Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = resistance to Fusarium wilt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8538 KB  
Article
Mining for Resistance Loci to Fusarium Wilt in Mungbean
by Yingchao Shen, Zhixiao Zhang, Changyou Liu, Yan Wang, Shen Wang, Huiying Shi, Zhimin Cao, Zhendong Zhu, Baojie Fan and Jing Tian
Agronomy 2026, 16(2), 242; https://doi.org/10.3390/agronomy16020242 - 20 Jan 2026
Abstract
Fusarium wilt (FW), caused by Fusarium oxysporum, poses a significant threat to mungbean (Vigna radiata L.), impacting its yield and quality. In this study, a recombinant inbred line (RIL) population was developed by crossing the highly resistant cultivar Weilv 9002-341 with [...] Read more.
Fusarium wilt (FW), caused by Fusarium oxysporum, poses a significant threat to mungbean (Vigna radiata L.), impacting its yield and quality. In this study, a recombinant inbred line (RIL) population was developed by crossing the highly resistant cultivar Weilv 9002-341 with the highly susceptible line V1128. Assessment of resistance revealed a continuous variation in the average disease index within the resulting population, consistent with the inheritance pattern of quantitative traits. Leveraging an F2:3 segregating population, we conducted linkage mapping analysis and bulked segregant analysis by sequencing, leading to the construction of a genetic linkage map and the identification of a region correlated with resistance. Within this region, 14 novel simple sequence repeat markers were designed to enable refined mapping. A putative resistance locus, spanning 0.17 Mb and encompassing 19 annotated genes, was precisely located. Ultimately, two genes were identified as high-priority candidates conferring resistance. The results of this study lay the foundation for the functional investigation of genes associated with resistance to Fusarium wilt disease in mungbean. Full article
(This article belongs to the Special Issue Cultivar Development of Pulses Crop—2nd Edition)
Show Figures

Figure 1

18 pages, 7749 KB  
Article
From Early Signals to Systemic Decline: Physiological Defense Landscape of Agave tequilana in the Fusarium oxysporum Pathosystem
by Diego E. Navarro-López, Julio César López-Velázquez, Antonia Gutiérrez-Mora, Mayra Itzcalotzin Montero-Cortés, Martin Eduardo Avila-Miranda, Norma Alejandra Mancilla-Margalli, Elizabeth Sánchez-Jiménez, Miriam Irene Jiménez-Pérez, Jorge L. Mejía-Méndez and Joaquín Alejandro Qui-Zapata
Plants 2026, 15(2), 233; https://doi.org/10.3390/plants15020233 - 12 Jan 2026
Viewed by 266
Abstract
The agave wilt associated with Fusarium oxysporum (Fox) is a major disease of blue agave (Agave tequilana Weber var. azul), used to produce “Tequila” in Mexico. Little is known about the A. tequilana-F. oxysporum interaction yet understanding defense mechanisms [...] Read more.
The agave wilt associated with Fusarium oxysporum (Fox) is a major disease of blue agave (Agave tequilana Weber var. azul), used to produce “Tequila” in Mexico. Little is known about the A. tequilana-F. oxysporum interaction yet understanding defense mechanisms against the pathogen is necessary for control strategies. During early Fox infection, plants trigger defense mechanisms to interrupt the compatible interaction, while Fox’s pathogenesis mechanism interacts with plant response. This study evaluated plant defense mechanisms induced by Fox in A. tequilana and their interaction with fungal pathogenesis. For this, an A. tequilana pathogenic strain (FPA), and the non-A. tequilana pathogenic strains FNPA and FOL were utilized. Early defense mechanisms evaluated were hypersensitive response (HR) and cell wall strengthening in agave roots. Resistance mechanisms evaluated included pathogenesis-related proteins (PR proteins), phytoanticipins and phytoalexins. For early defense, induced HR was greater with FPA than other strains. Cell wall strengthening was found in agave roots, plants responded differentially to different strains. Initial response to FPA and FOL was similar in PR proteins, phytoalexins and phytoanticipins production. However, the response differentiated with FOL over time, indicating an incompatible interaction. The study identified effective and ineffective defense responses of A. tequilana to Fox infection, where FPA exhibited compatibility and caused unregulated ROS and PCD, early inhibition of PR activity, extensive lignification, and saponin detoxification. In contrast, this study unveiled incompatible interactions (FNPA and FOL) because of limited colonization, localized HR with suppressed ROS, early and sustained POX activation, significant callose accumulation, moderate lignification, and phenol–saponin dynamics that help in tissue containment and recovery. Full article
Show Figures

