Cardiotoxicity via Inhibiting the ROS-MLKL-Mediated Cross-Talk Between Oxidative Stress and Necroptosis
by Chenying Jiang, Tinghuang Zhang, Jiawen Gu, Chenjun Shen, Hang Gao, Hai An, Chen Wang, Jiahui Lu, Shengzhang Lin, Huajun Zhao and Zhihui Zhu
Biomolecules 2025, 15(6), 783; https://doi.org/10.3390/biom15060783 - 28 May 2025
Cited by 1 | Viewed by 661
Abstract
Purpose: Doxorubicin (DOX) is a broad-spectrum anti-tumor anthracycline drug. However, its clinical application is greatly limited due to the side effect of cardiotoxicity. Caffeic acid phenethyl ester (CAPE) is one of the major biologically active compounds isolated from propolis, which is effective in [...] Read more.
Purpose: Doxorubicin (DOX) is a broad-spectrum anti-tumor anthracycline drug. However, its clinical application is greatly limited due to the side effect of cardiotoxicity. Caffeic acid phenethyl ester (CAPE) is one of the major biologically active compounds isolated from propolis, which is effective in the treatment of cardiovascular diseases. The purpose of this study aimed to explore the possible mechanism of CAPE’s protective effect on DOX-induced cardiotoxicity (DIC). Methods: In vivo, a DIC model was established by the intraperitoneal injection of 3 mg/kg DOX. The cardiac function of mice was monitored by electrocardiograms. Histopathological changes in myocardial tissue were detected by H&E staining. Serum samples were tested for the level of markers of myocardial injury. In vitro, transmission electron microscopy was used to assess the mitochondrial damage. Oxidative stress was measured by flow cytometry and mitochondrial respiration analysis. Necroptosis pathway changes were detected by Western blotting. Furthermore, the overexpression plasmid of a key necroptosis gene, necroptosis inhibitor or ROS inducer/inhibitor was applied to H9c2 and AC16 cells to explore whether CAPE exerted a protective effect against DIC through the cross-talk mediated by ROS and MLKL. Results: CAPE could improve the cardiac function and protect against myocardial tissue. CAPE pre-administration treatment attenuated the DOX-induced generation of ROS, protected mitochondrial functions and inhibited necroptosis. Moreover, there was cross-talk between the ROS and necroptosis. CAPE could protect against DIC by inhibiting the ROS-MLKL signaling that regulated the cross-talk. Conclusions: CAPE alleviated the oxidative stress and necroptosis of DIC, indicating that the cross-talk mediated by ROS-MLKL signaling may be a potential therapeutic mechanism for clinical DIC. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 6040 KiB  
Article
Estimation of Respiratory Signals from Remote Photoplethysmography of RGB Facial Videos
by Hyunsoo Seo, Seunghyun Kim and Eui Chul Lee
Electronics 2025, 14(11), 2152; https://doi.org/10.3390/electronics14112152 - 26 May 2025
Viewed by 549
Abstract
Recently, technologies monitoring users’ physiological signals in consumer electronics such as smartphones or kiosks with cameras and displays are gaining attention for their potential role in diverse services. While many of these technologies focus on photoplethysmography for the measurement of blood flow changes, [...] Read more.
Recently, technologies monitoring users’ physiological signals in consumer electronics such as smartphones or kiosks with cameras and displays are gaining attention for their potential role in diverse services. While many of these technologies focus on photoplethysmography for the measurement of blood flow changes, respiratory measurement is also essential for assessing an individual’s health status. Previous studies have proposed thermal camera-based and body movement-based respiratory measurement methods. In this paper, we adopt an approach to extract respiratory signals from RGB face videos using photoplethysmography. Prior research shows that photoplethysmography can measure respiratory signals, due to its correlation with cardiac activity, by setting arterial vessel regions as areas of interest for respiratory measurement. However, this correlation does not directly reflect real-time respiratory components in photoplethysmography. Our new approach measures the respiratory rate by capturing changes in skin brightness from motion artifacts. We utilize these brightness factors, including facial movement, for respiratory signal measurement. We applied the wavelet transform and smoothing filters to remove other unrelated motion artifacts. In order to validate our method, we built a dataset of respiratory rate measurements from 20 individuals using an RGB camera in a facial movement-aware environment. Our approach demonstrated a similar performance level to the reference signal obtained with a contact-based respiratory belt, with a correlation above 0.9 and an MAE within 1 bpm. Moreover, our approach offers advantages for real-time measurements, excluding complex computational processes for measuring optical flow caused by the movement of the chest due to respiration. Full article
Show Figures

