Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,629)

Search Parameters:
Keywords = renewable materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4052 KB  
Article
Evaluating Critical Barriers to Utilization of Solid Waste as Building Material (USB) in China: An Integrated DEMATEL Approach
by Sujuan Zhou, Lixiong Cai, Dingkun Xie, Yaohui Xia and Mingjing Chang
Buildings 2025, 15(20), 3679; https://doi.org/10.3390/buildings15203679 (registering DOI) - 13 Oct 2025
Abstract
Utilization of solid waste as building material (USB) is a promising strategy that effectively addresses the challenges of safety and environmental pollution posed by solid waste and alleviates the scarcity of natural resources to facilitate the sustainable production of building materials. However, USB [...] Read more.
Utilization of solid waste as building material (USB) is a promising strategy that effectively addresses the challenges of safety and environmental pollution posed by solid waste and alleviates the scarcity of natural resources to facilitate the sustainable production of building materials. However, USB implementation and promotion have not yet matured in China because of various barriers. Therefore, this study employed the GT-DEMATEL-ISM-MACMIC model to identify the critical factors in USB implementation and examine the interactions and relationships among barriers to propose targeted recommendations. The results identified 33 barriers and revealed a distinct causal hierarchy. It was found that the macro-level barriers at the apex of the hierarchy, ‘incomplete policies and legislation’, ‘poor supervision and regulation of solid waste’, and ‘insufficient financial subsidies and incentives’, are critical barriers to USB implementation. A key outcome of this study is the identification of the most critical and obstinate barrier path evolution in USB implementation, where incomplete policies and regulations (P1, P2) lead to underdeveloped markets and capital (M6, E2), as well as low stakeholder motivation (S4), which in turn, exacerbates policy inertia and traps USB development in a state of deadlock. Conversely, detail-level barriers at the technical and managerial levels, such as ‘limited innovation in management models’ and ‘single type and limited application of renewable building material’, tend to be less influential than other barriers. Therefore, USB promotion can be achieved by strengthening policies and legislation, improving policy systems, and increasing financial subsidies. The results of this study will assist China and other developing countries in identifying critical barriers to USB implementation, offer practical approaches for promoting USB implementation, and provide methodological guidance for similar studies. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 14721 KB  
Review
Biomass-Derived Hard Carbon Anodes for Sodium-Ion Batteries: Recent Advances in Synthesis Strategies
by Narasimharao Kitchamsetti, Kyoung-ho Kim, HyukSu Han and Sungwook Mhin
Nanomaterials 2025, 15(20), 1554; https://doi.org/10.3390/nano15201554 - 12 Oct 2025
Abstract
Biomass-derived hard carbon (BHC) has attracted considerable attention as a sustainable and cost-effective anode material for sodium-ion batteries (SIBs), owing to its natural abundance, environmental friendliness, and promising electrochemical performance. This review provides a detailed overview of recent progress in the synthesis, structural [...] Read more.
Biomass-derived hard carbon (BHC) has attracted considerable attention as a sustainable and cost-effective anode material for sodium-ion batteries (SIBs), owing to its natural abundance, environmental friendliness, and promising electrochemical performance. This review provides a detailed overview of recent progress in the synthesis, structural design, and performance optimization of BHC materials. It encompasses key fabrication routes, such as high-temperature pyrolysis, hydrothermal pretreatment, chemical and physical activation, heteroatom doping, and templating techniques, that have been employed to control pore architecture, defect density, and interlayer spacing. Among these strategies, activation-assisted pyrolysis and heteroatom doping have shown the most significant improvements in sodium (Na) storage capacity and long-term cycling stability. The review further explores the correlations between microstructure and electrochemical behavior, outlines the main challenges limiting large-scale application, and proposes future research directions toward scalable production and integration of BHC anodes in practical SIB systems. Overall, these advancements highlight the strong potential of BHC as a next-generation anode for grid-level and renewable energy storage technologies. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

