Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = reset noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3446 KB  
Article
Wide-Dynamic-Range Lead-Free SWIR Image Sensors Based on InAs Thin-Film Quantum-Dot Photodiodes
by Myonglae Chu, Wenya Song, Joo Hyoung Kim, Tristan Weydts, Vladimir Pejovic, Jiwon Lee, Minhyun Jin, Sang Yeon Lee, Yoora Seo, Hyunyoung Yoo, Jonas Bentell, Abu Bakar Siddik, Isabel Pintor Monroy, Marina Vildanova, Arman Uz Zaman, Tae Jin Yoo, Antonia Malainou, Wagdy Hussein, Annachiara Spagnolo, Gauri Karve, Itai Lieberman, Stefano Guerrieri and Pawel E. Malinowskiadd Show full author list remove Hide full author list
Sensors 2025, 25(23), 7345; https://doi.org/10.3390/s25237345 - 2 Dec 2025
Viewed by 492
Abstract
This work presents a monolithically integrated short-wavelength infrared (SWIR) image sensor based on indium arsenide (InAs) quantum dot photodiodes (QDPDs). The thin-film photodiode (TFPD) architecture enables direct integration on silicon readout integrated circuits (ROICs), eliminating wafer-to-wafer bonding and providing a scalable, RoHS-compliant alternative [...] Read more.
This work presents a monolithically integrated short-wavelength infrared (SWIR) image sensor based on indium arsenide (InAs) quantum dot photodiodes (QDPDs). The thin-film photodiode (TFPD) architecture enables direct integration on silicon readout integrated circuits (ROICs), eliminating wafer-to-wafer bonding and providing a scalable, RoHS-compliant alternative to lead-based colloidal quantum dot (CQD) devices. The proposed 3T pixel design incorporates dual conversion gain (DCG), enabling wide dynamic range imaging. The fabricated prototype achieves external quantum efficiencies of 28% at 1200 nm and 4.8% at 1400 nm, together with a dynamic range of 83.5 dB. A frame-based digital correlated double sampling (CDS) scheme stores the reset level in the digital domain and subtracts it after integration, thereby suppressing reset kTC noise and mitigating random telegraph signal (RTS) noise. Imaging demonstrations highlight SWIR-specific functionalities, including material discrimination, imaging through smoke, and transmission through silicon wafers. A performance comparison with previously reported SWIR pixels further confirms the competitiveness of the proposed InAs QDPD imager. These results establish InAs QDPDs as a promising platform for next-generation SWIR imaging, combining high sensitivity, extended spectral coverage, and scalable integration. Full article
Show Figures

Figure 1

23 pages, 2960 KB  
Article
Analysis of Surface Code Algorithms on Quantum Hardware Using the Qrisp Framework
by Jan Krzyszkowski and Marcin Niemiec
Electronics 2025, 14(23), 4707; https://doi.org/10.3390/electronics14234707 - 29 Nov 2025
Viewed by 588
Abstract
The pursuit of scalable quantum computing is intrinsically limited by qubit decoherence, making robust quantum error correction (QEC) techniques crucial. As a leading solution, the topological surface code offers inherent protection against local noise. This study presents the first comprehensive implementation and quantitative [...] Read more.
The pursuit of scalable quantum computing is intrinsically limited by qubit decoherence, making robust quantum error correction (QEC) techniques crucial. As a leading solution, the topological surface code offers inherent protection against local noise. This study presents the first comprehensive implementation and quantitative characterization of a full surface code pipeline, which includes encompassing lattice construction, multi-round syndrome extraction, and MWPM decoding, using the high-level Qrisp programming framework. The entire pipeline was executed on IQM superconducting quantum processors to provide an empirical assessment under current noisy intermediate-scale quantum (NISQ) conditions. Our experimental data definitively show that the system operates significantly below the fault-tolerance threshold. Crucially, a quantitative resource analysis isolates and establishes the lack of native qubit reset on the hardware as the dominant architectural bottleneck. This constraint forces the physical qubit count to scale as d2+(d21)T, effectively preventing scaling to larger code distances (d) and execution times (T) on current devices. The work confirms Qrisp’s capability to support advanced QEC protocols, demonstrating that high-level abstraction can reduce implementation complexity by simplifying scheduling and mapping, thereby facilitating deeper experimental analysis of hardware limitations. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Information)
Show Figures