Figure 1

22 pages, 3372 KB  
Article
Molecular and Morphological Identification and Pathogenicity of Fusarium Species Causing Melon Wilt in Russia
by Irina Engalycheva, Elena Kozar, Alina Kameneva, Maria Sletova, Svetlana Vetrova, Vera Chizhik, Maria Kornilova and Viktor Martynov
J. Fungi 2025, 11(12), 888; https://doi.org/10.3390/jof11120888 - 17 Dec 2025
Viewed by 654
Abstract
Fusarium wilt of melon, caused by Fusarium fungi, results in sizeable economic losses worldwide. In Russia, data on the species composition of the causative pathogens of this disease on melon are lacking. From 2022 to 2025, 19 Fusarium isolates from the Volgograd and [...] Read more.
Fusarium wilt of melon, caused by Fusarium fungi, results in sizeable economic losses worldwide. In Russia, data on the species composition of the causative pathogens of this disease on melon are lacking. From 2022 to 2025, 19 Fusarium isolates from the Volgograd and Rostov regions were included in a study that included species identification using molecular phylogenetic analysis of the tef1 and rpb2 loci, morphological description, and pathogenicity assessment against the host plant and other members of the Cucurbitaceae family. Four Fusarium species were found to be involved in the pathogenesis of Fusarium wilt of melon in Russia: F. clavus (37% of the total number of isolates), F. annulatum (21%), F. cf. inflexum (21%), and F. brachygibbosum (21%). All identified species were isolated in the Volgograd Region, while only F. cf. inflexum and F. brachygibbosum were isolated in the Rostov Region. This study reports for the first time the high pathogenicity of F. cf. inflexum and F. brachygibbosum species associated with melon wilt. Morphological variability and different aggressiveness of isolates of the species F. brachygibbosum and F. clavus, isolated in the Volgograd (-V) and Rostov (-R) regions in different years, were observed. The isolate F. brachygibbosum-V showed high aggressiveness both at the sprout and seedling stages, while the isolate F. brachygibbosum-R was characterized by moderate aggressiveness only at the sprout stage. High pathogenicity of the species isolated from melons was established for other cucurbit crops. F. cf. inflexum was also pathogenic for watermelon and pumpkin, and F. brachygibbosum was pathogenic for pumpkin. The obtained data will have practical value for the development of biological control measures against Fusarium fungi and will be used in a melon breeding program for resistance to Fusarium wilt. Full article
(This article belongs to the Special Issue Morphology, Phylogeny and Pathogenicity of Fusarium)
Show Figures