22 pages, 3343 KB  
Article
Experimental Investigation of Nickel-Based Co-Catalysts for Photoelectrochemical Water Splitting Using Hematite and Cupric Oxide Nanostructured Electrodes
by Maria Aurora Mancuso, Rossana Giaquinta, Carmine Arnese, Patrizia Frontera, Anastasia Macario, Angela Malara and Stefano Trocino
Nanomaterials 2025, 15(20), 1551; https://doi.org/10.3390/nano15201551 - 11 Oct 2025
Viewed by 23
Abstract
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series [...] Read more.
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series of nickel-based co-catalysts can improve photoelectrochemical activity. Photoanodic (NiOx, NiFeOx, NiWO4) and photocathodic (Ni, NiCu, NiMo) co-catalysts were synthesized via co-precipitation and mechanochemical methods and characterized through X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Transmission Electron Microscopy–Energy Dispersive X-ray Spectroscopy (TEM-EDX), Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) gas-adsorption analyses to clarify their crystallographic, morphological, and compositional properties, as well as their surface chemistry and textural properties (surface area and porosity). Electrochemical tests under 1 SUN illumination showed that NiOx significantly improves the photocurrent of hematite photoanodes. Among the cathodic co-catalysts, NiMo demonstrated the best performance when combined with CuO photocathodes. For both photoelectrodes, an optimal co-catalyst loading was identified, beyond which performance declined due to potential charge transfer limitations and light attenuation. These findings highlight the critical role of co-catalyst composition and loading in optimizing the efficiency of PEC systems based on earth-abundant materials, offering a pathway toward scalable and cost-effective hydrogen production. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Graphical abstract

38 pages, 18471 KB  
Article
Bend–Twist Coupling for Small Wind Turbines: A Blade Design Methodology to Enhance Power Generation
by Juan Pablo Vanegas-Alzate, María Antonia Restrepo-Madrigal, José Luis Torres-Madroñero, César Nieto-Londoño, Germán Alberto Barragán de los Rios, Jorge Mario Tamayo-Avendaño, Julián Sierra-Pérez, Joham Alvarez-Montoya and Daniel Restrepo-Montoya
Energies 2025, 18(20), 5353; https://doi.org/10.3390/en18205353 (registering DOI) - 11 Oct 2025
Viewed by 41
Abstract
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and [...] Read more.
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and complex for small systems. An alternative is passive pitch control through bend–twist coupling in the blade structure, which enables self-regulation and improved power generation. This work proposes a novel blade design methodology for a 5 kW SWT that integrates passive bend–twist coupling with conventional pitch adjustment, thereby creating a hybrid passive–active control strategy. The methodology encompasses the definition of aerodynamic blade geometry, laminate optimization via genetic algorithms combined with finite element analysis, and experimental characterization of composite materials. Aerodynamic–structural interactions are studied using one-way fluid–structure simulations, with responses analyzed through the blade element momentum method to assess turbine performance. The results indicate that the proposed design enhances power generation by about 4%. The study’s originality lies in integrating optimization, structural tailoring, and material testing, offering one of the first demonstrations of combined passive–active pitch control in SWTs, and providing a cost-effective route to improve efficiency and reliability in decentralized renewable energy systems. Full article
Show Figures

Figure 1

31 pages, 2935 KB  
Article
A Novel Earth-to-Air Heat Exchanger-Assisted Ventilated Double-Skin Facade for Low-Grade Renewable Energy Utilization in Transparent Building Envelopes
by Zhanzhi Yu, Fei Liu, Wenke Sui, Rui Wang, Chong Zhang, Xiaoxiao Dong and Xinhua Xu
Buildings 2025, 15(20), 3655; https://doi.org/10.3390/buildings15203655 (registering DOI) - 11 Oct 2025
Viewed by 70
Abstract
Transparent building envelopes significantly increase energy demands due to low thermal resistance and solar heat gain, while conventional double-skin facades may lead to overheating and high cooling loads in the summer. This study proposes a novel earth-to-air heat exchanger (EAHE)-assisted ventilated double-skin facade [...] Read more.
Transparent building envelopes significantly increase energy demands due to low thermal resistance and solar heat gain, while conventional double-skin facades may lead to overheating and high cooling loads in the summer. This study proposes a novel earth-to-air heat exchanger (EAHE)-assisted ventilated double-skin facade (VDSF) system utilizing low-grade shallow geothermal energy for year-round thermal regulation of transparent building envelopes. A numerical model of this coupled system was developed and validated to estimate the thermal performance of the EAHE-assisted VDSF system in a hot-summer-and-cold-winter climate. Parametric study was conducted to investigate the impact of some key design parameters on thermal performance of the EAHE-assisted VDSF system and further reveal recommended design parameters of this coupled system. The results indicate that the EAHE-VDSF system reduces annual accumulated cooling loads by 20.3% to 76.5% and heating loads by 19.6% to 47.1% in comparison to a conventional triple-glazed, non-ventilated facade. The cavity temperature of the VDSF decreases by 15 °C on average in the summer, effectively addressing the overheating issue in DSFs. The proposed coupled EAHE-VDSF system shows promising energy-saving potential and ensures stability and consistency in the thermal regulation of transparent building envelopes. Full article
Show Figures