Figure 1

19 pages, 4799 KB  
Article
Experimental Evaluation of LoRaWAN Connectivity Reliability in Remote Rural Areas of Mozambique
by Nelson José Chapungo and Octavian Postolache
Sensors 2025, 25(19), 6027; https://doi.org/10.3390/s25196027 - 1 Oct 2025
Viewed by 1788
Abstract
This paper presents an experimental evaluation of the connectivity reliability of a LoRaWAN (Long Range Wide Area Network), deployed in a rural area of Mozambique, focusing on the influence of distance and relative altitude between end nodes and the gateway. The absence of [...] Read more.
This paper presents an experimental evaluation of the connectivity reliability of a LoRaWAN (Long Range Wide Area Network), deployed in a rural area of Mozambique, focusing on the influence of distance and relative altitude between end nodes and the gateway. The absence of telecommunications and power infrastructure in the study region provided a realistic and challenging scenario to assess LoRaWAN’s feasibility as a low-cost, low-power solution for remote sensing in disconnected environments. Field trials were conducted using an Arduino-based node (with 2 dBi antenna) powered by a 2200 mAh power bank, with no GPS or cellular support. Data were collected at four georeferenced points along a 1 km path, capturing Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and Packet Delivery Rate (PDR). Results confirmed that both distance and terrain elevation strongly affect performance, with significantly degraded metrics when the end nodes were located at lower altitudes relative to the gateway. Despite operational constraints, such as the need for manual firmware resets and lack of real-time monitoring, the network consistently achieved PDR above 89% and remained operational autonomously for over 24 h. The study highlights the effectiveness of installing gateways on natural elevations to improve coverage and demonstrates that even with basic hardware, LoRaWAN (Low Power Wide Area Network), is a viable and scalable option for rural connectivity. These findings offer valuable empirical evidence to promote national digital inclusion policies and future LPWAN deployments. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

14 pages, 2144 KB  
Article
Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process
by Yutaka Hirose
Nanomaterials 2025, 15(17), 1297; https://doi.org/10.3390/nano15171297 - 22 Aug 2025
Viewed by 725
Abstract
The soft-reset process, or a sequence of charge emissions from a floating storage node through a transistor biased in a subthreshold bias condition, is modeled by a master (Kolmogorov–Bateman) equation. The Coulomb interaction energy after each one-charge emission leads to a stepwise potential [...] Read more.
The soft-reset process, or a sequence of charge emissions from a floating storage node through a transistor biased in a subthreshold bias condition, is modeled by a master (Kolmogorov–Bateman) equation. The Coulomb interaction energy after each one-charge emission leads to a stepwise potential increase, giving correlated emission rates represented by Boltzmann factors. The governing probability distribution function is a hypoexponential type, and its cumulants describe characteristics of the single-charge Coulomb interaction at room temperature on a mesoscopic scale. The cumulants are further extended into a complex domain. Starting from three fundamental assumptions, i.e., the generation of non-degenerated states due to single-charge Coulomb energy, the Markovian property of each emission event, and the independence of each state, a moment function is identified as a product of mutually prime elements (algebraically termed as prime ideals) comprising the eigenvalues or the lifetimes of the emission states. Then, the algebraic structure of the moment function is found to be highly analogous to that of an integer uniquely factored into prime numbers. Treating the lifetimes as analogs of the prime numbers, two types of zeta functions are constructed. Standard analyses of the zeta functions analogous to the prime number problem or the Riemann Hypothesis are performed. For the zeta functions, the analyticity and poles are specified, and the functional equations are derived. Also, the zeta functions are found to be equivalent to the analytic extension of the cumulants. Finally, between the number of emitted charges and the lifetime, a logarithmic relation analogous to the prime number theorem is derived. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