Figure 1

30 pages, 456 KB  
Review
The Current Status and Prospects of Molecular Marker Applications in Head Cabbage (Brassica oleracea var. capitata L.): A Review
by Ilya V. Strembovskiy and Pavel Yu. Kroupin
Agronomy 2025, 15(11), 2644; https://doi.org/10.3390/agronomy15112644 - 18 Nov 2025
Viewed by 614
Abstract
Modern head cabbage (Brassica oleracea var. capitata L.) breeding is based on the application of molecular markers through marker-assisted selection (MAS). In hybrid breeding, critical markers are deployed to assess cytoplasmic male sterility (CAPS and SSR for orf138), genic male sterility [...] Read more.
Modern head cabbage (Brassica oleracea var. capitata L.) breeding is based on the application of molecular markers through marker-assisted selection (MAS). In hybrid breeding, critical markers are deployed to assess cytoplasmic male sterility (CAPS and SSR for orf138), genic male sterility (KASP markers for Ms-cd1, InDel for ms3, and BoCYP704B1), fertility restoration (InDel marker for Rfo), combining ability and genetic diversity (using SSR and KASP marker sets), and to ensure F1 hybrid seed genetic purity (RAPD and SSR markers sets). Disease resistance, a well-developed category due to frequent monogenic control, includes markers for major pathogens, including those for Fusarium wilt (for Foc-Bo1 gene), black rot (race 1–7 specific SSR and InDel markers), clubroot (Kamogawa, Anno, and Yuki isolates), and downy mildew (BoDMR2 InDel marker). Markers have also been identified for key agronomic and morphological traits, such as those governing petal color (InDel markers for BoCCD4), leaf waxiness (BoGL1, BoGL-3, Cgl1, Cgl2, BoWax1, and BoCER2), and leaf color (ygl-1, BoMYB2, BoMYBL2-1). The review also included markers for resistance to abbioticaly induced negative physiological processes, such as head splitting (QTL SPL-2-1, Bol016058), bolting (resistance loci-associated SSR marker), prolonged flowering time (BoFLC1,2 genes), and high- and low-temperature tolerance (BoTPPI-2, BoCSDP5, BoCCA1). Despite these advancements, the review highlights that the marker repertoire for cabbage remains limited compared with other Brassicaceae species, particularly for complex polygenic traits. This synthesis is a valuable resource for breeders and researchers, facilitating the development of superior head cabbage cultivars and hybrids. Full article
(This article belongs to the Section Crop Breeding and Genetics)
16 pages, 635 KB  
Article
Field Evaluation of Spent Pleurotus ostreatus Substrate Reveals Limited Suppression of Fusarium Wilt in Banana
by Walter Ocimati, Geofrey Ogwal, Elizabeth Kearsley and Guy Blomme
J. Fungi 2025, 11(11), 816; https://doi.org/10.3390/jof11110816 - 18 Nov 2025
Viewed by 546
Abstract
Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt of banana, can persist in the soil for extended periods as chlamydospores or endophytes in weeds, complicating control measures. No single control strategy is effective. Biological agents present an increasingly important [...] Read more.
Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt of banana, can persist in the soil for extended periods as chlamydospores or endophytes in weeds, complicating control measures. No single control strategy is effective. Biological agents present an increasingly important control option. This study explored the potential of the spent P. ostreatus substrates (SPoS) to suppress Foc R1 in a field with high Foc inoculum, following laboratory and greenhouse studies that highlighted the potential of P. ostreatus as a biocontrol agent against Foc. A susceptible cultivar ‘Sukali Ndizi’ and a resistant cultivar ‘Mpologoma’ were used for the study. SPoS was compared with farmyard manure (FYM), a combination of SPoS with FYM and a control without treatment. A one-time application of the treatments at planting did not consistently and significantly (p > 0.05) reduce the prevalence and severity of leaf symptoms, pseudostem splitting and corm damage in the mother and ratoon plants of the susceptible cultivar. No symptoms occurred in ‘Mpologoma’. SPoS applications at planting and after every two months over an 8-month period did not significantly reduce leaf symptoms and corm damage in ‘Sukali Ndizi’, while it increased pseudostem splitting. The marginal and irregular reductions in FW could be due to an observed high weevil damage in SPoS treatments and other confounding factors such as weather, SPoS quality, and pathogen load in the field. Further research on weevil–SPoS interactions, use of P. ostreatus mycelium-rich substrate, and other confounding factors is crucial for fine tuning P. ostreatus use. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

18 pages, 6430 KB  
Article
Evaluation of Biocontrol Efficacy of Bacillus velezensis HAB-2 Combined with Pseudomonas hunanensis and Enterobacter soli Against Cowpea Fusarium Wilt
by Wei Wei, Tianlong Qi, Jinpeng Lu, Xi Wei, Peilin Wu, Justice Norvienyeku, Weiguo Miao and Wenbo Liu
Microorganisms 2025, 13(11), 2578; https://doi.org/10.3390/microorganisms13112578 - 12 Nov 2025
Viewed by 741
Abstract
Cowpea Fusarium wilt (CFW) is a soilborne fungal disease caused by Fusarium oxysporum f. sp. tracheiphilum (Fot), leading to substantial yield losses globally. This study evaluates the biocontrol potential of Bacillus velezensis HAB-2 and develops a microbial combination for effective disease management. B. [...] Read more.
Cowpea Fusarium wilt (CFW) is a soilborne fungal disease caused by Fusarium oxysporum f. sp. tracheiphilum (Fot), leading to substantial yield losses globally. This study evaluates the biocontrol potential of Bacillus velezensis HAB-2 and develops a microbial combination for effective disease management. B. velezensis HAB-2 suppressed F. oxysporum f. sp. tracheiphilum AIQBFO93 growth by 69.8% in vitro and exhibited multiple plant growth-promoting traits. Pot experiments demonstrated that HAB-2 alone achieved a 47.62% control rate against CFW. Furthermore, two compatible plant growth-promoting rhizobacteria (PGPR), Pseudomonas hunanensis HD33 and Enterobacter soli HD42, were isolated from the rhizosphere soil of cowpea previously treated with HAB-2. These two strains were combined with HAB-2 at different concentrations in 15 microbial combinations. The combined application of the three strains provided more consistent disease control, with the optimal combination demonstrating a 15.15% higher control rate than HAB-2 alone. Compared to the untreated control, this combination significantly increased cowpea fresh weight, leaf area, and plant height by 10.60%, 8.04%, and 7.81%, respectively, and upregulated the expression of defense-related genes, indicating enhanced resistance. These results confirm that B. velezensis HAB-2 is an effective biocontrol agent against wilt disease, and its synergistic application with functionally complementary PGPR strains provides a viable strategy for sustainable crop disease management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