Figure 1

20 pages, 1965 KiB  
Article
Short-Term Effects of Wood Biochar on Soil Fertility, Heterotrophic Respiration and Organic Matter Composition
by Rossella Curcio, Raffaele Bilotti, Carmine Lia, Michele Compitiello, Silvana Cangemi, Mariavittoria Verrillo, Riccardo Spaccini and Pierluigi Mazzei
Agriculture 2025, 15(10), 1091; https://doi.org/10.3390/agriculture15101091 - 19 May 2025
Viewed by 693
Abstract
Biochar may represent a sustainable and eco-friendly strategy to recycle agroforestry wastes, sequester carbon and improve soil health. With the aim of proving these benefits in a real scenario, we treated several soil parcels with 0 (CTRL), 1 (LOW) and 3 (HIGH) kg/m [...] Read more.
Biochar may represent a sustainable and eco-friendly strategy to recycle agroforestry wastes, sequester carbon and improve soil health. With the aim of proving these benefits in a real scenario, we treated several soil parcels with 0 (CTRL), 1 (LOW) and 3 (HIGH) kg/m2 of wood biochar, in open-field trials. The heterotrophic soil respiration (SR) was monitored continuously for two months via a Closed Dynamic Chamber (CDC) associated with an innovative pilot system, and the most important soil chemical parameters were measured 9 and 54 days after biochar application. Biochar induced an immediate dose-dependent increase in organic matter content and CEC (up to 41.6% and 36.8% more than CTRL, respectively), which tended to slightly and gradually decrease after 54 days. In all cases, biochar induced a more pronounced SR, although the most enhanced microbial response was detected for the LOW parcel (19.3% higher than CTRL). Fennels were grown in treated soils and only LOW microplots gave a significantly better response (weight and size). Finally, NMR, FT-IR and Pyr-GC/MS analyses of LOW SOM extracts revealed a relevant impact on the composition, which was accompanied by a higher content of carbohydrates, indole-based compounds and FAME species correlating with enhanced microbial activity. Our findings demonstrate that the proper biochar dose improves soil fertility by creating an environment favorable to plants and promoting microbial activity. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

29 pages, 8902 KiB  
Article
Conventional Training Integrated with SteamVR Tracking 2.0: Body Stability and Coordination Training Evaluation on ICAROS Pro
by Katharina Meiszl, Fabian Ratert, Tessa Schulten, Daniel Wiswede, Lara Kuhlmann de Canaviri, Tobias Potthast, Marc Silberbach, Laurin Hake, Yannik Warnecke, Witold Schiprowski, Mathias Merschhemke, Christoph M. Friedrich and Raphael Brüngel
Sensors 2025, 25(9), 2840; https://doi.org/10.3390/s25092840 - 30 Apr 2025
Viewed by 590
Abstract
Technological advances continually reduce the effort to digitally transform health-related activities such as rehabilitation and training. Exemplary systems use tracking and vital sign monitoring to assess physical condition and training progress. This paper presents a system for body stability training and coordination evaluation, [...] Read more.
Technological advances continually reduce the effort to digitally transform health-related activities such as rehabilitation and training. Exemplary systems use tracking and vital sign monitoring to assess physical condition and training progress. This paper presents a system for body stability training and coordination evaluation, using cost-efficient tracking and monitoring solutions. It implements the use case of app-guided back posture tracking on the ICAROS Pro training device via SteamVR Tracking 2.0, with pulse and respiration rate monitoring via Zephyr BioHarness 3.0. A longitudinal study on training effects with 20 subjects was conducted, involving a representative procedure created with a sports manager. Posture errors served as the main progress indicator, and pulse and respiration rates as co-indicators. Outcomes suggest the system’s capabilities to foster comprehension of effects and steering of exercises. Further, a secondary study presents a self-developed VR-based exergame demo for future system expansion. The Empatica EmbracePlus smartwatch was used as an alternative for vital sign acquisition. The user experiences of five subjects gathered via a survey highlight its motivating and entertaining character. For both the main and secondary studies, a thorough discussion elaborates on potentials and current limitations. The developed training system can serve as template and be adjusted for further use cases, and the exergame’s reception revealed prospective extension directions. Software components are available via GitHub. Full article
(This article belongs to the Special Issue Sensor Technologies in Sports and Exercise)
Show Figures

