Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,815)

Search Parameters:
Keywords = reproductive management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 (registering DOI) - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

13 pages, 778 KiB  
Article
Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA
by Jameson Mori, Nelda A. Rivera, William Brown, Daniel Skinner, Peter Schlichting, Jan Novakofski and Nohra Mateus-Pinilla
Pathogens 2025, 14(8), 786; https://doi.org/10.3390/pathogens14080786 (registering DOI) - 7 Aug 2025
Abstract
White-tailed deer (Odocoileus virginianus) are a cervid species native to the Americas with ecological, social, and economic significance. Managers must consider several factors when working to maintain the health and sustainability of these wild herds, including reproduction, particularly pregnancy and recruitment [...] Read more.
White-tailed deer (Odocoileus virginianus) are a cervid species native to the Americas with ecological, social, and economic significance. Managers must consider several factors when working to maintain the health and sustainability of these wild herds, including reproduction, particularly pregnancy and recruitment rates. White-tailed deer have a variable reproductive capacity, with age, health, and habitat influencing this variability. However, it is unknown whether chronic wasting disease (CWD) impacts reproduction and, more specifically, if CWD infection alters a female deer’s probability of pregnancy. Our study addressed this question using data from 9783 female deer culled in northern Illinois between 2003 and 2023 as part of the Illinois Department of Natural Resources’ ongoing CWD management program. Multilevel Bayesian logistic regression was employed to quantify the relationship between pregnancy probability and covariates like maternal age, deer population density, and date of culling. Maternal infection with CWD was found to have no significant effect on pregnancy probability, raising concerns that the equal ability of infected and non-infected females to reproduce could make breeding, which inherently involves close physical contact, an important source of disease transmission between males and females and females and their fawns. The results also identified that female fawns (<1 year old) are sensitive to county-level deer land cover utility (LCU) and deer population density, and that there was no significant difference in how yearlings (1–2 years old) and adult (2+ years old) responded to these variables. Full article
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach
by Pablo Garcia-Acero, Ismael Henarejos-Castillo, Francisco Jose Sanz, Patricia Sebastian-Leon, Antonio Parraga-Leo, Juan Antonio Garcia-Velasco and Patricia Diaz-Gimeno
Pharmaceutics 2025, 17(8), 1020; https://doi.org/10.3390/pharmaceutics17081020 - 6 Aug 2025
Abstract
Background: Drug–drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient [...] Read more.
Background: Drug–drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient management, avoid drug combinations that can negatively affect patient care, and exploit potential synergistic combinations to improve current therapies in women’s healthcare. Methods: A DDI prediction model was built to describe relevant drug combinations affecting reproductive treatments. Approved drug features (chemical structure of drugs, side effects, targets, enzymes, carriers and transporters, pathways, protein–protein interactions, and interaction profile fingerprints) were obtained. A unified predictive score revealed unknown DDIs between reproductive and commonly used drugs and their associated clinical effects on reproductive health. The performance of the prediction model was validated using known DDIs. Results: This prediction model accurately predicted known interactions (AUROC = 0.9876) and identified 2991 new DDIs between 192 drugs used in different female reproductive conditions and other drugs used to treat unrelated conditions. These DDIs included 836 between drugs used for in vitro fertilization. Most new DDIs involved estradiol, acetaminophen, bupivacaine, risperidone, and follitropin. Follitropin, bupivacaine, and gonadorelin had the highest discovery rate (42%, 32%, and 25%, respectively). Some were expected to improve current therapies (n = 23), while others would cause harmful effects (n = 11). We also predicted twelve DDIs between oral contraceptives and HIV drugs that could compromise their efficacy. Conclusions: These results show the importance of DDI studies aimed at identifying those that might compromise or improve their efficacy, which could lead to personalizing female reproductive therapies. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
18 pages, 8000 KiB  
Article
Phenology-Aware Machine Learning Framework for Chlorophyll Estimation in Cotton Using Hyperspectral Reflectance
by Chunbo Jiang, Yi Cheng, Yongfu Li, Lei Peng, Gangshang Dong, Ning Lai and Qinglong Geng
Remote Sens. 2025, 17(15), 2713; https://doi.org/10.3390/rs17152713 - 6 Aug 2025
Abstract
Accurate and non-destructive monitoring of leaf chlorophyll content (LCC) is essential for assessing crop photosynthetic activity and nitrogen status in precision agriculture. This study introduces a phenology-aware machine learning framework that combines hyperspectral reflectance data with various regression models to estimate leaf chlorophyll [...] Read more.
Accurate and non-destructive monitoring of leaf chlorophyll content (LCC) is essential for assessing crop photosynthetic activity and nitrogen status in precision agriculture. This study introduces a phenology-aware machine learning framework that combines hyperspectral reflectance data with various regression models to estimate leaf chlorophyll content (LCC) in cotton at six key reproductive stages. Field experiments utilized synchronized spectral and SPAD measurements, incorporating spectral transformations—such as vegetation indices (VIs), first-order derivatives, and trilateration edge parameters (TEPs, a new set of geometric metrics for red-edge characterization)—for evaluation. Five regression approaches were evaluated, including univariate and multivariate linear models, along with three machine learning algorithms: Random Forest, K-Nearest Neighbor, and Support Vector Regression. Random Forest consistently outperformed the other models, achieving the highest R2 (0.85) and the lowest RMSE (4.1) during the bud stage. Notably, the optimal prediction accuracy was achieved with fewer than five spectral features. The proposed framework demonstrates the potential for scalable, stage-specific monitoring of chlorophyll dynamics and offers valuable insights for large-scale crop management applications. Full article
Show Figures