30 pages, 9645 KB  
Review
Molecular Breeding for Fungal Resistance in Common Bean
by Luciana Lasry Benchimol-Reis, César Júnior Bueno, Ricardo Harakava, Alisson Fernando Chiorato and Sérgio Augusto Morais Carbonell
Int. J. Mol. Sci. 2025, 26(21), 10387; https://doi.org/10.3390/ijms262110387 - 25 Oct 2025
Viewed by 915
Abstract
Despite the recognized social and economic importance of common beans (Phaseolus vulgaris L.), the average grain yield is far below the productive potential of cultivars. This situation is explained by several factors, such as the large number of diseases and pests that [...] Read more.
Despite the recognized social and economic importance of common beans (Phaseolus vulgaris L.), the average grain yield is far below the productive potential of cultivars. This situation is explained by several factors, such as the large number of diseases and pests that affect the crop, some of which cause significant damage. It is estimated that approximately 200 diseases can significantly affect common beans. These can be bacterial, viral, fungal, and nematode-induced. The main bean fungal diseases include anthracnose, angular leaf spot, powdery mildew, gray mold, Fusarium wilt, dry root rot, Pythium root rot, southern blight, white mold, charcoal rot and rust. This review provides a comprehensive overview of eleven major fungal diseases affecting common bean, describing their associated damage, characteristic symptomatology, and the epidemiological factors that favor disease development. It further synthesizes current knowledge on host resistance mechanisms that can be exploited to develop molecularly informed resistant genotypes. The compilation includes characterized resistance genes and mapped quantitative trait loci (QTLs), with details on their chromosomal locations, genetic effects, and potential for use in breeding. Moreover, the review highlights successful applications of molecular breeding approaches targeting fungal resistance. Finally, it discusses conclusions and future perspectives for integrating advanced genetic improvement strategies—such as marker-assisted selection, genomic selection, gene editing, and pyramiding—to enhance durable resistance to fungal pathogens in common bean. This work serves as both a reference for forthcoming resistance-mapping studies and a guide for the strategic selection of resistance loci in breeding programs aimed at developing cultivars with stable and long-lasting fungal resistance. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

19 pages, 2206 KB  
Article
Sclerotia-Mediated Soil Microbiome Modulation in Rice–Rapeseed Cropping Systems
by Mirza Abid Mehmood, Jianguang Wang, Jiasen Cheng, Jiatao Xie, Daohong Jiang and Yanping Fu
J. Fungi 2025, 11(10), 755; https://doi.org/10.3390/jof11100755 - 21 Oct 2025
Viewed by 862
Abstract
Rhizoctonia solani (Rs) and Sclerotinia sclerotiorum (Ss) are devastating pathogens of rice and rapeseed, contributing 20–69% and 10–50% of yield losses, respectively. These pathogens develop resistant overwintering and/or oversummering sclerotia, which serve as inocula for infection in the subsequent season under favorable conditions. [...] Read more.
Rhizoctonia solani (Rs) and Sclerotinia sclerotiorum (Ss) are devastating pathogens of rice and rapeseed, contributing 20–69% and 10–50% of yield losses, respectively. These pathogens develop resistant overwintering and/or oversummering sclerotia, which serve as inocula for infection in the subsequent season under favorable conditions. The present study was designed to investigate the month-wise variation in microbial diversity by mixing Rs and Ss sclerotia separately in rice-rapeseed rotation field soil, thereby identifying key microbial players associated with specific sclerotia and their implications for subsequent crops. Therefore, we incubated 2.5 g of Rs and Ss sclerotia in 100 g of soil for 3 months to mimic the field conditions and subjected month-wise soil samples to 16S rRNA and ITS2 sequencing. Data analysis of bacterial communities revealed diversity, richness, and evenness in Ss treated soil samples compared to the control, while fungal communities exhibited less diversity. These results were also evident in PCoA and hierarchical clustering, where control and treated samples were scattered in 16S rRNA and ITS sequencing. Genus level diversity exhibited enrichment of bacterial genera with known beneficial potential, notably Acidibacter, Stenotrophobacter, Sphingomonas, Flavisolibacter, Gaiella, and Neobacillus in control. Beneficial bacterial genera such as Ramlibacter, Geomonas, Kofleria, Nitrospira, and Paraflavitalea were enriched in Ss treated soil samples. The addition of Ss and Rs sclerotia activated several beneficial fungi, notably Trichoderma, Talaromyces, Clonostachys in Ss treated samples, and Vermispora, Hyalorbilia, Mortierella, Lecanicillium in Rs treated samples. Additionally, Rs treated soil samples also activated pathogenic genera, including Typhula, Fusarium, and Rhizoctonia. Sclerotia in soil modulates the microbiome and activates beneficial and pathogenic microbes. During the off-season, the Sclerotinia inoculum pressure in the soil reduces, and it is safe to grow crops next season. Whereas, in the case of Rhizoctonia infected soil, it is suggested to avoid growing crops susceptible to wilt, root rot, and blight. However, field experiments to understand the pathogen–pathogen interactions around the sclerotiosphere require further exploration. Full article
(This article belongs to the Special Issue Utilizing Fungal Diversity for Sustainable Biotechnology)
Show Figures