Figure 1

18 pages, 11713 KiB  
Article
A Novel FMCW Radar Scheme with Millimeter Motion Detection Capabilities Suitable for Cardio-Respiratory Monitoring
by Orlandino Testa, Renato Cicchetti, Stefano Pisa, Erika Pittella and Emanuele Piuzzi
Sensors 2025, 25(9), 2765; https://doi.org/10.3390/s25092765 - 27 Apr 2025
Viewed by 691
Abstract
A new modulation scheme for frequency-modulated continuous-wave (FMCW) radars with millimeter-level target motion detection capability is presented. The proposed radar scheme is free from the synchronization constraint and exhibits low sensitivity to internal parasitic mutual coupling, thus significantly reducing its design complexity without [...] Read more.
A new modulation scheme for frequency-modulated continuous-wave (FMCW) radars with millimeter-level target motion detection capability is presented. The proposed radar scheme is free from the synchronization constraint and exhibits low sensitivity to internal parasitic mutual coupling, thus significantly reducing its design complexity without worsening its performance in terms of accuracy and operating ranges. Alternatively to canonical FMCW radars, which exploit chirp signals with triangular or sawtooth-like frequency variation, a radar based on a sinusoidal frequency modulation, which does not require specific synchronization procedures to achieve accurate motion detection even at a short distance from the radar, was developed. Both numerical and experimental results, performed with a 24 GHz radar, have shown the suitability of the proposed modulation scheme for monitoring very small target movements, consistent with those typically exhibited by the human thorax during basic vital activities (heartbeat and respiration). This makes the proposed radar scheme a suitable solution for contactless heart and breath rate monitoring. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

19 pages, 2329 KiB  
Article
Innovative Microalgae-Based Edible Coatings with Encapsulated Bioactives: Enhancing Fresh Raspberry Shelf Life and Quality
by Alexandra Mari, Erofili Manta and Magdalini Krokida
Processes 2025, 13(4), 1193; https://doi.org/10.3390/pr13041193 - 15 Apr 2025
Viewed by 548
Abstract
Raspberries are increasingly popular due to their high nutritional value. However, oxidative reactions, respiration, spoilage bacteria, and improper storage conditions throughout the supply chain can lead to rapid quality degradation and a short shelf life. Extending the shelf life of raspberries with minimal [...] Read more.
Raspberries are increasingly popular due to their high nutritional value. However, oxidative reactions, respiration, spoilage bacteria, and improper storage conditions throughout the supply chain can lead to rapid quality degradation and a short shelf life. Extending the shelf life of raspberries with minimal processing, so as not to compromise their nutritional content, physical characteristics, or sensory attributes, remains a significant challenge in the food industry. Edible coatings offer a promising solution for extending the commercial shelf life of raspberries, while enriching these coatings with encapsulated bioactive compounds can further enhance their nutritional value. The objective of this study was to develop Chlorella vulgaris protein-based edible coatings, enriched with encapsulated bioactive compounds from rosemary (via electrospinning), to extend the shelf life of fresh raspberries. The berries were immersed in the coating solutions and air-dried until the coatings were fully set. The shelf life of the coated raspberries was then evaluated, with samples stored at 4 °C. Key quality attributes, including color, weight loss, antioxidant activity, and spoilage microorganism levels, were monitored at predetermined time intervals. The results demonstrated that the application of Chlorella vulgaris protein-based coatings enriched with bioactive compounds significantly extended the shelf life of raspberries and improved their overall quality. Full article
Show Figures