21 pages, 5317 KB  
Article
A 6.7 μW Low-Noise, Compact PLL with an Input MEMS-Based Reference Oscillator Featuring a High-Resolution Dead/Blind Zone-Free PFD
by Ahmed Kira, Mohannad Y. Elsayed, Karim Allidina, Vamsy P. Chodavarapu and Mourad N. El-Gamal
Sensors 2024, 24(24), 7963; https://doi.org/10.3390/s24247963 - 13 Dec 2024
Cited by 4 | Viewed by 5611
Abstract
This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.89 MHz MEMS-based oscillator as an input reference. An ultra-low-power, high-resolution phase-frequency detector (PFD) is utilized to achieve low-noise performance. Eliminating the reset feedback [...] Read more.
This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.89 MHz MEMS-based oscillator as an input reference. An ultra-low-power, high-resolution phase-frequency detector (PFD) is utilized to achieve low-noise performance. Eliminating the reset feedback path used in conventional PFDs leads to dead/blind zone-free phase characteristics, which are crucial for low-noise applications within a wide operating frequency range. The PFD operates up to 2.5 GHz and achieves a linear resolution of 100 ps input time difference (Δtin), without the need for any additional calibration circuits. The linearity of the proposed PFD is tested over a phase difference corresponding to aa Δtin ranging from 100 ps to 50 ns. At a 1 V supply voltage, it shows an error of <±1.6% with a resolution of 100 ps and a frequency-normalized power consumption (Pn) of 0.106 pW/Hz. The PLL is designed and fabricated using a TSMC 65 nm CMOS process instrument and interfaced with the MEMS-based oscillator. The system reports phase noises of −106.21 dBc/Hz and −135.36 dBc/Hz at 1 kHz and 1 MHz offsets, respectively. It consumes 6.709 μW at a 1 V supply and occupies an active CMOS area of 0.1095 mm2. Full article
(This article belongs to the Special Issue Innovative Devices and MEMS for Sensing Applications)
Show Figures

Figure 1

20 pages, 3972 KB  
Article
Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle
by Jorge Neira-García, Andrés Beltrán-Pulido and John Cortés-Romero
Electronics 2024, 13(10), 1937; https://doi.org/10.3390/electronics13101937 - 15 May 2024
Viewed by 1795
Abstract
Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning complexities, and sensitivity to IM model mismatch. [...] Read more.
Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning complexities, and sensitivity to IM model mismatch. Algebraic methods offer inherent filtering capabilities and design flexibility to address these challenges without introducing additional dynamics into the control system. The objective of this paper is to provide an algebraic estimation strategy that yields an accurate rotor speed estimate for sensorless IM control. The strategy includes an algebraic estimator with single-parameter tuning and inherent filtering action. We propose an EV case study to experimentally evaluate and compare its performance with a typical drive cycle and a dynamic torque load that emulates a small-scale EV power train. The algebraic estimator exhibited a signal-to-noise ratio (SNR) of 43 dB. The closed-loop experiment for the EV case study showed average tracking errors below 1 rad/s and similar performance compared to a well-known sensorless strategy. Our results show that the proposed algebraic estimation strategy works effectively in a nominal speed range for a practical IM sensorless application. The algebraic estimator only requires single-parameter tuning and potentially facilitates IM model updates using a resetting scheme. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

21 pages, 2647 KB  
Article
Practice-Oriented Controller Design for an Inverse-Response Process: Heuristic Optimization versus Model-Based Approach
by Pavol Bistak, Mikulas Huba and Damir Vrancic
Appl. Sci. 2024, 14(7), 2890; https://doi.org/10.3390/app14072890 - 29 Mar 2024
Cited by 4 | Viewed by 1664
Abstract
The proposed practice-oriented controller design (POCD) aims at stabilizing the system, reconstructing and compensating for disturbances while achieving fast and smooth step responses. This is achieved through a simple approach to process identification and controller tuning that takes into account control signal constraints [...] Read more.
The proposed practice-oriented controller design (POCD) aims at stabilizing the system, reconstructing and compensating for disturbances while achieving fast and smooth step responses. This is achieved through a simple approach to process identification and controller tuning that takes into account control signal constraints and measurement noise. The proposed method utilizes POCD by eliminating the influence of the unstable zero dynamics of the inverse-response processes, which limits the achievable performance. It extends the previous work on PI and PID controllers to higher-order (HO) automatic reset controllers (ARCs) with low-pass filters. It is also extended according to POCD requirements while maintaining the simplified process model. The final result is an extremely simple design for a constrained controller that provides sufficiently smooth and robust responses to a wide family of HO-ARCs with odd derivatives, designed using integral plus dead time (IPDT) models and tuned by the multiple real dominant pole method (MRDP) and the circle criterion of absolute stability. The proposed design can be considered as a generalization of the Ziegler and Nichols step response method for inverse response processes and HO-ARCs. Full article
(This article belongs to the Special Issue Advanced Control Systems and Applications)
Show Figures