Figure 1

12 pages, 1169 KiB  
Article
Field-Compatible Cytometric Assessment of Epididymal Alpaca Sperm Viability and Acrosomal Integrity Using Fluorochrome
by Alexei Santiani, Miguel Cucho, Josselyn Delgado, Javier Juárez, Luis Ruiz and Shirley Evangelista-Vargas
Animals 2025, 15(15), 2282; https://doi.org/10.3390/ani15152282 - 5 Aug 2025
Viewed by 60
Abstract
In remote alpaca breeding regions, access to advanced sperm analysis laboratories is limited. This study validates a practical cytometric method for evaluating sperm viability and acrosomal integrity in epididymal alpaca sperm using early fluorochrome staining, formaldehyde fixation, and intermediate storage. Thirty-two testes were [...] Read more.
In remote alpaca breeding regions, access to advanced sperm analysis laboratories is limited. This study validates a practical cytometric method for evaluating sperm viability and acrosomal integrity in epididymal alpaca sperm using early fluorochrome staining, formaldehyde fixation, and intermediate storage. Thirty-two testes were transported at 5 °C, and spermatozoa were collected from the cauda epididymis. After morphometric screening, 26 samples were included. Aliquots were stained with Zombie Green (viability) and FITC–PSA (acrosomal integrity), at time zero. Each aliquot was divided for cytometric analysis at T0 (immediately), T24 (24 h after formaldehyde fixation) and T1w (1 week post-fixation). Fixed samples showed higher viability and acrosomal integrity values (T24: 70.75%, 97.24%; T1w: 71.80%, 97.21%) than T0 (67.63%, 95.89%). This may reflect fluorescence alterations associated with fixation. Strong correlations and Bland–Altman analysis confirmed consistency across time points. This method enables accurate sperm quality evaluation up to one week after collection, offering a useful tool for reproductive monitoring in field conditions without immediate analysis. Further research on ejaculated semen and field protocols is recommended. Full article
(This article belongs to the Special Issue Advances in Camelid Reproduction)
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 221
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