Figure 1

18 pages, 2769 KiB  
Article
Mitochondrial Changes Induced by SGLT2i in Lymphocytes from Diabetic Kidney Transplant Recipients: A Pilot Study
by Isabel Pérez-Flores, Andrea R. López-Pastor, Ulises Gómez-Pinedo, Andrea Gómez-Infantes, Laura Espino-Paisán, Natividad Calvo Romero, M. Angeles Moreno de la Higuera, Beatriz Rodríguez-Cubillo, Irene Gómez-Delgado, Ana I. Sánchez-Fructuoso and Elena Urcelay
Int. J. Mol. Sci. 2025, 26(7), 3351; https://doi.org/10.3390/ijms26073351 - 3 Apr 2025
Viewed by 782
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) preserve cardiac and renal function by mechanisms that are not completely elucidated. Among other things, SGLT2i promote nutrient-deprivation signalling, which might affect the immune function. As the fate of immune cells is controlled by their metabolism, we aimed [...] Read more.
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) preserve cardiac and renal function by mechanisms that are not completely elucidated. Among other things, SGLT2i promote nutrient-deprivation signalling, which might affect the immune function. As the fate of immune cells is controlled by their metabolism, we aimed to study the mitochondrial integrity of lymphocytes isolated from renal transplant recipients with type 2 diabetes (T2D) upon SGLT2i therapy instauration and six-month follow up. In this real-world pilot study, the mitochondrial respiration of isolated peripheral blood mononuclear cells was monitored in a Seahorse XFp extracellular-flux analyzer and cells were photographed with a confocal microscope. Mitochondrial mass, membrane potential, and superoxide content of lymphocyte subpopulations were measured by flow cytometry (MitoTrackerTM Green, TMRM, and MitoSOXTM Red probes). Leveraging in vivo conditions of immune cells, we evaluated their metabolic profiles associated with immune activation. Herein, we identified changes in redox homeostasis with sustained membrane polarization, and an increased mitochondrial biogenesis upon PHA stimulation that significantly correlated with changes in body weight and LDL-cholesterol levels, and a resultant compensatory mitochondrial function of lymphocytes. Our data suggest novel mechanisms induced by SGLT2i to modulate immune cells, which probably underlie the observed beneficial effects in kidney transplant recipients. Nonetheless, further mechanistic studies are required to extend these exploratory findings and encourage the use of this therapeutic strategy. Full article
(This article belongs to the Special Issue New Insights into Mitochondria in Health and Diseases)
Show Figures

Figure 1

11 pages, 953 KiB  
Article
Non-Destructive PTR-ToF-MS Profiling of Red Delicious and Granny Smith Apple Volatilomes During Ripening
by Alessia Panarese, Brian Farneti, Angelo Zanella and Iuliia Khomenko
Agriculture 2025, 15(6), 638; https://doi.org/10.3390/agriculture15060638 - 18 Mar 2025
Viewed by 497
Abstract
The optimal harvest date (OHD) for the long-term storage of apple fruits is of the utmost importance, not only for maintaining high quality levels, but also because the ripening stage, regulated by the autocatalytic activity of the internal ethylene concentration, greatly affects the [...] Read more.
The optimal harvest date (OHD) for the long-term storage of apple fruits is of the utmost importance, not only for maintaining high quality levels, but also because the ripening stage, regulated by the autocatalytic activity of the internal ethylene concentration, greatly affects the VOCs’ synthesis. During apple ripening, chemical compounds undergo changes that affect the fruit’s overall quality, particularly its aromatic profile. Three main classes of organic molecules—aldehydes, alcohols, and esters—play a key role in these modifications. This study investigated the potential of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for the rapid, non-destructive monitoring of VOC profiles in ‘Red Delicious’ and ‘Granny Smith’ apples over a 7-week shelf-life period across three harvest dates with different ripening stages. More than 300 mass peaks in the PTR-ToF-MS spectra of the apple headspace were detected. A total of 127 of them were considered to be relevant for further analysis. Furthermore, respiration rate and IAD index were used for the non-destructive assessment of the ripening progress during the 7 weeks of shelf-life and for integrating the VOC results. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

