Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,174)

Search Parameters:
Keywords = reproductive health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 890 KB  
Article
Identifying the Genetic Basis of Fetal Loss in Cows and Heifers Through a Genome-Wide Association Analysis
by Ousseini Issaka Salia, Emaly M. Suarez, Brenda M. Murdoch, Victoria C. Kelson, Allison L. Herrick, Jennifer N. Kiser and Holly L. Neibergs
Animals 2026, 16(2), 293; https://doi.org/10.3390/ani16020293 (registering DOI) - 17 Jan 2026
Abstract
Fetal loss, the spontaneous termination of pregnancy between day 42 and 260 of gestation, is poorly understood. Impacts of fetal loss include loss of production, increased health risk, and economic loss. The aims of this study were to identify loci associated with fetal [...] Read more.
Fetal loss, the spontaneous termination of pregnancy between day 42 and 260 of gestation, is poorly understood. Impacts of fetal loss include loss of production, increased health risk, and economic loss. The aims of this study were to identify loci associated with fetal loss in Holstein heifers and primiparous cows to facilitate the selection of reproductively efficient cattle and identify the genetic causes of fetal loss. A genome-wide association analysis (GWAA) compared 5714 heifers that calved at term (controls) to 416 heifers that experienced fetal loss (cases), and for primiparous cows, 2519 controls were compared to 273 cases. The efficient mixed-model association eXpedited approach in the SNP and Variation Suite (v 9.1) statistical software was used with additive, dominant, and recessive inheritance models for the GWAA. In heifers, 16 loci were associated (FDR < 0.05) with fetal loss in the recessive model. In primiparous cows, there were 44 loci associated (FDR < 0.05) with fetal loss in the recessive model. No loci associated with fetal loss were shared between cows and heifers or in the additive and dominant models. These results improve the characterization of genetic factors contributing to fetal loss in Holstein heifers and primiparous cows and provide targets for genomic selection. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2923 KB  
Article
Functional and Molecular Characterization of Melamine-Induced Disruption of Human Spermatozoa via Oxidative Stress and Apoptotic Pathways: An In Vitro Study
by Francesca Paola Luongo, Eugenia Annunzi, Rosetta Ponchia, Francesca Girolamo, Giuseppe Morgante, Paola Piomboni and Alice Luddi
Antioxidants 2026, 15(1), 122; https://doi.org/10.3390/antiox15010122 (registering DOI) - 17 Jan 2026
Abstract
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in [...] Read more.
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in vitro effects of melamine on human sperm, under both capacitating and non-capacitating conditions. Functional analyses revealed that the exposure to 0.8 mM melamine, the highest non-cytotoxic concentration in vitro, significantly compromised sperm motility and disrupted key capacitation processes, including tyrosine phosphorylation patterns, cholesterol efflux, and the acrosome reaction. Molecular assessments demonstrated melamine-induced mitochondrial dysfunction, characterized by COX4I1 downregulation, reduced mitochondrial membrane potential, and altered reactive oxygen species production. In parallel, gene expression analyses revealed the activation of apoptotic pathways, with the upregulation of BAX and downregulation of BCL2, changes that were more pronounced during capacitation. Furthermore, melamine exposure significantly increased sperm DNA fragmentation and denaturation, indicating genotoxic stress. Collectively, these findings demonstrate that even low, non-cytotoxic concentrations of melamine compromise sperm function by disrupting capacitation, mitochondrial activity, and genomic integrity. This study identifies capacitation as a critical window of vulnerability and underscores the need to consider melamine as a potential environmental risk factor for male reproductive health. Full article
Show Figures