Figure 1

16 pages, 5410 KB  
Article
The Effect of Pixel Design and Operation Conditions on Linear Output Range of 4T CMOS Image Sensors
by Wenxuan Zhang, Xing Xu and Zhengxi Cheng
Sensors 2024, 24(6), 1841; https://doi.org/10.3390/s24061841 - 13 Mar 2024
Cited by 3 | Viewed by 2905
Abstract
We analyze several factors that affect the linear output range of CMOS image sensors, including charge transfer time, reset transistor supply voltage, the capacitance of integration capacitor, the n-well doping of the pinned photodiode (PPD) and the output buffer. The test chips are [...] Read more.
We analyze several factors that affect the linear output range of CMOS image sensors, including charge transfer time, reset transistor supply voltage, the capacitance of integration capacitor, the n-well doping of the pinned photodiode (PPD) and the output buffer. The test chips are fabricated with 0.18 μm CMOS image sensor (CIS) process and comprise six channels. Channels B1 and B2 are 10 μm pixels and channels B3–B6 are 20 μm pixels, with corresponding pixel arrays of 1 × 2560 and 1 × 1280 respectively. The floating diffusion (FD) capacitance varies from 10 fF to 23.3 fF, and two different designs were employed for the n-well doping in PPD. The experimental results indicate that optimizing the FD capacitance and PPD design can enhance the linear output range by 37% and 32%, respectively. For larger pixel sizes, extending the transfer gate (TG) sampling time leads to an increase of over 60% in the linear output range. Furthermore, optimizing the design of the output buffer can alleviate restrictions on the linear output range. The lower reset voltage for noise reduction does not exhibit a significant impact on the linear output range. Furthermore, these methods can enhance the linear output range without significantly amplifying the readout noise. These findings indicate that the linear output range of pixels is not only influenced by pixel design but also by operational conditions. Finally, we conducted a detailed analysis of the impact of PPD n-well doping concentration and TG sampling time on the linear output range. This provides designers with a clear understanding of how nonlinearity is introduced into pixels, offering valuable insight in the design of highly linear pixels. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 560 KB  
Article
Target Acquisition for Collimation System of Wireless Quantum Communication Networks in Low Visibility
by Keyu Li, Tao Jiang, Yang Li, Xuemin Wang, Zhiqiang Zhan, Fengwei Chen, Zhengfu Han and Weidong Wu
Entropy 2023, 25(10), 1381; https://doi.org/10.3390/e25101381 - 25 Sep 2023
Cited by 1 | Viewed by 1650
Abstract
In severe low-visibility environments full of smoke, because of the performance degeneration of the near-infrared (NIR) collimation system of quantum drones communication networks, the improved dual-threshold method based on trend line analysis for long-wave infrared (LWIR) quantum cascade lasers (QCLs) is proposed, to [...] Read more.
In severe low-visibility environments full of smoke, because of the performance degeneration of the near-infrared (NIR) collimation system of quantum drones communication networks, the improved dual-threshold method based on trend line analysis for long-wave infrared (LWIR) quantum cascade lasers (QCLs) is proposed, to achieve target acquisition. The simulation results show that smoke-scattering noise is a steeply varying medium–high-frequency modulation. At particle sizes less than 4 μm, the traditional dual-threshold method can effectively distinguish the target information from the smoke noise, which is the advantage of the LWIR laser compared to the NIR laser. For detecting lasers with high signal-to-noise ratios (SNRs), the method can achieve good target acquisition, by setting reasonable conventional thresholds, such as 0.7 times the peak intensity and 0.8 times the peak rising velocity. At low SNRs and steep intensity variation, the method can also achieve good target acquisition, by adaptively resetting new thresholds after filtering the detecting laser, such as 0.6 times the peak intensity and 0.6 times the peak rising velocity. The results of this paper will provide a reference for the performance improvement and refinement of the collimation system for wireless quantum communication networks in low visibility. Full article
(This article belongs to the Special Issue Quantum and Classical Physical Cryptography)
Show Figures