Figure 1

17 pages, 7540 KB  
Article
Genome-Wide Analysis of the Thiamine Biosynthesis Gene Families in Common Bean Reveals Their Crucial Roles Conferring Resistance to Fusarium Wilt
by Ming Feng, Yu Liu, Yang Zhao, Tao Li, Jian Chen, Yuning Huang, Weide Ge, Chao Zhong and Renfeng Xue
Biology 2025, 14(10), 1366; https://doi.org/10.3390/biology14101366 - 6 Oct 2025
Viewed by 851
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a major constraint to global common bean (Phaseolus vulgaris L.) production. Thiamine (vitamin B1), an essential coenzyme in plant metabolism, has recently emerged as a potential regulatory factor in plant defense. [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a major constraint to global common bean (Phaseolus vulgaris L.) production. Thiamine (vitamin B1), an essential coenzyme in plant metabolism, has recently emerged as a potential regulatory factor in plant defense. Here, we performed a comprehensive genome-wide analysis of thiamine biosynthesis-related genes in common bean and elucidated their roles in resistance to Fusarium wilt. Five key thiamine biosynthetic genes were identified and characterized, showing conserved functional domains and evolutionary conservation across species. Expression profiling revealed tissue-specific patterns, with PvTHI1-1 and PvTHIC being highly expressed in reproductive and photosynthetic organs, with their relative expression levels 0.28–0.57 higher than other members in the same tissue, while PvTPK maintained a basal expression level in the roots. Upon Fop infection, resistant genotypes exhibited significantly higher expression of thiamine biosynthetic genes and greater accumulation of endogenous thiamine and its derivatives than susceptible ones. Functional analysis using Agrobacterium rhizogenes-mediated transformation demonstrated that overexpression of PvTPK enhanced thiamine metabolism and conferred resistance in susceptible genotypes. Similarly, exogenous application of thiamine upregulated biosynthetic genes and improved disease resistance. Together, these results reveal that thiamine biosynthesis is intricately linked to Fusarium wilt resistance and that both genetic and biochemical manipulation of thiamine pathways can enhance disease tolerance. This study provides new insights into thiamine-mediated plant immunity and establishes a foundation for its application in the control of Fusarium wilt in common bean. Full article
Show Figures