19 pages, 2471 KiB  
Article
Real-Time CO2 Production Monitoring in Stored Oats as an Indicator of Type A Trichothecenes and Ochratoxin A Contamination Under Simulated Environmental Conditions
by Abimbola Oluwakayode, Michael Sulyok, Franz Berthiller, Carol Verheecke-Vaessen, Rudolf Krska and Angel Medina
Toxins 2025, 17(3), 132; https://doi.org/10.3390/toxins17030132 - 11 Mar 2025
Viewed by 1094
Abstract
Grain industries are interested in an integrated approach to in-silo grain quality and safety management using carbon dioxide (CO2) measurement with temperature and moisture monitoring. Our study investigates if CO2 production could predict mycotoxin production (T-2 toxin, HT-2 toxin, its [...] Read more.
Grain industries are interested in an integrated approach to in-silo grain quality and safety management using carbon dioxide (CO2) measurement with temperature and moisture monitoring. Our study investigates if CO2 production could predict mycotoxin production (T-2 toxin, HT-2 toxin, its glucoside, and ochratoxin A (OTA)) and identify storage conditions exceeding legislative limits in stored oats for the first time. The influence of water activity (aw) levels (0.70–0.95 aw), temperature (15 and 20 °C), and storage duration on (a) Fusarium populations, (b) CO2 respiration rates (RRs), and (c) mycotoxin concentrations in stored oats was examined. One hundred and twenty samples were analysed for multiple mycotoxins by LC-MS/MS. Substantial differences were found in the RRs of oats at ≥0.90 aw at both temperatures. A moderate positive correlation between CO2 and mycotoxins was noticed and mycotoxins exceeded their limits at ≥0.90 aw (22% moisture content) when RR ≥ 25 µg CO2 kg−1 h−1. This knowledge forms the basis for developing decision support systems for improving oats’ storage management. Full article
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Carbon Dioxide Fluxes Associated with Prokaryotic and Eukaryotic Communities in Ice-Free Areas on King George Island, Maritime Antarctica
by Luiz H. Rosa, Vívian N. Gonçalves, Débora Luiza Costa Barreto, Marcio Rocha Francelino, Clara Glória Oliveira Baldi, Danilo Cesar Mello, Kárita C. R. Santos, Fabyano A. C. Lopes, Micheline Carvalho-Silva, Peter Convey and Paulo E. A. S. Câmara
DNA 2025, 5(1), 15; https://doi.org/10.3390/dna5010015 - 10 Mar 2025
Viewed by 1252
Abstract
Background and Methods: We assessed the prokaryotic and eukaryotic diversity present in non-vegetated and vegetated soils on King George Island, Maritime Antarctic, in combination with measurements of carbon dioxide fluxes. Results: For prokaryotes, 381 amplicon sequence variants (ASVs) were assigned, dominated by the [...] Read more.
Background and Methods: We assessed the prokaryotic and eukaryotic diversity present in non-vegetated and vegetated soils on King George Island, Maritime Antarctic, in combination with measurements of carbon dioxide fluxes. Results: For prokaryotes, 381 amplicon sequence variants (ASVs) were assigned, dominated by the phyla Actinobacteriota, Acidobacteriota, Pseudomonadota, Chloroflexota, and Verrucomicrobiota. A total of 432 eukaryotic ASVs were assigned, including representatives from seven kingdoms and 21 phyla. Fungi dominated the eukaryotic communities, followed by Viridiplantae. Non-vegetated soils had higher diversity indices compared with vegetated soils. The dominant prokaryotic ASV in non-vegetated soils was Pyrinomonadaceae sp., while Pseudarthrobacter sp. dominated vegetated soils. Mortierella antarctica (Fungi) and Meyerella sp. (Viridiplantae) were dominant eukaryotic taxa in the non-vegetated soils, while Lachnum sp. (Fungi) and Polytrichaceae sp. (Viridiplantae) were dominant in the vegetated soils. Measured CO2 fluxes indicated that the net ecosystem exchange values measured in vegetated soils were lower than ecosystem respiration in non-vegetated soils. However, the total flux values indicated that the region displayed positive ecosystem respiration values, suggesting that the soils may represent a source of CO2 in the atmosphere. Conclusions: Our study revealed the presence of rich and complex communities of prokaryotic and eukaryotic organisms in both soil types. Although non-vegetated soils demonstrated the highest levels of diversity, they had lower CO2 fluxes than vegetated soils, likely reflecting the significant biomass of photosynthetically active plants (mainly dense moss carpets) and their resident organisms. The greater diversity detected in exposed soils may influence future changes in CO2 flux in the studied region, for which comparisons of non-vegetated and vegetated soils with different microbial diversities are needed. This reinforces the necessity for studies to monitor the impact of resident biota on CO2 flux in different areas of Maritime Antarctica, a region strongly impacted by climatic changes. Full article
Show Figures