Figure 1

10 pages, 457 KB  
Article
Impact of Laparoscopic Sleeve Gastrectomy on Menstrual Regularity and Spontaneous Pregnancy in Morbidly Obese Women: A Retrospective Cohort Study
by Zekai Serhan Derici, Tufan Egeli, Cihan Agalar, Suleyman Özkan Aksoy and Koray Atila
Medicina 2026, 62(1), 191; https://doi.org/10.3390/medicina62010191 - 16 Jan 2026
Abstract
Background and Objectives: Obesity is a major contributor to female reproductive dysfunction, frequently resulting in menstrual irregularity, anovulation, and subfertility. Bariatric surgery improves metabolic health; however, its effect on reproductive outcomes—particularly the shift from assisted to spontaneous conception—remains incompletely defined. This study [...] Read more.
Background and Objectives: Obesity is a major contributor to female reproductive dysfunction, frequently resulting in menstrual irregularity, anovulation, and subfertility. Bariatric surgery improves metabolic health; however, its effect on reproductive outcomes—particularly the shift from assisted to spontaneous conception—remains incompletely defined. This study aimed to evaluate the impact of laparoscopic sleeve gastrectomy (LSG) on menstrual cycle regularity and spontaneous pregnancy rates in women of reproductive age. Materials and Methods: This retrospective observational study included 52 women aged 18–40 years who underwent LSG between January 2013 and October 2017. Self-reported menstrual history, as documented during routine preoperative assessment in the electronic medical records, and reproductive outcomes (including spontaneous and assisted conception) were compared between the preoperative and postoperative periods. The median follow-up duration was 38 months. Results: A significant improvement in menstrual regularity was observed (46.2% to 94.2%, p < 0.001). Among women attempting conception, 10/15 (66.7%) achieved spontaneous pregnancy; one conceived via ART. Notably, 57.1% of all pregnancies occurred within the first 12 months post-surgery, including three unintended conceptions. Additionally, among women who conceived spontaneously, four had a history of requiring assisted reproductive technologies (ART), including two who had previously failed to conceive despite ART treatment. Conclusions: LSG is associated with significant normalization of menstrual cycles and a qualitative shift toward spontaneous conception in morbidly obese women. The rapid return of fertility, which may exceed patient awareness, underscores the importance of comprehensive perioperative counseling regarding effective contraception to prevent unintended pregnancies during the active weight-loss phase. Full article
(This article belongs to the Special Issue Bariatric Surgery and Postoperative Management)
Show Figures

Figure 1

27 pages, 3948 KB  
Review
Evolution of Insect Pollination Before Angiosperms and Lessons for Modern Ecosystems
by Ilaria Negri and Mario E. Toledo
Insects 2026, 17(1), 103; https://doi.org/10.3390/insects17010103 - 16 Jan 2026
Abstract
Insect pollination, a critical ecological process, pre-dates the emergence of angiosperms by nearly 200 million years, with fossil evidence indicating pollination interactions between insects and non-angiosperm seed plants during the Late Paleozoic. This review examines the symbiotic relationships between insects and gymnosperms in [...] Read more.
Insect pollination, a critical ecological process, pre-dates the emergence of angiosperms by nearly 200 million years, with fossil evidence indicating pollination interactions between insects and non-angiosperm seed plants during the Late Paleozoic. This review examines the symbiotic relationships between insects and gymnosperms in pre-angiosperm ecosystems, highlighting the complexity of these interactions. Fossil records suggest that the mutualistic relationships between insects and gymnosperms, which facilitated plant reproduction, were as intricate and diverse as the modern interactions between angiosperms and their pollinators, particularly bees. These early pollination systems likely involved specialized behaviors and plant adaptations, reflecting a sophisticated evolutionary dynamic long before the advent of flowering plants. The Anthropocene presents a dichotomy: while climate change and anthropogenic pressures threaten insect biodiversity and risk disrupting angiosperm reproduction, such upheaval may simultaneously generate opportunities for novel plant–insect interactions as ecological niches are vacated. Understanding the deep evolutionary history of pollination offers critical insight into the mechanisms underlying the resilience and adaptability of these mutualisms. The evolutionary trajectory of bees—originating from predatory wasps, diversifying alongside angiosperms, and reorganizing after mass extinctions—exemplifies this dynamic, demonstrating how pollination networks persist and reorganize under environmental stress and underscoring the enduring health, resilience, and adaptability of these essential ecological systems. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

