Casparian Strip Fortification as a Defense Mechanism to Fusarium oxysporum f. sp. vasinfectum Race 4 Infection in a Highly Resistant Gossypium barbadense Cultivar
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Growth and Inoculations
2.2. RNA Isolation and Sequencing
2.3. Transcritomics and Data Analysis
3. Results
3.1. In Vitro FOV4 Infection and Transcriptome Profiling of a Highly Resistant and Susceptible Pima Cultivar
3.2. Functional Enrichment Analysis of DEGs in ‘DP348RF’
3.3. Casparian Strip Biofortification in Response to FOV4 Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FOV4 | Fusarium oxysporum f. sp. vasinfectum race 4 |
ROS | Reactive oxygen species |
ELS | Extra-long staple |
VCG | Vegetative compatibility groups |
PDA | Potato dextrose agar |
DI | Deionized |
hai | Hours after inoculation |
DEG | Differentially expressed gene |
dpi | Days post inoculation |
GO | Gene ontology |
BP | Biological processes |
CC | Cellular components |
MF | Molecular functions |
PPS | Pathway perturbation scores |
CASP | Casparian strip membrane protein |
PER64 | Peroxidase 64 |
RBOHF | Respiratory burst oxidase homolog F |
PAMP | Pathogen-associated molecular pattern |
References
- Meyer, L. Cotton Sector at a Glance. Available online: https://www.ers.usda.gov/topics/crops/cotton-and-wool/cotton-sector-at-a-glance/ (accessed on 12 April 2023).
- Munk, D.S. Plant density and planting date impacts on pima cotton development. In Proceedings of the 10th Australian Agronomy Conference, Hobart, Australia, 29 January–1 February 2001. [Google Scholar]
- Cianchetta, A.N.; Allen, T.W.; Hutmacher, R.B.; Kemerait, R.C.; Kirkpatrick, T.L.; Lawrence, G.W.; Lawrence, K.S.; Mueller, J.D.; Nichols, R.L.; Olsen, M.W. Survey of Fusarium oxysporum f. sp. vasinfectum in the United States. J. Cotton Sci. 2015, 19, 328–336. [Google Scholar] [CrossRef]
- Atkinson, G. 3. Frenching. In Some Diseases of Cotton; Agricultural Experiment Station of the Agricultural and Mechanical College: Auburn, AI, USA, 1892; pp. 19–29. [Google Scholar]
- Armstrong, G.M.; Armstrong, J.K. American, Egyptian, and Indian Cotton-Wilt Fusaria: Their Pathogenicity and Relationship to Other Wilt Fusaria; US Department of Agriculture: Washington, DC, USA, 1960.
- Bell, A.A.; Gu, A.; Olvey, J.; Wagner, T.A.; Tashpulatov, J.J.; Prom, S.; Quintana, J.; Nichols, R.L.; Liu, J. Detection and Characterization of Fusarium oxysporum f. sp. vasinfectum VCG0114 (Race 4) Isolates of Diverse Geographic Origins. Plant Dis. 2019, 103, 1998–2009. [Google Scholar] [CrossRef]
- Popa-Baez, A.A.-O.; Smith, L.A.-O.; Stiller, W.A.-O.; Soliveres, M.A.-O.; Pandey, G.A.-O.; Saski, C.A.-O.; Jones, D.A.-O.X.; Wilson, I.A.-O. Comparative Genomics Reveals Ancient and Unique Pathogenicity Features in Australian Fusarium oxysporum f. sp. vasinfectum. LID-481. J. Fungi 2025, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.N.; Snyder, W.C. Persistence of Fusarium oxysporum f. sp. vasinfectum. Phytopathology 1975, 65, 190–196. [Google Scholar] [CrossRef]
- Kim, Y.; Hutmacher, R.; Davis, R. Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Dis. 2005, 89, 366–372. [Google Scholar] [CrossRef]
- Halpern, H.C.; Bell, A.A.; Wagner, T.A.; Liu, J.; Nichols, R.L.; Olvey, J.; Woodward, J.E.; Sanogo, S.; Jones, C.A.; Chan, C.T.; et al. First Report of Fusarium Wilt of Cotton Caused by Fusarium oxysporum f. sp. vasinfectum Race 4 in Texas, U.S.A. Plant Dis. 2018, 102, 446. [Google Scholar] [CrossRef]
- USDA. Pima Cotton-Acres Planted. Available online: https://data.nal.usda.gov/dataset/nass-quick-stats (accessed on 12 April 2023).