Figure 1

28 pages, 2836 KB  
Article
IPDT Model-Based Ziegler–Nichols Tuning Generalized to Controllers with Higher-Order Derivatives
by Pavol Bistak, Mikulas Huba, Damir Vrancic and Stefan Chamraz
Sensors 2023, 23(8), 3787; https://doi.org/10.3390/s23083787 - 7 Apr 2023
Cited by 22 | Viewed by 3887
Abstract
The paper extends the earlier work entitled “Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable”, to higher-order controllers and a broader range of experiments. The original series PI and PID controllers, based on automatic reset calculated [...] Read more.
The paper extends the earlier work entitled “Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable”, to higher-order controllers and a broader range of experiments. The original series PI and PID controllers, based on automatic reset calculated by filtered controller outputs, are now augmented by higher-order output derivatives. This increases the number of degrees of freedom that can be used to modify the resulting dynamics, accelerates transient responses, and increases robustness to unmodeled dynamics and uncertainties. The fourth order noise attenuation filter used in the original work allows for the addition of an acceleration feedback signal, thus resulting in a series PIDA controller or even a jerk feedback that leads to a PIDAJ series controller. Such a design can further use the original process and filter approximation of the step responses through the integral-plus-dead-time (IPDT) model, while allowing experimentation with disturbance and setpoint step responses of the series PI, PID, PIDA and PIDAJ controllers, and thus, evaluating the role of output derivatives and noise attenuation from a broader perspective. All controllers considered are tuned using the Multiple Real Dominant Pole (MRDP) method, which is complemented by a factorization of the controller transfer functions to achieve the smallest possible time constant for automatic reset. The smallest time constant is chosen to improve the constrained transient response of the considered controller types. The obtained excellent performance and robustness allow the proposed controllers to be applied to a wider range of systems with dominant first-order dynamics. The proposed design is illustrated on a real-time speed control of a stable direct-current (DC) motor, which is approximated (together with a noise attenuation filter) by an IPDT model. The transient responses obtained are nearly time-optimal, with control signal limitations active for most setpoint step responses. Four controllers with different degrees of derivative with generalized automatic reset were used for comparison. It was found that controllers with higher-order derivatives may significantly improve the disturbance performance and virtually eliminate overshoots in the setpoint step responses in constrained velocity control. Full article
(This article belongs to the Special Issue The Role and Influence of Sensors in Modern Energy Systems)
Show Figures

Figure 1

21 pages, 8778 KB  
Article
Application of a Deep Neural Network for Acoustic Source Localization Inside a Cavitation Tunnel
by Bo-Jie Lin, Pai-Chen Guan, Hung-Tang Chang, Hong-Wun Hsiao and Jung-Hsiang Lin
J. Mar. Sci. Eng. 2023, 11(4), 773; https://doi.org/10.3390/jmse11040773 - 1 Apr 2023
Cited by 3 | Viewed by 2774
Abstract
Navigating with low noise is the key capability in the submarine design considerations, and noise reduction is also one of the most critical issues in the related fields. Therefore, it is necessary to identify the source of noise during design stage to improve [...] Read more.
Navigating with low noise is the key capability in the submarine design considerations, and noise reduction is also one of the most critical issues in the related fields. Therefore, it is necessary to identify the source of noise during design stage to improve the survivability of the submarines. The main objective of this research is using the supervised neural network to construct the system of noise localization to identify noise source in the large acoustic tunnel. Firstly, we started our proposed method by improving the Yangzhou’s method and Shunsuke’s method. In the test results, we find that the errors of the both can be reduced by using the min-max normalization to highlight the data characteristics of the low amplitude in some frequency. And Yangzhou’s method has higher accuracy than Shunsuke’s method. Then, we reset the diagonal numbers of the cross spectral matrix in Yangzhou’s method to zero and replace mean absolute error to be the loss function for improving the stability of training, and get the most suitable neural network construction for our research. After our optimization, the error decreases from 0.315 m to 0.008 m in cuboid model test. Finally, we apply our method to the cavitation tunnel model. A total of 100 data sets were used for training, 10 sets for verification, and 5 for testing. The average error of the test result is 0.13 m. For the model test in cavitation tunnel in National Taiwan Ocean University, the length of ship model is around 7 m. And the average error is sufficient to determine the noise source position. Full article
(This article belongs to the Special Issue Underwater Acoustics and Digital Signal Processing)
Show Figures