31 pages, 793 KB  
Review
When Testosterone Fades: Leydig Cell Aging Shaped by Environmental Toxicants, Metabolic Dysfunction, and Testicular Niche Crosstalk
by Aris Kaltsas, Fotios Dimitriadis, Athanasios Zachariou, Sotirios Koukos, Michael Chrisofos and Nikolaos Sofikitis
Cells 2026, 15(2), 158; https://doi.org/10.3390/cells15020158 - 15 Jan 2026
Viewed by 36
Abstract
Declining Leydig cell steroidogenesis contributes to late-onset hypogonadism and to age-associated impairment of male reproductive health. Determinants of dysfunction extend beyond chronological aging. This review synthesizes recent experimental and translational evidence on cellular and molecular processes that compromise Leydig cell endocrine output and [...] Read more.
Declining Leydig cell steroidogenesis contributes to late-onset hypogonadism and to age-associated impairment of male reproductive health. Determinants of dysfunction extend beyond chronological aging. This review synthesizes recent experimental and translational evidence on cellular and molecular processes that compromise Leydig cell endocrine output and the interstitial niche that supports spermatogenesis. Evidence spanning environmental endocrine-disrupting chemicals (EDCs), obesity and metabolic dysfunction, and testicular aging is integrated with emphasis on oxidative stress, endoplasmic reticulum stress, mitochondrial dysregulation, apoptosis, disrupted autophagy and mitophagy, and senescence-associated remodeling. Across model systems, toxicant exposure and metabolic stress converge on impaired organelle quality control and altered redox signaling, with downstream loss of steroidogenic capacity and, in some settings, premature senescence within the Leydig compartment. Aging further reshapes the testicular microenvironment through inflammatory shifts and biomechanical remodeling and may erode stem and progenitor Leydig cell homeostasis, thereby constraining regenerative potential. Single-cell transcriptomic atlases advance the field by resolving Leydig cell heterogeneity, nominating subsets that appear more vulnerable to stress and aging, and mapping age-dependent rewiring of interstitial cell-to-cell communication with Sertoli cells, peritubular myoid cells, vascular cells, and immune cells. Many mechanistic insights derive from rodent in vivo studies and in vitro platforms that include immortalized Leydig cell lines, and validation in human tissue and human clinical cohorts remains uneven. Together, these findings frame mechanistically informed opportunities to preserve endogenous androgen production and fertility through exposure mitigation, metabolic optimization, fertility-preserving endocrine stimulation, and strategies that target inflammation, senescence, and regenerative capacity. Full article
Show Figures

Figure 1

31 pages, 3317 KB  
Review
Reactive Oxygen Species in Embryo Development: Sources, Impacts, and Implications for In Vitro Culture Systems
by Sajuna Sunuwar and Yun Seok Heo
Life 2026, 16(1), 136; https://doi.org/10.3390/life16010136 - 15 Jan 2026
Viewed by 200
Abstract
Reactive oxygen species (ROS) are essential regulators of fertilization and early embryo development in mammals, including humans and various animal models, but they exert detrimental effects when produced in excess. In assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), exposure to non-physiological [...] Read more.
Reactive oxygen species (ROS) are essential regulators of fertilization and early embryo development in mammals, including humans and various animal models, but they exert detrimental effects when produced in excess. In assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), exposure to non-physiological conditions increases oxidative stress (OS), impairing gamete quality, embryo viability, and clinical outcomes. This review synthesizes experimental and clinical studies describing the endogenous and exogenous sources of ROS relevant to embryo development in IVF. Endogenous ROS arise from intrinsic metabolic pathways such as oxidative phosphorylation, NADPH oxidase, and xanthine oxidase. Exogenous sources include suboptimal laboratory conditions characterized by factors such as high oxygen tension, temperature shifts, pH instability, light exposure, media composition, osmolarity, and cryopreservation procedures. Elevated ROS disrupt oocyte fertilization, embryonic cleavage, compaction, blastocyst formation, and implantation by inducing DNA fragmentation, lipid peroxidation, mitochondrial dysfunction, and apoptosis. In addition, the review highlights how parental health factors establish the initial redox status of gametes, which influences subsequent embryo development in vitro. While antioxidant supplementation and optimized culture conditions can mitigate oxidative injury, the precise optimal redox environment remains a subject of ongoing research. This review emphasizes that future research should focus on defining specific redox thresholds and developing reliable, non-invasive indicators of embryo oxidative status to improve the success rates of ART. Full article
(This article belongs to the Special Issue Advances in Livestock Breeding, Nutrition and Metabolism)
Show Figures