Figure 1

24 pages, 5277 KB  
Article
Bacillus subtilis Strain TCX1 Isolated from Ambrosia artemisiifolia: Enhancing Cucumber Growth and Biocontrol Against Cucumber Fusarium Wilt
by Yuzhu Dong, Mengzhuo Zhu, Yingwen Zhao, Enjing Yi, Jing Zhang, Ze Wang, Chenxi Wang, Cuimei Yu and Lianju Ma
Plants 2025, 14(19), 3068; https://doi.org/10.3390/plants14193068 - 4 Oct 2025
Viewed by 946
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), leads to widespread yield losses and quality deterioration in cucumber. Endophytes, as environmentally friendly control agents that enhance pathogen resistance in their host plants, may mitigate these problems. In this [...] Read more.
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), leads to widespread yield losses and quality deterioration in cucumber. Endophytes, as environmentally friendly control agents that enhance pathogen resistance in their host plants, may mitigate these problems. In this study, we isolated 14 endophytic bacteria from invasive Ambrosia artemisiifolia and screened the strain Bacillus subtilis TCX1, which exhibited significant antagonistic activity against FOC (inhibitory rate of 86.0%). TCX1 killed Fusarium oxysporum by being highly likely to produce lipopeptide and producing wall hydrolytic enzymes including protease, cellulase, and β-glucanase, thereby inhibiting mycelial growth and spore germination and causing peroxidation of FOC’s cytoplasmic membrane. In addition to its direct effects, TCX1 exerts indirect effects by inducing cucumber resistance to FOC. When cucumber seedlings were inoculated with TCX1, antioxidant enzymes related to disease resistance, including Superoxide dismutase (SOD), Peroxidase (POD), Polyphenol oxidase (PPO) and Phenylalanine ammonialyase (PAL) in cucumber, were significantly increased. The marker genes involved in induced systemic resistance and the salicylic acid signaling pathway, such as npr1, pr1a, pr2, pr9, lox1, and ctr1, were also dramatically upregulated, indicating these pathways played an important role in improving cucumber resistance. Notably, TCX1 can also promote cucumber growth through producing indole-3-acetic acid, solubilizing phosphate, and secreting siderophores. Given that TCX1 has dual functions as both a biological control agent and a biofertilizer, it offers an effective strategy for managing cucumber seedling blight while enhancing plant productivity. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

14 pages, 2135 KB  
Article
Casparian Strip Fortification as a Defense Mechanism to Fusarium oxysporum f. sp. vasinfectum Race 4 Infection in a Highly Resistant Gossypium barbadense Cultivar
by Stephen Parris, Sonika Kumar, Zhigang Li, Jim Olvey, Mike Olvey, Don C. Jones and Christopher A. Saski
Genes 2025, 16(10), 1158; https://doi.org/10.3390/genes16101158 - 29 Sep 2025
Viewed by 764
Abstract
Background/Objectives: Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (FOV), is a destructive vascular disease that severely impacts cotton production. Among its variants, race 4 (FOV4) is especially aggressive, leading to early season stand losses and yield reductions. While resistant [...] Read more.
Background/Objectives: Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (FOV), is a destructive vascular disease that severely impacts cotton production. Among its variants, race 4 (FOV4) is especially aggressive, leading to early season stand losses and yield reductions. While resistant cultivars of Gossypium barbadense (pima cotton) have been developed, the molecular basis of this resistance remains unclear. This study aimed to characterize transcriptomic responses associated with FOV4 resistance in pima cotton. Methods: We conducted an in vitro infection assay using two G. barbadense cultivars with contrasting phenotypes: the highly resistant ‘DP348RF’ and the highly susceptible ‘GB1031’. Root tissues were sampled at multiple stages of infection, and RNA sequencing was performed to identify differentially expressed genes and pathways contributing to resistance. Results: Resistant plants ‘DP348RF’ showed strong induction of genes related to reactive oxygen species (ROS) metabolism, chitinase activity, and lignification compared to the susceptible cultivar. Notably, genes involved in the biosynthesis and reinforcement of the Casparian strip, a critical biochemical barrier limiting pathogen penetration into vascular tissues, were uniquely and significantly upregulated in resistant roots. These transcriptional responses suggest that fortification of cell wall barriers and enhanced antimicrobial defenses contribute to effective restriction of FOV4 colonization. Conclusions: Our findings identify a distinct molecular signature of resistance to FOV4 in pima cotton, with Casparian strip reinforcement emerging as a potential mechanism limiting vascular infection. These insights provide a foundation for breeding strategies aimed at improving Fusarium wilt resistance in cotton. Full article
Show Figures