Graphical abstract

18 pages, 3833 KiB  
Article
Microbial Indicators Show the Rehabilitation Flow of Soil Microbiota After the Brumadinho Dam Collapse
by Paulo Wilson Goulart, Amanda Tristão Santini, Lutecia Rigueira Medina, Alan Emanuel Silva Cerqueira, Alex Castro Gazolla, Wiane Meloni Silva, Igor Rodrigues de Assis, Diego Aniceto, Sergio Oliveira de Paula and Cynthia Canêdo da Silva
Mining 2025, 5(1), 16; https://doi.org/10.3390/mining5010016 - 26 Feb 2025
Cited by 1 | Viewed by 597
Abstract
Iron ore extraction can lead to significant environmental degradation, particularly due to the generation of tailings during the beneficiation process. This issue was highlighted by the B1 dam collapse in Brumadinho, Brazil, in 2019. Therefore, the study and monitoring of affected areas is [...] Read more.
Iron ore extraction can lead to significant environmental degradation, particularly due to the generation of tailings during the beneficiation process. This issue was highlighted by the B1 dam collapse in Brumadinho, Brazil, in 2019. Therefore, the study and monitoring of affected areas is essential to assess soil quality throughout the rehabilitation process, whether through natural recovery or active rehabilitation practices. Microbial indicators can serve as valuable tools to track the recovery of these areas, given their high sensitivity and rapid response to environmental changes. The aim of this study was to evaluate soil microbial indicators, such as enzyme activity, microbial biomass carbon, microbial basal respiration and microbial diversity, and to select microbial approaches for monitoring the area affected by mining tailings in Brumadinho. The results indicated that the reference area initially outperformed the affected area on all evaluated bioindicators, highlighting environmental stress in the affected zone. Over the course of the study, the two areas began to show greater similarity, suggesting a natural recovery of the soil together with the return of natural vegetation. Indicators such as microbial carbon biomass went from values close to 50 mg of C Kg of soil−1 in the affected area, to around 200, statistically equal to the reference. qCO2 also varied in the affected area to values statistically equal to those of the reference over time, variated in the first collection to 0.25 mg of C-CO2 mg of C−1 h−1 in the affected area against 0.1 in the reference area; in the last collection, both areas presented values close to 0.2. Enzymatic activity had superior values in the reference area about the affected area, being urease, and arylsulfatase more sensitive to show differences between areas over time. The metataxonomic data again revealed indicator species for each environment, including genera such as Bacillus, Mycobacterium, Acidibacter, and Burkholderia representative of the reference, and the genera Ramlibacter, Sinomonas, Psedarthrobacter, and Knoellia indicators of the affected area. By the end of this study, the applicability of microbial indicators for monitoring soil microbiota and its ecosystem services was successfully demonstrated. In addition, specific microbial indicators were proposed for monitoring areas affected by iron mining tailings. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining, 2nd Edition)
Show Figures