Figure 1

31 pages, 3388 KB  
Review
Molecular Insights into Dominant Pseudouridine RNA Modification: Implications for Women’s Health and Disease
by Qiwei Yang, Ayman Al-Hendy and Thomas G. Boyer
Biology 2026, 15(2), 142; https://doi.org/10.3390/biology15020142 - 14 Jan 2026
Viewed by 184
Abstract
Pseudouridine (Ψ), the most abundant RNA modification, plays essential roles in shaping RNA structure, stability, and translational output. Beyond cancer, Ψ is dynamically regulated across numerous physiological and pathological contexts—including immune activation, metabolic disorders, stress responses, and pregnancy-related conditions such as preeclampsia—where elevated [...] Read more.
Pseudouridine (Ψ), the most abundant RNA modification, plays essential roles in shaping RNA structure, stability, and translational output. Beyond cancer, Ψ is dynamically regulated across numerous physiological and pathological contexts—including immune activation, metabolic disorders, stress responses, and pregnancy-related conditions such as preeclampsia—where elevated Ψ levels reflect intensified RNA turnover and modification activity. These broad functional roles highlight pseudouridylation as a central regulator of cellular homeostasis. Emerging evidence demonstrates that Ψ dysregulation contributes directly to the development and progression of several women’s cancers, including breast, ovarian, endometrial, and cervical malignancies. Elevated Ψ levels in tissues, blood, and urine correlate with tumor burden, metastatic potential, and therapeutic responsiveness. Aberrant activity of Ψ synthases such as PUS1, PUS7, and the H/ACA ribonucleoprotein component dyskerin alters pseudouridylation patterns across multiple RNA substrates, including rRNA, tRNA, mRNA, snoRNAs, and ncRNAs. These widespread modifications reshape ribosome function, modify transcript stability and translational efficiency, reprogram RNA–protein interactions, and activate oncogenic signaling programs. Advances in high-resolution, site-specific Ψ mapping technologies have further revealed mechanistic links between pseudouridylation and malignant transformation, highlighting how modification of distinct RNA classes contributes to altered cellular identity and tumor progression. Collectively, Ψ and its modifying enzymes represent promising biomarkers and therapeutic targets across women’s cancers, while also serving as sensitive indicators of diverse non-cancer physiological and disease states. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

20 pages, 736 KB  
Article
Individual- and Community-Level Predictors of Birth Preparedness and Complication Readiness: Multilevel Evidence from Southern Ethiopia
by Amanuel Yoseph, Lakew Mussie, Mehretu Belayineh, Francisco Guillen-Grima and Ines Aguinaga-Ontoso
Epidemiologia 2026, 7(1), 13; https://doi.org/10.3390/epidemiologia7010013 - 14 Jan 2026
Viewed by 95
Abstract
Background/Objectives: Birth preparedness and complication readiness (BPCR) is a cornerstone of maternal health strategies designed to minimize the “three delays” in seeking, reaching, and receiving skilled care. In Ethiopia, uptake of BPCR remains insufficient, and little evidence exists on how individual- and [...] Read more.
Background/Objectives: Birth preparedness and complication readiness (BPCR) is a cornerstone of maternal health strategies designed to minimize the “three delays” in seeking, reaching, and receiving skilled care. In Ethiopia, uptake of BPCR remains insufficient, and little evidence exists on how individual- and community-level factors interact to shape preparedness. This study assessed the determinants of BPCR among women of reproductive age in Hawela Lida district, Sidama Region. Methods: A community-based cross-sectional study was conducted among 3540 women using a multistage sampling technique. Data were analyzed with multilevel mixed-effect negative binomial regression to account for clustering at the community level. Adjusted prevalence ratios (APRs) with 95% confidence intervals (CIs) were reported to identify determinants of BPCR. Model fitness was assessed using Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC), and log-likelihood statistics. Results: At the individual level, women employed in government positions had over three times higher expected BPCR scores compared with farmers (AIRR = 3.11; 95% CI: 1.89–5.77). Women with planned pregnancies demonstrated higher BPCR preparedness (AIRR = 1.66; 95% CI: 1.15–3.22), as did those who participated in model family training (AIRR = 2.53; 95% CI: 1.76–4.99) and women exercising decision-making autonomy (AIRR = 2.34; 95% CI: 1.97–5.93). At the community level, residing in urban areas (AIRR = 2.78; 95% CI: 1.81–4.77) and in communities with higher women’s literacy (AIRR = 4.92; 95% CI: 2.32–8.48) was associated with higher expected BPCR scores. These findings indicate that both personal empowerment and supportive community contexts play pivotal roles in enhancing maternal birth preparedness and readiness for potential complications. Random-effects analysis showed that 19.4% of the variance in BPCR was attributable to kebele-level clustering (ICC = 0.194). The final multilevel model demonstrated superior fit (AIC = 2915.15, BIC = 3003.33, log-likelihood = −1402.44). Conclusions: Both individual- and community-level factors strongly influence BPCR practice in southern Ethiopia. Interventions should prioritize women’s empowerment and pregnancy planning, scale-up of model family training, and address structural barriers such as rural access and community literacy gaps. Targeted, multilevel strategies are essential to accelerate progress toward improving maternal preparedness and reducing maternal morbidity and mortality. Full article
Show Figures