17 pages, 826 KiB  
Review
Mechanisms and Impact of Acacia mearnsii Invasion
by Hisashi Kato-Noguchi and Midori Kato
Diversity 2025, 17(8), 553; https://doi.org/10.3390/d17080553 - 4 Aug 2025
Viewed by 69
Abstract
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due [...] Read more.
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due to its negative ecological impact, A. mearnsii has been listed among the world’s 100 worst invasive alien species. This species exhibits rapid stem growth in its sapling stage and reaches reproductive maturity early. It produces a large quantity of long-lived seeds, establishing a substantial seed bank. A. mearnsii can grow in different environmental conditions and tolerates various adverse conditions, such as low temperatures and drought. Its invasive populations are unlikely to be seriously damaged by herbivores and pathogens. Additionally, A. mearnsii exhibits allelopathic activity, though its ecological significance remains unclear. These characteristics of A. mearnsii may contribute to its expansion in introduced ranges. The presence of A. mearnsii affects abiotic processes in ecosystems by reducing water availability, increasing the risk of soil erosion and flooding, altering soil chemical composition, and obstructing solar light irradiation. The invasion negatively affects biotic processes as well, reducing the diversity and abundance of native plants and arthropods, including protective species. Eradicating invasive populations of A. mearnsii requires an integrated, long-term management approach based on an understanding of its invasive mechanisms. Early detection of invasive populations and the promotion of public awareness about their impact are also important. More attention must be given to its invasive traits because it easily escapes from cultivation. Full article
(This article belongs to the Special Issue Plant Adaptation and Survival Under Global Environmental Change)
Show Figures

Graphical abstract

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 177
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

25 pages, 906 KiB  
Review
Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review
by Mădălina Andreea Donos, Elena Țarcă, Elena Cojocaru, Viorel Țarcă, Lăcrămioara Ionela Butnariu, Valentin Bernic, Paula Popovici, Solange Tamara Roșu, Mihaela Camelia Tîrnovanu, Nicolae Sebastian Ionescu and Laura Mihaela Trandafir
Diagnostics 2025, 15(15), 1940; https://doi.org/10.3390/diagnostics15151940 - 2 Aug 2025
Viewed by 265
Abstract
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, [...] Read more.
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, in turn, has had an impact on the overall statistics regarding the prognosis and outcome of the condition. Given the increase in life expectancy, it is critical to better predict outcomes and prognosticate in CF. Thus, each person’s choice to aggressively treat specific disease components can be more appropriate and tailored, further increasing survival. The objective of our narrative review is to summarize the most recent information concerning the value and significance of clinical parameters in predicting outcomes, such as gender, diabetes, liver and pancreatic status, lung function, radiography, bacteriology, and blood and sputum biomarkers of inflammation and disease, and how variations in these parameters affect prognosis from the prenatal stage to maturity. Materials and methods: A methodological search of the available data was performed with regard to prognostic factors in the evolution of CF in children and young adults. We evaluated articles from the PubMed academic search engine using the following search terms: prognostic factors AND children AND cystic fibrosis OR mucoviscidosis. Results: We found that it is crucial to customize CF patients’ care based on their unique clinical and biological parameters, genetics, and related comorbidities. Conclusions: The predictive significance of more dynamic clinical condition markers provides more realistic future objectives to center treatment and targets for each patient. Over the past ten years, improvements in care, diagnostics, and treatment have impacted the prognosis for CF. Although genotyping offers a way to categorize CF to direct research and treatment, it is crucial to understand that a variety of other factors, such as epigenetics, genetic modifiers, environmental factors, and socioeconomic status, can affect CF outcomes. The long-term management of this complicated multisystem condition has been made easier for patients, their families, and physicians by earlier and more accurate identification techniques, evidence-based research, and centralized expert multidisciplinary care. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Inherited/Genetic Diseases)
Show Figures

Figure 1

13 pages, 2838 KiB  
Article
Differential Effects of Two Herbivore-Induced Plant Volatiles on the Oviposition of Chilo suppressalis
by Xiaowei Yang, Chang Liu, Xixi Jia, Chen Zhang, Lanzhi Han, Wanlun Cai and Yunhe Li
Plants 2025, 14(15), 2384; https://doi.org/10.3390/plants14152384 - 2 Aug 2025
Viewed by 229
Abstract
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert [...] Read more.
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert opposing effects on the reproduction of Chilo suppressalis, a major rice pest. While both volatiles repelled adults, α-cedrene unexpectedly enhanced oviposition, whereas 2-heptanol significantly suppressed egg laying. To examine these effects, we conducted oviposition assays, preoviposition and longevity tests, combined with qPCR and transcriptome analyses to explore underlying molecular responses. Mechanistically, α-cedrene upregulated Kr-h1, a gene linked to juvenile hormone signaling and vitellogenesis, promoting reproductive investment. Transcriptomic profiling revealed divergent molecular responses: α-cedrene activated reproductive pathways, whereas 2-heptanol induced stress- and immune-related genes, suggesting a trade-off between stress defense and reproduction. These findings demonstrate that HIPVs can exert compound-specific reproductive effects beyond repellency. This work fills a key knowledge gap and highlights the potential of HIPVs as precision tools in pest management strategies that exploit behavioral and physiological vulnerabilities beyond repellency. Full article
Show Figures