- Xing, B.; Li, P.; Li, Y.; Cui, B.; Sun, Z.; Chen, Y.; Zhang, S.; Liu, Q.; Zhang, A.; Hao, L.; et al. Integrated Transcriptomic and Metabolomic Analysis of G. hirsutum and G. barbadense Responses to Verticillium wilt Infection. Int. J. Mol. Sci. 2025, 26, 28. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, Q.; Chen, D.; Zhan, L.; Zeng, K.; Gu, A.; Zhou, J.; Zhang, Y.; Zhu, Y.; Gao, W.; et al. The susceptibility of sea-island cotton recombinant inbred lines to Fusarium oxysporum f. sp. vasinfectum infection is characterized by altered expression of long noncoding RNAs. Sci. Rep. 2019, 9, 2894. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Yang, Q.; Song, S.; Zhang, Y.; Zhang, X.; Sun, J.; Liu, F.; Li, Y. Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process. J. Fungi 2024, 10, 773. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, J.; Hou, S.; Xu, F.; Zhang, C.; Cai, D.; Cao, X.; Yao, Z.; Zhao, S. Integrative identification of key genes governing Verticillium wilt resistance in Gossypium hirsutum using machine learning and WGCNA. Front. Plant Sci. 2025, 16, 1621604. [Google Scholar] [CrossRef] [PubMed]
- Parris, S.M.; Jeffers, S.N.; Olvey, J.M.; Olvey, J.M.; Adelberg, J.W.; Wen, L.; Udall, J.A.; Coleman, J.J.; Jones, D.C.; Saski, C.A. An In Vitro Co-Culture System for Rapid Differential Response to Fusarium oxysporum f. sp. vasinfectum Race 4 in Three Cotton Cultivars. Plant Dis. 2022, 106, 990–995. [Google Scholar] [CrossRef]
- Adelberg, J.; Naylor-Adelberg, J.; Miller, S.; Gasic, K.; Schnabel, G.; Bryson, P.; Saski, C.; Parris, S.; Reighard, G. In vitro co-culture system for Prunus spp. and Armillaria mellea in phenolic foam rooting matric. In Vitro Cell. Dev. Biol.-Plant 2021, 57, 387–397. [Google Scholar] [CrossRef]
- Seo, S.; Pokhrel, A.; Coleman, J.J. The Genome Sequence of Five Genotypes of Fusarium oxysporum f. sp. vasinfectum: A Resource for Studies on Fusarium Wilt of Cotton. Mol. Plant-Microbe Interact. 2020, 33, 138–140. [Google Scholar] [CrossRef]
- Kumar, S.; Ruggles, A.; Logan, S.; Mazarakis, A.; Tyson, T.; Bates, M.; Grosse, C.; Reed, D.; Li, Z.; Grimwood, J.; et al. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. Plants 2021, 10, 1775. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Yuan, D.; Tang, Z.; Wang, M.; Gao, W.; Tu, L.; Jin, X.; Chen, L.; He, Y.; Zhang, L.; Zhu, L.; et al. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci. Rep. 2015, 5, 17662. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M. GO.db: A set of annotation maps describing the entire Gene Ontology, R package version 3.2.0; R Project: Vienna, Austria, 2023.
- Warnes, G.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. gplots: Various R Programming Tools for Plotting Data, R package version 3.2.0; R Project: Vienna, Austria, 2022.