Figure 1

9 pages, 663 KB  
Article
Genetic Diversity of Tick-Borne Encephalitis Virus in Kyrgyzstan
by Leyla H. Shigapova, Irina V. Kozlova, Galya V. Klink, Elena K. Doroshchenko, Olga V. Suntsova, Oksana V. Lisak, Elena I. Shagimardanova, Yuriy P. Dzhioev, Vladimir I. Zlobin and Sergey E. Tkachev
Viruses 2026, 18(1), 107; https://doi.org/10.3390/v18010107 - 13 Jan 2026
Viewed by 126
Abstract
Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), a severe disease of the human central nervous system. Currently, the data on the genetic variants of TBEV in Kyrgyzstan are practically absent. Therefore, the aim of this study was to analyze and describe the [...] Read more.
Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), a severe disease of the human central nervous system. Currently, the data on the genetic variants of TBEV in Kyrgyzstan are practically absent. Therefore, the aim of this study was to analyze and describe the genetic diversity of TBEV in this region. The complete genome sequences of seven TBEV strains from the collection of the Scientific Centre for Family Health and Human Reproduction Problems (Irkutsk, Russia) were determined. These strains, isolated from Ixodes persulcatus ticks from Kyrgyzstan, were sequenced using the next generation sequencing approach on a MiSeq high-performance sequencer (Illumina, San Diego, CA, USA). A molecular genetic analysis of the obtained sequences, along with sequences of two previously isolated TBEV strains from Kyrgyzstan available in the GenBank database, demonstrated that the Siberian subtype of three genetic lineages (Zausaev, Vasilchenko and Bosnia) is predominantly distributed in Kyrgyzstan. The Far Eastern subtype of TBEV is also present. To date, this location probably represents the southernmost boundary of these TBEV subtypes’ ranges. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

69 pages, 11672 KB  
Review
Review of Major and Minor Pathogens of Adult Pacific Salmon (Oncorhynchus spp.) in Freshwater in the Pacific Northwest of North America
by Tamsen M. Polley, Jayde A. Ferguson, Nora Hickey, Simon R. M. Jones, Anindo Choudhury, John S. Foott and Michael L. Kent
Pathogens 2026, 15(1), 87; https://doi.org/10.3390/pathogens15010087 - 13 Jan 2026
Viewed by 90
Abstract
This comprehensive review examines pathogens affecting adult anadromous Pacific salmon (Oncorhynchus spp.) during their terminal freshwater migration and spawning across populations from California through Alaska, including Oregon, Washington, and British Columbia. We systematically reviewed selected pathogens based on their significance to adult [...] Read more.
This comprehensive review examines pathogens affecting adult anadromous Pacific salmon (Oncorhynchus spp.) during their terminal freshwater migration and spawning across populations from California through Alaska, including Oregon, Washington, and British Columbia. We systematically reviewed selected pathogens based on their significance to adult salmon health or role in epizootiology, categorizing them by their impact on prespawn mortality (PSM), disease severity, and maternal or ‘egg-associated’ transmission risks to progeny. Our analysis encompasses macroparasites, microparasites, bacteria, and viruses affecting anadromous Pink (O. gorbuscha), Chum (O. keta), Coho (O. kisutch), Sockeye (O. nerka), and Chinook Salmon (O. tshawytscha) and Steelhead Trout (O. mykiss), integrating extensive literature analysis with direct field observations and case studies from representative geographic regions. Understanding pathogen impacts during the spawning life stage is crucial for salmon population sustainability, as the unique semelparous nature of Pacific salmon makes this terminal phase critical for reproductive success and the continuation of these ecologically, economically, and culturally vital species. Full article
(This article belongs to the Special Issue Infectious Diseases in Aquatic Animals)
Show Figures