Figure 1

10 pages, 404 KiB  
Case Report
Endometriosis as a Differential Diagnosis in a 17-Year-Old Patient with Low Back and Radicular Pain: A Case Report
by Miryam Vergara, Daniele Ceron, Gloria Giglioni, Gabriella Di Crescenzo and Elisa Burani
Women 2025, 5(3), 28; https://doi.org/10.3390/women5030028 - 1 Aug 2025
Viewed by 221
Abstract
Endometriosis is a benign and often underdiagnosed condition that affects women of reproductive age, typically between 18 and 45 years. It can cause infertility and pain, including radicular pain and low back pain (LBP). The aim of this case report is to emphasize [...] Read more.
Endometriosis is a benign and often underdiagnosed condition that affects women of reproductive age, typically between 18 and 45 years. It can cause infertility and pain, including radicular pain and low back pain (LBP). The aim of this case report is to emphasize the importance of making a differential diagnosis when facing LBP and radicular symptoms. We report the case of a 17-year-old female patient, R.A., presented with a significant LBP (NPRS 8/10) radiating from her lumbar spine to her right buttock and occasionally to both legs, accompanied by weakness. She revealed exacerbation of pain during menstruation, despite being under hormonal contraceptive treatment. After three physiotherapy sessions that included education, manual therapy and exercise, the patient’s pain persisted so her physiotherapist recommended an evaluation in the emergency department, where standard radiography did not reveal any significant findings. Physiotherapy continued until the fifth session, when the patient agreed to undergo evaluation at a specialized endometriosis centre. Further investigations revealed endometriotic tissue on the uterosacral ligament, leading to hormonal therapy adjustment, with which pain gradually decreased to a manageable level (NPRS 2/10). This case report highlights the importance of an early differential diagnosis in patients with LBP, as endometriosis can present not only in older women but also in younger patients, including those already on oral contraceptives. Therefore, to mitigate the risk of pattern recognition bias, clinicians must maintain a high index of suspicion for endometriosis, even in atypical or unlikely clinical presentations. Full article
Show Figures