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Karp, P.D.; Latendresse, M.; Caspi, R. The pathway tools pathway prediction algorithm. Stand. Genom. Sci. 2011, 5, 424–429. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Midford, P.E.; Ong, Q.; Ong, W.K.; et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018, 46, D633–D639. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jung, S.; Cheng, C.-H.; Lee, T.; Zheng, P.; Buble, K.; Crabb, J.; Humann, J.; Hough, H.; Jones, D.; et al. CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research. Plants 2021, 10, 2805. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Altman, T.; Billington, R.; Dreher, K.; Foerster, H.; Fulcher, C.A.; Holland, T.A.; Keseler, I.M.; Kothari, A.; Kubo, A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2013, 42, D459–D471. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yang, M.; Chang, J.; Wu, J.; Zhong, F.; Rahman, A.; Qin, H.; Wu, S. Spatial Expression and Functional Analysis of Casparian Strip Regulatory Genes in Endodermis Reveals the Conserved Mechanism in Tomato. Front. Plant Sci. 2018, 9, 832. [Google Scholar] [CrossRef]
- Almagro, L.; Gómez Ros, L.V.; Belchi-Navarro, S.; Bru, R.; Ros Barceló, A.; Pedreño, M.A. Class III peroxidases in plant defence reactions. J. Exp. Bot. 2008, 60, 377–390. [Google Scholar] [CrossRef]
- Pomar, F.; Novo, M.; Bernal, M.A.; Merino, F.; Barceló, A.R. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol. 2004, 163, 111–123. [Google Scholar] [CrossRef]
- Ali, M.; Li, Q.H.; Zou, T.; Wei, A.M.; Gombojab, G.; Lu, G.; Gong, Z.H. Chitinase Gene Positively Regulates Hypersensitive and Defense Responses of Pepper to Colletotrichum acutatum Infection. Int. J. Mol. Sci. 2020, 21, 6624. [Google Scholar] [CrossRef]
- Hudspeth, R.L.; Hobbs, S.L.; Anderson, D.M.; Grula, J.W. Characterization and expression of chitinase and 1,3-β-glucanase genes in cotton. Plant Mol. Biol. 1996, 31, 911–916. [Google Scholar] [CrossRef]
- Stacey, G.; Shibuya, N. Chitin recognition in rice and legumes. Plant Soil. 1997, 194, 161–169. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, X.C.; Neece, D.; Ramonell, K.M.; Clough, S.; Kim, S.Y.; Stacey, M.G.; Stacey, G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 2008, 20, 471–481. [Google Scholar] [CrossRef]
- Karp, P.D.; Paley, S.M.; Krummenacker, M.; Latendresse, M.; Dale, J.M.; Lee, T.J.; Kaipa, P.; Gilham, F.; Spaulding, A.; Popescu, L. Pathway Tools version 13.0: Integrated software for pathway/genome informatics and systems biology. Brief. Bioinform. 2010, 11, 40–79. [Google Scholar] [CrossRef]
- Rojas-Murcia, N.; Hématy, K.; Lee, Y.; Emonet, A.; Ursache, R.; Fujita, S.; De Bellis, D.; Geldner, N. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. Proc. Natl. Acad. Sci. USA 2020, 117, 29166–29177. [Google Scholar] [CrossRef]
- Naseer, S.; Lee, Y.; Lapierre, C.; Franke, R.; Nawrath, C.; Geldner, N. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci. USA 2012, 109, 10101–10106. [Google Scholar] [CrossRef] [PubMed]
- Kawa, D.; Brady, S.M. Root cell types as an interface for biotic interactions. Trends Plant Sci. 2022, 27, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, T.; Kan, J.; Yao, Y.; Guo, D.; Yang, Y.; Ling, X.; Wang, J.; Zhang, B. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnol. J. 2022, 20, 722–735. [Google Scholar] [CrossRef]