Figure 1

20 pages, 1051 KB  
Article
Age-Specific Distribution and Factors Associated with High-Risk HPV Infection and Cervical Lesions Among HIV-Positive and -Negative Women in Maputo, Mozambique: Findings from the HPV-ISI Study
by Alberto Sineque, Célia Nhambe, Júlia Sebastião, Nilza Cossa, Cacilda Massango, Zita Sidumo, Susanna Ceffa, Fausto Cicacci, Jahit Sacarlal and Maria Clara Bicho
Venereology 2026, 5(1), 4; https://doi.org/10.3390/venereology5010004 - 13 Jan 2026
Viewed by 70
Abstract
Background/Objective: High-risk Human papillomavirus (hrHPV) is the leading cause of premalignant lesions and cervical cancer (CC), affecting disproportionally women living with HIV. Mozambique is among the countries with a heavy triple-burden of HIV, hrHPV infections and CC which accounts for more than [...] Read more.
Background/Objective: High-risk Human papillomavirus (hrHPV) is the leading cause of premalignant lesions and cervical cancer (CC), affecting disproportionally women living with HIV. Mozambique is among the countries with a heavy triple-burden of HIV, hrHPV infections and CC which accounts for more than 5300 new cases and 3800 deaths each year. In this study, we assessed the age-specific distribution and factors associated with hrHPV and cervical lesions among HIV-positive and -negative women from HPV-ISI (HPV Innovative Screening Initiative) study in Maputo, Mozambique. Methods: This cross-sectional study included 1248 non-pregnant women aged ≥18 years who attended CC screening at the DREAM Sant’Egídio Health Centre between July 2021 and April 2022. Screening involved visual inspection with acetic acid (VIA) and high-risk HPV DNA testing. Sociodemographic, lifestyle, and reproductive data were collected through a routine questionnaire. Logistic regression assessed associations between risk factors and hrHPV infection or cervical lesions. Age-specific hrHPV prevalence, partial HPV16/18 genotyping, and abnormal cytology rates were further analyzed by HIV status. Results: The mean age of participants was 43.0 ± 8.6 years. Overall hrHPV prevalence was 28.0%, being higher among HIV-positive women (46.8%) than HIV-negative women (23.8%). Non-16/18 hrHPV genotypes predominated across all age groups. VIA positivity was 11.1%, most frequently involving less than 75% of the cervical area and was more common among younger women (30–45 years) and those living with HIV. Increasing age was associated with lower odds of hrHPV infection (OR = 0.98, 95% CI: 0.97–1.00; p = 0.017), as was higher parity (≥3 deliveries vs. nulliparity: OR = 0.58, 95% CI: 0.36–0.94; p = 0.029). Contraceptive use (OR = 1.65, 95% CI: 1.15–2.38; p = 0.007) and a partially or non-visible squamocolumnar junction (SCJ) (OR = 2.88, 95% CI: 1.74–4.79; p < 0.001) were associated with higher odds of VIA positivity. Conclusions: hrHPV infection and cervical lesions were more frequent in younger and HIV-positive women, highlighting the need for strengthened targeted screening within HIV care services in Mozambique. Full article
Show Figures