Figure 1

25 pages, 5011 KiB  
Article
Effect of Exogenous Melatonin Application on Maintaining Physicochemical Properties, Phytochemicals, and Enzymatic Activities of Mango Fruits During Cold Storage
by Narin Charoenphun, Somwang Lekjing and Karthikeyan Venkatachalam
Horticulturae 2025, 11(2), 222; https://doi.org/10.3390/horticulturae11020222 - 19 Feb 2025
Cited by 2 | Viewed by 1023
Abstract
Mango fruits are susceptible to cold stress under prolonged storage. Melatonin (MT) is a phytohormone well known for enhancing the tolerance and overall quality of various tropical and subtropical fruits during cold storage. This study investigated the effects of MT treatment on the [...] Read more.
Mango fruits are susceptible to cold stress under prolonged storage. Melatonin (MT) is a phytohormone well known for enhancing the tolerance and overall quality of various tropical and subtropical fruits during cold storage. This study investigated the effects of MT treatment on the postharvest quality of mango fruits during prolonged cold storage. Mangoes were treated with different concentrations of MT (1.0 mM (T1), 1.5 mM (T2), 2.0 mM (T3), and 2.5 mM (T4)) and stored for 45 days under cold conditions (15 °C and 90% relative humidity). Control fruits had no MT treatments. Various physicochemical, phytochemical, antioxidant, and enzymatic activities were monitored every 5 days throughout the storage period. MT treatment significantly reduced the weight loss and decay rates compared to control samples, with T3 and T4 treatments showing superior effectiveness. Due to severe decay in the control samples, the storage period was terminated on day 25, whereas the MT treatment protected the mango fruits and allowed for the completion of all 45 days of storage. The MT treatments effectively maintained color characteristics, reduced respiration rates, and suppressed ethylene production in mango fruits compared to the control samples. Higher MT concentrations preserved firmness and controlled malondialdehyde accumulation (p < 0.05). Chemical properties, including the starch content, total soluble solids, and titratable acidity, were better maintained in MT-treated fruits. The treatments also enhanced the retention of phytochemicals (ascorbic acid, total phenolic, and total flavonoid contents) and improved antioxidant activities against DPPH and ABTS radicals. Furthermore, MT treatment effectively regulated the activities of browning-related enzymes (polyphenol oxidase (PPO) and peroxidase (POD)), cell wall-degrading enzymes (polygalacturonase (PG), pectin methylesterase (PME), and lipoxygenase (LOX)), and antioxidant enzymes (superoxide dismutase (SOD) and ascorbate peroxidase (APX)). The results demonstrate that MT treatment, particularly at higher concentrations (T3 and T4), effectively extends the storage life and maintains the quality of mango fruits during prolonged cold storage. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

19 pages, 450 KiB  
Systematic Review
Smart Textile Technology for the Monitoring of Mental Health
by Shonal Fernandes, Alberto Ramos, Mario Vega-Barbas, Carolina García-Vázquez, Fernando Seoane and Iván Pau
Sensors 2025, 25(4), 1148; https://doi.org/10.3390/s25041148 - 13 Feb 2025
Cited by 2 | Viewed by 2873
Abstract
In recent years, smart devices have proven their effectiveness in monitoring mental health issues and have played a crucial role in providing therapy. The ability to embed sensors in fabrics opens new horizons for mental healthcare, addressing the growing demand for innovative solutions [...] Read more.
In recent years, smart devices have proven their effectiveness in monitoring mental health issues and have played a crucial role in providing therapy. The ability to embed sensors in fabrics opens new horizons for mental healthcare, addressing the growing demand for innovative solutions in monitoring and therapy. The objective of this review is to understand mental health, its impact on the human body, and the latest advancements in the field of smart textiles (sensors, electrodes, and smart garments) for monitoring physiological signals such as respiration rate (RR), electroencephalogram (EEG), electrodermal activity (EDA), electrocardiogram (ECG), and cortisol, all of which are associated with mental health disorders. Databases such as Web of Science (WoS) and Scopus were used to identify studies that utilized smart textiles to monitor specific physiological parameters. Research indicates that smart textiles provide promising results compared to traditional methods, offering enhanced comfort for long-term monitoring. Full article
(This article belongs to the Special Issue Smart Textile Sensors, Actuators, and Related Applications)
Show Figures

Figure 1

Back to TopTop