- Lee, M.H.; Jeon, H.S.; Kim, S.H.; Chung, J.H.; Roppolo, D.; Lee, H.J.; Cho, H.J.; Tobimatsu, Y.; Ralph, J.; Park, O.K. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. Embo J. 2019, 38, e101948. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, A.; Planas-Marquès, M.; Capellades, M.; Valls, M.; Coll, N.S. Blocking intruders: Inducible physico-chemical barriers against plant vascular wilt pathogens. J. Exp. Bot. 2021, 72, 184–198. [Google Scholar] [CrossRef]
- Muro, K.; Kamiyo, J.; Wang, S.; Geldner, N.; Takano, J. Casparian strips prevent apoplastic diffusion of boric acid into root steles for excess B tolerance. Front. Plant Sci. 2023, 14, 988419. [Google Scholar] [CrossRef]
- Holbein, J.; Franke, R.B.; Marhavý, P.; Fujita, S.; Górecka, M.; Sobczak, M.; Geldner, N.; Schreiber, L.; Grundler, F.M.W.; Siddique, S. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes. Plant J. 2019, 100, 221–236. [Google Scholar] [CrossRef] [PubMed]
All DEGs | ||||||
---|---|---|---|---|---|---|
All | Up | Down | ||||
total | unique | total | unique | total | unique | |
Resistant (DP348RF) | 15,501 | 9984 | 8668 | 6510 | 6833 | 6124 |
Susceptible (GB1031) | 12,448 | 6931 | 7206 | 5048 | 5290 | 4581 |
Shared | 5517 | 2158 | 709 | |||
DEGs LogFC2 2 | ||||||
All | Up | Down | ||||
total | unique | total | unique | total | unique | |
Resistant (DP348RF) | 1774 | 1261 | 1234 | 938 | 540 | 519 |
Susceptible (GB1031) | 2154 | 1641 | 1562 | 1266 | 592 | 571 |
Shared | 513 | 296 | 21 |
Gene | logFC | FDR | Best Hit Arabidopsis | Gene Defline |
---|---|---|---|---|
Gobar.A10G188700.1 | 5.21 | 6.11 × 10−44 | AT2G36780.1 | GLUCOSYL/GLUCURONOSYL TRANSFERASES//UDP-GLYCOSYLTRANSFERASE 73C7 |
Gobar.A11G027300.1 | 5.09 | 6.39 × 10−9 | AT4G12520.1 | Protease inhibitor/seed storage/LTP family (Tryp_alpha_amyl) |
Gobar.D01G161700.1 | 4.93 | 4.65 × 10−8 | AT2G37870.1 | (FAMILY NOT NAMED//NON-SPECIFIC LIPID-TRANSFER PROTEIN) |
Gobar.A02G022500.1 | 4.8 | 2.64 × 10−23 | AT4G14040.1 | 56kDa selenium binding protein (SBP56) (SBP56) |
Gobar.A13G253100.1 | 4.73 | 5.13 × 10−7 | AT1G08080.1 | CARBONIC ANHYDRASE//ALPHA CARBONIC ANHYDRASE 3 |
Gobar.D07G241500.1 | 4.69 | 6.83 × 10−38 | AT3G23230.1 | ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR ERF098 |
Gobar.D01G048500.1 | 4.63 | 5.30 × 10−24 | AT4G38700.1 | NUCLEOPORIN-RELATED//DIRIGENT PROTEIN 15-RELATED |
Gobar.D01G048600.1 | 4.63 | 5.30 × 10−24 | AT4G38700.1 | NUCLEOPORIN-RELATED//DIRIGENT PROTEIN 15-RELATED |
Gobar.D06G022400.1 | 4.62 | 7.89 × 10−5 | AT4G34150.1 | SYNAPTOTAGMIN |
Gobar.D07G241400.1 | 4.6 | 1.70 × 10−5 | AT3G23230.1 | ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR ERF098 |
Gobar.A01G152900.1 | 4.5 | 5.02 × 10−15 | AT2G37870.1 | FAMILY NOT NAMED//NON-SPECIFIC LIPID-TRANSFER PROTEIN |
Gobar.D11G026100.1 | 4.48 | 5.75 × 10−13 | AT4G12480.1 | Hydrophobic seed protein (Hydrophob_seed) |
Gobar.D05G169100.1 | 4.39 | 7.44 × 10−18 | AT2G33790.1 | ARABINOGALACTAN PROTEIN 31 |
Gobar.D11G286800.1 | 4.39 | 6.85 × 10−41 | AT1G60690.1 | Perakine reductase |
Gobar.A12G087900.1 | 4.36 | 2.08 × 10−26 | AT4G37980.1 | cinnamyl-alcohol dehydrogenase (E1.1.1.195) |
Gobar.D03G195800.1 | 4.34 | 2.87 × 10−5 | AT4G17030.1 | EXPANSIN-LIKE B1 |
Gobar.A05G123700.1 | 4.31 | 1.91 × 10−6 | AT1G76690.1 | NADH OXIDOREDUCTASE-RELATED |
Gobar.A06G015300.1 | 4.22 | 6.97 × 10−12 | AT4G31940.1 | Cytochrome P450 CYP2 subfamily |
Gobar.A09G113600.1 | 4.18 | 3.79 × 10−19 | AT5G60520.1 | Root cap (Root_cap) |