Figure 1

27 pages, 23553 KB  
Article
Preventive Effects of Tri Garn Pis Polyherbal Extract on Sexual Performance, Testicular Apoptosis, and Sperm Quality in a Dexamethasone-Induced Chronic Stress in Mice
by Chadaporn Chaimontri, Sitthichai Iamsaard, Tarinee Sawatpanich, Nongnut Uabundit, Arada Chaiyamoon, Rarinthorn Samrid, Therachon Kamollerd, Chayakorn Taoto, Natthapol Lapyuneyong, Sararat Innoi, Tidarat Chawalchitiporn, Pornpan Kerdsang, Nawaphon Koedbua, Yutthaphong Patjorn, Chanasorn Poodendaen, Suthat Duangchit and Supatcharee Arun
Life 2026, 16(1), 116; https://doi.org/10.3390/life16010116 - 13 Jan 2026
Viewed by 322
Abstract
Chronic stress (CS) contributes to male infertility, reduced testosterone levels, and impaired semen quality. CS models induced by glucocorticoids, such as dexamethasone (DEX), negatively affect sperm parameters and testicular health, notably by promoting testicular apoptosis. While individual plant extracts have been studied for [...] Read more.
Chronic stress (CS) contributes to male infertility, reduced testosterone levels, and impaired semen quality. CS models induced by glucocorticoids, such as dexamethasone (DEX), negatively affect sperm parameters and testicular health, notably by promoting testicular apoptosis. While individual plant extracts have been studied for their ability to mitigate stress-induced reproductive dysfunction, the preventive effect of the Tri Garn Pis (TGP) polyherbal extract in DEX-induced CS (DexCS) has not previously been investigated. This study evaluated the effects of TGP extract on testicular function, sexual behavior, and sperm quality in DexCS male mice. Seventy-two ICR mice were randomly divided into six groups: control, DexCS, TGP (50, 100, and 200) + DexCS, and TGP200. Mice received TGP (50, 100, 200 mg/kgBW) for 14 days before DEX co-treatment for 28 days. Behavioral and reproductive assessments included depression-like behavior tests, sexual behavior, sperm quality, testicular histopathology, steroidogenesis proteins (AR, CYP11A1, StAR), and apoptosis markers (Hsp70, caspase-3, caspase-9). TGP extract—which is rich in phenolics and flavonoids with antioxidant activity—improved depressive behavior, sexual performance, testicular histology, and low sperm quality. TGP also upregulated testicular StAR expression while reducing caspase-3 and caspase-9 levels. TGP prevents testicular apoptosis, sexual dysfunction, and poor sperm motility induced by DexCS. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

20 pages, 415 KB  
Review
Reproductive Longevity: Innovative Approaches Beyond Hormone Replacement Therapy
by Nida Jugulytė and Daiva Bartkevičienė
Medicina 2026, 62(1), 157; https://doi.org/10.3390/medicina62010157 - 13 Jan 2026
Viewed by 218
Abstract
With increasing life expectancy driven by rapid biomedical science advancement, reproductive longevity has become a key concept in women’s health. Preventing reproductive senescence is important not only to extend fertility potential but also to preserve endocrine health, enhance quality of life, and promote [...] Read more.
With increasing life expectancy driven by rapid biomedical science advancement, reproductive longevity has become a key concept in women’s health. Preventing reproductive senescence is important not only to extend fertility potential but also to preserve endocrine health, enhance quality of life, and promote healthy aging. The end of ovarian function and fertility is symbolized by menopause, as the most eminent index of reproductive aging. Hormone replacement therapy (HRT) remains the mainstay for managing menopausal symptoms. However, as the use of HRT is often limited, there is a need for safe and effective alternatives. This narrative review summarizes current and emerging approaches targeting different stages of reproductive aging. Both hormonal and non-hormonal therapies for vasomotor and genitourinary symptoms are discussed alongside developing fertility preservation techniques, including oocyte vitrification, ovarian tissue cryopreservation, in vitro follicle maturation, and artificial ovary engineering. Furthermore, evolving and experimental ovarian regenerative strategies, such as stem cell transplantation, intraovarian platelet-rich plasma (PRP) injections, antioxidants, metabolic modulators, telomerase activators, and stem cell-derived extracellular vesicles, offer new prospects for delaying or reversing ovarian aging. Overall, personalized regenerative strategies and innovative solutions may reshape the future of women’s reproductive health and longevity. Full article
(This article belongs to the Section Obstetrics and Gynecology)
13 pages, 2486 KB  
Article
Investigation and Correlation Analysis of Pathogens Carried by Ticks and Cattle in Tumen River Basin, China
by Pengfei Min, Jianchen Song, Yinbiao Meng, Shaowei Zhao, Zeyu Tang, Zhenyu Wang, Sicheng Lin, Fanglin Zhao, Meng Liu, Longsheng Wang and Lijun Jia
Vet. Sci. 2026, 13(1), 78; https://doi.org/10.3390/vetsci13010078 - 13 Jan 2026
Viewed by 130
Abstract
Ticks and tick-borne diseases pose a significant threat to public health. The Tumen River Basin is located at the junction of China, North Korea and Russia, whose warm climate and favorable ecological environment are suitable for the growth and reproduction of ticks. At [...] Read more.
Ticks and tick-borne diseases pose a significant threat to public health. The Tumen River Basin is located at the junction of China, North Korea and Russia, whose warm climate and favorable ecological environment are suitable for the growth and reproduction of ticks. At the same time, the cattle industry in this region is highly developed, with cattle serving as the primary economic source for the area. This study performed an epidemiological investigation and analysis of pathogens carried by ticks and cattle in the Tumen River basin. A total of 913 ticks and 247 bovine blood samples were collected from seven cities primarily focused on cattle farming in the Tumen River basin. Morphological and molecular biological identification of ticks was carried out to determine the distribution of ticks and their pathogens in the region. Through the detection of pathogens carried by cattle blood samples in the surrounding area, the correlation with tick distribution was confirmed. The species and distribution of ticks of different genders and in different collection environments, and the infection of pathogens in bovine blood samples were statistically analyzed. The results showed that the 913 ticks had 5 species, including Haemaphysalis longicornis, Haemaphysalis concinna, Haemaphysalis japonica, Dermacentor silvarum and Ixodes persulcatus. Three pathogens, Babesia ovata, Theileria orientalis and Theileria sinensis, were detected in the blood samples of vector ticks and cattle. These results provide a theoretical basis for the prevention and control of ticks and tick-borne diseases in the Tumen River basin. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens: 2nd Edition)
Show Figures