Figure 1

18 pages, 8305 KB  
Article
Characterization of Two Potential Biocontrol Bacillus Strains Against Maize Stalk Rot
by Zhiwei Feng, Mengyao Qin, Xiaobing Ma, Ruiyun Feng, Huifang Zhao, Yingchao Meng and Chunzhen Cheng
Microorganisms 2025, 13(10), 2255; https://doi.org/10.3390/microorganisms13102255 - 26 Sep 2025
Viewed by 912
Abstract
Maize stalk rot (MSR) is one of the most devastating fungal diseases affecting maize worldwide. In recent years, biological control agents have emerged as an environmentally friendly and highly attractive strategy for managing MSR. In this study, two Bacillus strains—B. subtilis KP3P9 [...] Read more.
Maize stalk rot (MSR) is one of the most devastating fungal diseases affecting maize worldwide. In recent years, biological control agents have emerged as an environmentally friendly and highly attractive strategy for managing MSR. In this study, two Bacillus strains—B. subtilis KP3P9 and B. siamensis K13C—were shown to effectively inhibit the growth of the MSR pathogen Fusarium graminearum in vitro. Pot experiments showed that inoculation with KP3P9 significantly increased plant height, stem width, above-ground part fresh weight, and total plant fresh weight, whereas K13C significantly improved the stem width and under-ground part fresh weight of maize seedlings (p < 0.05), demonstrating their plant-growth-promoting potential. Moreover, both strains markedly reduced the disease severity indices (DSIs) of maize seedlings, indicating that they can enhance maize resistance to the pathogen. Whole-genome sequencing using Oxford Nanopore (ONT) and Illumina technologies showed that the complete genomes of KP3P9 and K13C contained biosynthetic gene clusters involved in the biosynthesis of antimicrobial secondary metabolites, including fengycin, bacillibactin, subtilin, pulcherriminic acid, subtilosin A, bacilysin, and others. Moreover, both strains exhibited strong antagonistic activity against F. solani (the causal pathogen of apple replant disease), as well as F. oxysporum f. sp. cubense race 1 (Foc1) and tropical race 4 (FocTR4) (pathogens responsible for banana wilt disease), with inhibition rates exceeding 70% in vitro. These results indicate that KP3P9 and K13C are promising biocontrol agents for MSR and other devastating Fusarium diseases. Full article
(This article belongs to the Special Issue Microbial Biocontrol in the Agri-Food Industry, 2nd Edition)
Show Figures

Figure 1

20 pages, 3592 KB  
Article
Biocontrol Potential of Bacillus amyloliquefaciens PP19 in Alleviating Watermelon Continuous Cropping Obstacles
by Li Zheng, Jiehao Huang, Guansheng Li, Quan Chen, Tom Hsiang, Xiulong Chen and Shilian Huang
Horticulturae 2025, 11(10), 1155; https://doi.org/10.3390/horticulturae11101155 - 25 Sep 2025
Viewed by 1127
Abstract
Continuous cropping obstacles (CCOs) lead to a decline in yield and quality under repeated cultivation in the same farmland. Notably, CCOs caused by fusarium wilt, autotoxicity, or imbalance in rhizosphere microbial communities reduce the productivity of watermelons (Citrullus lanatus). Considering the [...] Read more.
Continuous cropping obstacles (CCOs) lead to a decline in yield and quality under repeated cultivation in the same farmland. Notably, CCOs caused by fusarium wilt, autotoxicity, or imbalance in rhizosphere microbial communities reduce the productivity of watermelons (Citrullus lanatus). Considering the negative environmental impacts of conventional agrochemicals, it is necessary to evaluate the biocontrol efficiency of microorganisms. Therefore, this study aimed to investigate the biocontrol efficiency of Bacillus amyloliquefaciens strain PP19 against CCOs of watermelon so as to develop alternatives to agrochemicals. The inhibitory effect of PP19 on watermelon fusarium wilt was assessed through plate confrontation assays and field trials. The degradation and utilization of autotoxins by PP19 were examined via co-culture experiments. Additionally, 16S rRNA sequencing was employed to analyze the impact of PP19 on the rhizosphere soil microbial community of watermelon. Specifically, we analyzed the PP19 utilization of four phenolic autotoxins secreted by watermelon roots and assessed their effects on microbial diversity in the watermelon rhizosphere. Plant growth assays showed that PP19 improved the weight and quality of watermelon fruit. Although PP19 inhibited the growth of Fusarium oxysporum f. sp. niveum (Fon), the growth inhibitory effect was significantly enhanced by autotoxins produced by watermelon, including mixed phenolic, cinnamic, ferulic, and p-coumaric acids. Additionally, PP19 effectively degraded and utilized the autotoxins, and the autotoxins enhanced PP19’s swimming ability and biofilm formation. Moreover, PP19 treatment significantly enhanced the microbial diversity in watermelon rhizosphere, increased the number of beneficial bacterial genera, and decreased the number of pathogenic genera. Conclusively, these results suggest that B. amyloliquefaciens strain PP19 improves the resistance of watermelon to CCOs by effectively utilizing and degrading autotoxin, altering soil microbial community structure, and inhibiting Fon17 growth, resulting in improved fruit quality. Overall, PP19 possesses potential application as a biological control agent against CCOs in commercial watermelon cultivation. Full article
Show Figures