Figure 1

10 pages, 8045 KB  
Article
Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device
by Antonio Vettoliere and Carmine Granata
Sensors 2023, 23(7), 3558; https://doi.org/10.3390/s23073558 - 28 Mar 2023
Cited by 16 | Viewed by 5708
Abstract
In the present article, experimental results regarding fully integrated superconducting quantum interference devices (SQUID), including a circuit to tune and optimize the main sensor device characteristics, are reported. We show the possibility of modifying the critical current of a SQUID magnetometer in liquid [...] Read more.
In the present article, experimental results regarding fully integrated superconducting quantum interference devices (SQUID), including a circuit to tune and optimize the main sensor device characteristics, are reported. We show the possibility of modifying the critical current of a SQUID magnetometer in liquid helium by means of a suitable heating circuit. This allows us to improve the characteristics of the SQUID sensor and in particular to optimize the voltage–magnetic flux characteristic and the relative transfer factor (responsivity) and consequently to also improve the flux and magnetic field noise. It is also possible to reset the SQUID sensor in case of entrapment of magnetic flux, avoiding taking it out of the helium bath. These results are very useful in view of most SQUID applications such as those requiring large multichannel systems in which it is desirable to optimize and eventually reset the magnetic sensors in a simple and effective way. Full article
(This article belongs to the Collection Magnetic Sensors)
Show Figures

Figure 1

10 pages, 5745 KB  
Communication
A 5.42~6.28 GHz Type-II PLL with Dead-Zone Programmability and Charge Pump Mismatch Trimming
by Li Kang, Juncai Lv and Xu Cheng
Electronics 2022, 11(24), 4153; https://doi.org/10.3390/electronics11244153 - 13 Dec 2022
Viewed by 2080
Abstract
This paper proposed a 5.42~6.28 GHz type-II phase locked loop (PLL) for the sake of both loop filter switching capability and extensive programmability. An on-chip loop filter is used in conjunction with off-chip one to form a switching filter pair for diverse application [...] Read more.
This paper proposed a 5.42~6.28 GHz type-II phase locked loop (PLL) for the sake of both loop filter switching capability and extensive programmability. An on-chip loop filter is used in conjunction with off-chip one to form a switching filter pair for diverse application scenarios. In order to strike a balance between dead-zone elimination and noise contribution minimization, a 3-bit programmable reset time ranging from 25 ps to 200 ps with a step of 25 ps is brought into PFD (phase frequency detector) design while CP (charge pump) current is programmable from 200 μA to 900 μA with a 100 μA/step digital control. Power management units (PMU) including bandgap and low dropout regulators (LDO) are integrated on-chip with resistor string trimming which effectively counteracts fabrication variations. In addition, a piecewise linear VCO with 3-bit control is designed with a fully digital 6-bit multi-modulus divider (MMD) chain cascaded. The proposed PLL is implemented in a 40-nm bulk CMOS process and the power consumption is 8 mA@1.2 V, in which around 5 mA@1.2 V is consumed by output buffers. The fabricated PLL chip achieves a frequency tuning range of 5.42~6.28 GHz, a phase noise ranging from −107.2~−110.4 dBc/Hz@1 MHz offset from carrier, a reference spur of lower than −70 dBc when on-chip active loop filter bandwidth is set to be around 500 KHz. Its FoM is approximately −176.98~−180.18 dBc/Hz while FoMT is approximately −180.32~−183.52 dBc/Hz@1 MHz offset from carrier. Its most specifications are comparable to or better than most existing literature. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 11012 KB  
Article
Evaluation of Positioning Accuracy of Smartphones under Different Canopy Openness
by Jiefan Huang, Yingyu Guo, Xuan Li, Ning Zhang, Jiang Jiang and Guangyu Wang
Forests 2022, 13(10), 1591; https://doi.org/10.3390/f13101591 - 29 Sep 2022
Cited by 3 | Viewed by 6486
Abstract
This study focuses on evaluating the positioning accuracy of smartphones in a deciduous forest environment compared to various levels of Global Navigation Satellite System (GNSS) devices. In a mixed coniferous forest with 90% broad-leaved forest (deciduous season), the accuracy of 57 test points [...] Read more.
This study focuses on evaluating the positioning accuracy of smartphones in a deciduous forest environment compared to various levels of Global Navigation Satellite System (GNSS) devices. In a mixed coniferous forest with 90% broad-leaved forest (deciduous season), the accuracy of 57 test points was evaluated according to different openness levels under the forest. Taking the coordinates obtained by survey-grade GNSS devices in RTK (Real-time Kinematic) mode as standard, the accuracy of the single-point positioning (SPP) mode and precise-point positioning (PPP) mode obtained by three smartphones (one single frequency and two dual frequency), one survey-grade receiver and one recreational-grade receiver are compared. It can be found that there was a significant positive correlation between canopy openness and carrier-to-noise density(C/N0) (p < 0.05). Meanwhile, the C/N0 of survey-grade devices is significantly higher than that of smartphones. The results show that the positioning accuracy of dual-frequency smartphones under forests is better than that of single-frequency smartphones. Furthermore, the positioning accuracy of the smartphone corrected by PPP mode is better than that of the recreational-grade GNSS receiver and can achieve an accuracy of about 2.5 m in the horizontal direction, which can be used for forestry stakeout, reset and determination of forest area boundaries in environments with high openness (R > 0.7). However, in an environment with low openness (R < 0.7) and relatively complex forest area positioning, survey-grade GNSS devices are still required to cooperate with the PPP or real-time differential positioning method to obtain accurate sub-meter-level positioning data. Full article
Show Figures