Gobar.D02G024900.1 | 4.18 | 1.99 × 10−12 | AT1G05530.1 | anthocyanidin 3-O-glucoside 5-O-glucosyltransferase (UGT75C1) |
Gobar.D12G083200.1 | 4.18 | 9.43 × 10−9 | AT4G37990.1 | cinnamyl-alcohol dehydrogenase (E1.1.1.195) |
Gobar.A13G225500.1 | 4.17 | 4.07 × 10−13 | AT4G03070.1 | OXIDOREDUCTASE, 2OG-FE II OXYGENASE FAMILY PROTEIN |
Gobar.A04G009300.1 | 4.15 | 3.96 × 10−6 | AT2G21110.1 | NUCLEOPORIN-RELATED//DIRIGENT PROTEIN 15-RELATED |
Gobar.D06G159700.1 | 4.14 | 8.78 × 10−29 | AT5G45890.1 | Cysteine proteinase Cathepsin F//Cysteine proteinase Cathepsin L |
Gobar.A12G058100.1 | 4.04 | 1.28 × 10−12 | AT4G37370.1 | E1.14.-.- |
Gobar.D01G048400.1 | 4.03 | 6.41 × 10−6 | AT4G38700.1 | NUCLEOPORIN-RELATED//DIRIGENT PROTEIN 15-RELATED |
Gobar.D13G269500.1 | 4.02 | 2.97 × 10−8 | AT1G08080.1 | CARBONIC ANHYDRASE//ALPHA CARBONIC ANHYDRASE 3 |
Gobar.A05G421900.1 | 3.99 | 2.92 × 10−28 | AT5G05340.1 | PEROXIDASE 52 |
Gobar.D12G160200.1 | 3.97 | 6.74 × 10−15 | AT1G03870.1 | FAMILY NOT NAMED//FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 13-RELATED |
Ontology | Over Represented p-Value | Associated DEGs | Total Genes with Ontology | Term | Category |
---|---|---|---|---|---|
GO:0008152 | 1.49 × 10−10 | 48 | 202 | metabolic process | BP |
GO:0006979 | 8.05 × 10−6 | 22 | 82 | response to oxidative stress | BP |
GO:0009607 | 1.31 × 10−5 | 12 | 30 | response to biotic stimulus | BP |
GO:0006952 | 1.81 × 10−5 | 14 | 41 | defense response | BP |
GO:0007017 | 3.82 × 10−5 | 8 | 16 | microtubule-based process | BP |
GO:0000786 | 3.17 × 10−12 | 16 | 22 | nucleosome | CC |
GO:0005874 | 4.67 × 10−6 | 9 | 19 | microtubule | CC |
GO:0005840 | 0.000143471 | 27 | 130 | ribosome | CC |
GO:0005622 | 0.000568915 | 23 | 115 | intracellular anatomical structure | CC |
GO:0005618 | 0.00094564 | 10 | 34 | cell wall | CC |
GO:0016758 | 4.05 × 10−13 | 28 | 63 | hexosyltransferase activity | MF |
GO:0003677 | 6.44 × 10−12 | 58 | 266 | DNA binding | MF |
GO:0020037 | 4.59 × 10−1 | 54 | 223 | heme binding | MF |
GO:0016491 | 4.15 × 10−9 | 56 | 275 | oxidoreductase activity | MF |
GO:0009055 | 6.95 × 10−9 | 23 | 63 | electron transfer activity | MF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parris, S.; Kumar, S.; Li, Z.; Olvey, J.; Olvey, M.; Jones, D.C.; Saski, C.A. Casparian Strip Fortification as a Defense Mechanism to Fusarium oxysporum f. sp. vasinfectum Race 4 Infection in a Highly Resistant Gossypium barbadense Cultivar. Genes 2025, 16, 1158. https://doi.org/10.3390/genes16101158
Parris S, Kumar S, Li Z, Olvey J, Olvey M, Jones DC, Saski CA. Casparian Strip Fortification as a Defense Mechanism to Fusarium oxysporum f. sp. vasinfectum Race 4 Infection in a Highly Resistant Gossypium barbadense Cultivar. Genes. 2025; 16(10):1158. https://doi.org/10.3390/genes16101158
Chicago/Turabian StyleParris, Stephen, Sonika Kumar, Zhigang Li, Jim Olvey, Mike Olvey, Don C. Jones, and Christopher A. Saski. 2025. "Casparian Strip Fortification as a Defense Mechanism to Fusarium oxysporum f. sp. vasinfectum Race 4 Infection in a Highly Resistant Gossypium barbadense Cultivar" Genes 16, no. 10: 1158. https://doi.org/10.3390/genes16101158
APA StyleParris, S., Kumar, S., Li, Z., Olvey, J., Olvey, M., Jones, D. C., & Saski, C. A. (2025). Casparian Strip Fortification as a Defense Mechanism to Fusarium oxysporum f. sp. vasinfectum Race 4 Infection in a Highly Resistant Gossypium barbadense Cultivar. Genes, 16(10), 1158. https://doi.org/10.3390/genes16101158