Figure 1

23 pages, 1208 KB  
Review
Microplastics and Human Health: A Comprehensive Review on Exposure Pathways, Toxicity, and Emerging Risks
by Nayak Snehamayee, Sephalika Somya, Sahoo Chinmaya Kumar, Mohanty Niranjan, Sahu Bikash Ranjan and Mohakud Nirmal Kumar
Microplastics 2026, 5(1), 8; https://doi.org/10.3390/microplastics5010008 - 13 Jan 2026
Viewed by 580
Abstract
Microplastics (MPs) are considered to be dominant agents responsible for serious contamination in environmental and biological systems. Despite a huge increase in research on these contaminants, there are still considerable uncertainties and progress to be made on the exposure pathways of biological systems, [...] Read more.
Microplastics (MPs) are considered to be dominant agents responsible for serious contamination in environmental and biological systems. Despite a huge increase in research on these contaminants, there are still considerable uncertainties and progress to be made on the exposure pathways of biological systems, modes of detection, and toxicity assessments. Therefore, developing a critical review of MPs is crucial due to growing evidence of their harmful effects on human health. In the current review, we aim to emphasize the potential toxic effects of MPs on different biological systems in humans, the mechanisms of their toxic effects, and gaps in our knowledge on risk assessment. Importantly, we focus on the risks posed by MPs for fetuses and child health. To ensure methodological rigor, the current review follows the PRISMA guidelines, explicitly detailing the literature search strategy and inclusion/exclusion criteria. The present review summarizes potential sources of MP generation, exposure pathways, quantitative analyses of dietary exposure, estimated daily intake, particle/leachate toxicity evidence, detection in different human organs, and potential toxic effects. MPs cause toxicity in several biological systems in humans, such as the gastrointestinal, nervous, hepatic, endocrine, respiratory, and reproductive systems. In addition, these particles are known to cause oxidative stress, alter metabolism, and affect gut microflora and gastrointestinal functions. Importantly, the current review also discusses the challenges encountered in conducting risk assessments for MPs and the approaches for counteracting these challenges. Finally, the review concludes by recommending future research directions in terms of counteracting the toxic effects of MPs on human health. Full article
Show Figures

Figure 1

Back to TopTop