Figure 1

17 pages, 5910 KB  
Article
Reset Noise Sampling Feedforward Technique (RNSF) for Low Noise MEMS Capacitive Accelerometer
by Xinquan Lai, Yuheng Wang, Qinqin Li and Kashif Habib
Electronics 2022, 11(17), 2693; https://doi.org/10.3390/electronics11172693 - 27 Aug 2022
Cited by 8 | Viewed by 3066
Abstract
The reset noise sampling feedforward (RNSF) technique is proposed in this paper to reduce the noise floor of the readout circuit for micro-electromechanically systems (MEMS) capacitive accelerometer. Because of the technology-imposed size restriction on the sensing element, the sensing capacitance and the capacitance [...] Read more.
The reset noise sampling feedforward (RNSF) technique is proposed in this paper to reduce the noise floor of the readout circuit for micro-electromechanically systems (MEMS) capacitive accelerometer. Because of the technology-imposed size restriction on the sensing element, the sensing capacitance and the capacitance variation are reduced to the femto-farad level. As a result, the reset noise from the parasitic capacitance, which is pico-farad level, becomes significant. In this work, the RNSF technique focuses on the suppression of the parasitic-capacitance-induced noise, thereby improving the noise performance of MEMS capacitive accelerometer. The simulation results show that the RNSF technique effectively suppresses the thermal noise from the parasitic capacitance. Compared with the traditional readout circuit, the noise floor of the readout circuit with the RNSF technique is reduced by 9 dBV. The presented circuit based on the RNSF technique is fabricated by a commercial 0.18-μm BCD process and tested with a femto-farad MEMS capacitive accelerometer. The physical measurement results show that, compared with the readout circuit without the RNSF technique, the RNSF technique reduces the noise floor of the readout circuit for MEMS capacitive accelerometer from −72 dBV to −80 dBV. Compared with other similar works, the proposed readout circuit achieves better FoM (FoM=(power×noise floor)/system bandwidth=490 μW·μg/Hz) among the switched-capacitor readout circuits. Full article
Show Figures

Figure 1

Back to TopTop