Figure 1

20 pages, 3813 KB  
Article
Molecular and Phytopathological Characterization of Fusarium Wilt-Resistant Chickpea Genotypes for Breeding Applications
by Raushan Yerzhebayeva, Alfiya Abekova, Kuralay Baitarakova, Mukhtar Kudaibergenov, Aydarkhan Yesserkenov, Bekzhan Maikotov and Svetlana Didorenko
Agriculture 2025, 15(19), 1992; https://doi.org/10.3390/agriculture15191992 - 23 Sep 2025
Viewed by 682
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (Foc), is a devastating disease of chickpea (Cicer arietinum L.), leading to vascular necrosis and plant death. This study evaluated 120 chickpea genotypes under natural infection field conditions during spring sowing [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (Foc), is a devastating disease of chickpea (Cicer arietinum L.), leading to vascular necrosis and plant death. This study evaluated 120 chickpea genotypes under natural infection field conditions during spring sowing in southeastern Kazakhstan, assessing disease incidence (DI) and severity (DS) to identify resistant germplasm. Molecular screening using eight SSR markers linked to Foc-1, Foc-2, Foc-3, and Foc-5 loci detected resistant alleles in 18, 26, 19, and 42 genotypes, respectively. The correlation between molecular marker data and phenotypic resistance evaluations confirmed UBC-170 (Foc-2) and TA-194 (Foc-5) as the most predictive diagnostic markers (p < 0.01). Ten genotypes showed complete disease resistance (DI < 5%, R), corresponding to the resistant control (cultivar “WR-315”), with confirmed presence of multiple Foc resistance genes. The results of this study revealed valuable genetic resources for marker-assisted breeding programs aimed at developing Fusarium wilt-resistant chickpea cultivars adapted to Central Asian agroclimatic conditions. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

17 pages, 2562 KB  
Article
StSUT2 Regulates Cell Wall Architecture and Biotic Stress Responses in Potatoes (Solanum tuberosum)
by Huiling Gong, Hongmei Li, Chenxia Wang, Qian Kui, Leonce Dusengemungu, Xia Cai and Zaiping Feng
Plants 2025, 14(18), 2941; https://doi.org/10.3390/plants14182941 - 22 Sep 2025
Viewed by 779
Abstract
Plant sucrose transporters (SUTs) are essential membrane proteins that mediate sucrose phloem loading in source tissues and unloading in sink tissues. In addition to their role in carbohydrate partitioning, SUTs have been implicated in plant responses to both biotic and abiotic stresses. Our [...] Read more.
Plant sucrose transporters (SUTs) are essential membrane proteins that mediate sucrose phloem loading in source tissues and unloading in sink tissues. In addition to their role in carbohydrate partitioning, SUTs have been implicated in plant responses to both biotic and abiotic stresses. Our previous research demonstrated that silencing StSUT2 in potatoes (Solanum tuberosum) affects plant growth, flowering time, and tuber yield, with transcriptomic analysis suggesting its involvement in cell wall metabolic pathways. In this study, we further investigated the effects of StSUT2 inhibition on the cell wall structure and biotic stress response of potatoes. Transmission electron microscopy revealed that the tuber cell wall thickness of the StSUT2 RNA interference (RNAi) line RNAi-2 was reduced by 7.8%, and the intercellular space was increased by 214% compared with the wild-type plants. Biochemical analyses showed that StSUT2 silencing significantly decreased cellulose, hemicellulose, and lignin contents in both the leaves and tubers, e.g., tuber cellulose reduced by up to 20.1%, while pectin levels remained unaffected, with distinct effects on source leaves and sink tubers’ organs. Additionally, activities of cellulase, xyloglucan glycosyltransferase/hydrolase XTH, and polygalacturonase were elevated in RNAi lines, e.g., leaf cellulase increased by 43.3%, whereas the pectinase activity was unchanged. Pathogen inoculation assays demonstrated that StSUT2 RNAi lines were more susceptible to Ralstonia solanacearum bacterial wilt and Fusarium sulphureum dry rot, showing larger leaf lesions, wider tuber necrotic plaques, and severe seedling wilting. These findings demonstrate that silencing StSUT2 regulates the cell wall structure, composition, and the activity of cell wall-degrading enzymes, thereby reducing the plant’s resistance to fungal and bacterial pathogens. Full article
Show Figures

Figure 1

Back to TopTop