Figure 1

18 pages, 4841 KiB  
Article
Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions
by Fayi Li, Liangyu Lv, Shancun Bao, Zongcheng Cai, Shouquan Fu and Jianjun Shi
Agronomy 2025, 15(8), 1869; https://doi.org/10.3390/agronomy15081869 - 1 Aug 2025
Viewed by 191
Abstract
Understanding alpine plants’ survival and reproduction is crucial for their conservation in climate change. Based on 423 valid distribution points, this study utilizes the MaxEnt model to predict the potential habitat and distribution dynamics of Leontopodium nanum under both current and future climate [...] Read more.
Understanding alpine plants’ survival and reproduction is crucial for their conservation in climate change. Based on 423 valid distribution points, this study utilizes the MaxEnt model to predict the potential habitat and distribution dynamics of Leontopodium nanum under both current and future climate scenarios, while clarifying the key factors that influence its distribution. The primary ecological drivers of distribution are altitude (2886.08 m–5576.14 m) and the mean temperature of the driest quarter (−6.60–1.55 °C). Currently, the suitable habitat area is approximately 520.28 × 104 km2, covering about 3.5% of the global land area, concentrated mainly in the Tibetan Plateau, with smaller regions across East and South Asia. Under future climate scenarios, low-emission (SSP126), suitable areas are projected to expand during the 2050s and 2070s. High-emission (SSP585), suitable areas may decrease by 50%, with a 66.07% reduction in highly suitable areas by the 2070s. The greatest losses are expected in the south-eastern Tibetan Plateau. Regarding dynamic habitat changes, by the 2050s, newly suitable areas will account for 51.09% of the current habitat, while 68.26% of existing habitat will become unsuitable. By the 2070s, newly suitable areas will rise to 71.86% of the current total, but the loss of existing areas will exceed these gains, particularly under the high-emission scenario. The centroid of suitable habitats is expected to shift northward, with migration distances ranging from 23.94 km to 342.42 km. The most significant shift is anticipated under the SSP126 scenario by the 2070s. This study offers valuable insights into the distribution dynamics of L. nanum and other alpine species under the context of climate change. From a conservation perspective, it is recommended to prioritize the protection and restoration of vegetation in key habitat patches or potential migration corridors, restrict overgrazing and infrastructure development, and maintain genetic diversity and dispersal capacity through assisted migration and population genetic monitoring when necessary. These measures aim to provide a robust scientific foundation for the comprehensive conservation and sustainable management of the grassland ecosystem on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 6172 KiB  
Article
Ethnomedicinal Properties of Wild Edible Fruit Plants and Their Horticultural Potential Among Indigenous Isan Communities in Roi Et Province, Northeastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Auemporn Junsongduang, Min Khant Naing and Tammanoon Jitpromma
Horticulturae 2025, 11(8), 885; https://doi.org/10.3390/horticulturae11080885 (registering DOI) - 1 Aug 2025
Viewed by 244
Abstract
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the [...] Read more.
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the diversity, traditional uses, phenology, and conservation status of these species to inform sustainable management and conservation efforts. Field surveys and ethnobotanical interviews with 200 informants (100 men, 100 women; random ages) were conducted across 20 local communities to identify species diversity and usage patterns, while phenological observations and conservation assessments were performed to understand reproductive cycles and species vulnerability between January and December 2023. A total of 68 species from 32 families were recorded, with peak flowering in March–April and fruiting in May–June. Analyses of Species Use Value (0.19–0.48) and Relative Frequency of Citation (0.15–0.44) identified key species with significant roles in food security and traditional medicine. Uvaria rufa had the highest SUV (0.48) and RFC (0.44). Informant consensus on medicinal applications was strong for ailments such as gastrointestinal and lymphatic disorders. Economically important species were also identified, with some contributing notable income through local trade. Conservation proposed one species as Critically Endangered and several others as Vulnerable. The results highlight the need for integrated conservation strategies, including community-based initiatives and recognition of Other Effective area-based Conservation Measures (OECMs), to ensure the preservation of biodiversity, traditional knowledge, and local livelihoods. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

12 pages, 788 KiB  
Article
Gut Microbial Composition on Dienogest Therapy in Patients with Endometriosis
by Veronika Pronina, Pavel Denisov, Vera Muravieva, Alexey Skorobogatiy, Ksenia Zhigalova, Galina Chernukha, Gennady Sukhikh and Tatiana Priputnevich
Microbiol. Res. 2025, 16(8), 169; https://doi.org/10.3390/microbiolres16080169 - 1 Aug 2025
Viewed by 232
Abstract
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. [...] Read more.
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. Dienogest (DNG) is widely used for endometriosis management, but its effects on gut microbiota remain underexplored. This study investigates the impact of DNG on gut microbial composition in endometriosis patients, aiming to elucidate its therapeutic mechanisms beyond hormonal modulation. DNG therapy led to a significant reduction in the Bacillota/Bacteroidota ratio (p = 0.0421), driven by decreased Staphylococcus spp. (p = 0.0244) and increased commensal bacteria such as Lactobacillus spp. and Collinsella aerofaciens (p = 0.049). Species richness and alpha diversity indices showed a non-significant upward trend. Notably, C. aerofaciens, a butyrate producer linked to gut barrier integrity, was detected twice as frequently during therapy. The study also observed reductions in facultative anaerobes like Enterococcus spp. and a trend toward higher titers of beneficial Bacteroidota. This study provides the first evidence that DNG therapy modulates gut microbiota in endometriosis patients, favoring a composition associated with anti-inflammatory and barrier-protective effects. The observed shifts—reduced opportunistic pathogens and increased symbionts—suggest a novel mechanism for DNG’s efficacy, potentially involving the microbial regulation of estrogen metabolism and immune responses. Full article
Show Figures

Figure 1

Back to TopTop