Figure 1

24 pages, 10080 KB  
Article
Exploring Structural, Optoelectronic, Phonon, Spintronic, and Thermodynamic Properties of Novel Full-Heusler Compounds TiMCu2 (M = Al, Ga, In): Eco-Friendly Materials for Next-Generation Renewable Energy Technologies
by Zeesham Abbas, Amna Parveen, H. I. Elsaeedy, Nejla Mahjoub Said and Mohd Taukeer Khan
Crystals 2025, 15(10), 876; https://doi.org/10.3390/cryst15100876 - 10 Oct 2025
Viewed by 161
Abstract
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate [...] Read more.
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate their stability and potential for functional applications. The results confirm robust structural and dynamic stability, as verified by elastic constants and phonon dispersion curves. All studied systems exhibit metallic character with pronounced spin polarization, while TiGaCu2 shows the strongest total magnetization, highlighting its suitability for spintronic devices. Optical analyses reveal strong absorption across the visible and near-UV regions, low reflectivity, and favorable dielectric behavior, indicating promise for photovoltaic and optoelectronic applications. Thermodynamic modeling further confirms stability under high temperature and pressure, reinforcing their practical viability. Overall, the TiMCu2 family demonstrates multifunctional characteristics, positioning them as eco-friendly and cost-effective candidates for next-generation renewable energy, spintronic, and optoelectronic technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

40 pages, 5739 KB  
Review
Sustainable Hydrogels in Water Treatment—A Short Review
by Anita Ioana Visan and Irina Negut
Gels 2025, 11(10), 812; https://doi.org/10.3390/gels11100812 - 10 Oct 2025
Viewed by 253
Abstract
The growing worldwide water shortage, intensified by pollution from industrial and human activities, highlights the urgent need for advanced, eco-friendly water treatment solutions. Hydrogels, which are three-dimensional polymer networks with exceptional water absorption capabilities, are gaining attention as effective materials for purification, thanks [...] Read more.
The growing worldwide water shortage, intensified by pollution from industrial and human activities, highlights the urgent need for advanced, eco-friendly water treatment solutions. Hydrogels, which are three-dimensional polymer networks with exceptional water absorption capabilities, are gaining attention as effective materials for purification, thanks to their remarkable absorption, selectivity, and reusability. This review offers a concise introduction to hydrogels, focusing on their sustainable aspects such as biodegradability, minimal toxicity, and sourcing from renewable materials. We emphasize their benefits compared to traditional treatment approaches and outline the key goals of this review: categorizing and analyzing the synthesis, modification, characteristics, and varied uses of sustainable hydrogels in eliminating inorganic and organic contaminants. Additionally, we explore their potential for regeneration, current limitations, and future prospects in alignment with environmental sustainability. Full article
Show Figures

Graphical abstract

22 pages, 492 KB  
Article
Strategic Foresight for a Net-Zero Built Environment: Exploring Australia’s Decarbonisation and Resilience Pathways to 2050
by Toktam B. Tabrizi, Aso Haji Rasouli and Ozgur Gocer
Buildings 2025, 15(20), 3639; https://doi.org/10.3390/buildings15203639 - 10 Oct 2025
Viewed by 87
Abstract
The Australian built environment is pivotal to achieving national net-zero targets, yet progress remains slow due to fragmented policy frameworks, low retrofit adoption, and uneven integration of emerging technologies. Despite these challenges, little research has applied a foresight perspective that both defines reproducible [...] Read more.
The Australian built environment is pivotal to achieving national net-zero targets, yet progress remains slow due to fragmented policy frameworks, low retrofit adoption, and uneven integration of emerging technologies. Despite these challenges, little research has applied a foresight perspective that both defines reproducible scenario thresholds and provides semi-quantitative comparisons tailored to Australia. This study integrates strategic foresight with international benchmarking to develop four scenarios for 2050: Business as Usual, Accelerated Sustainability, Technological Transformation, and Climate Resilience. Each scenario is underpinned by measurable thresholds for renovation rates, electrification, digital penetration, and low-carbon material uptake, and is evaluated through a scorecard spanning five outcome domains, with sensitivity and stress testing of high-leverage parameters. Findings indicate that an Accelerated Sustainability pathway, driven by deep retrofits of ≥3% annually, whole-life carbon policies, and renewable penetration of at least 70%, delivers the strongest combined performance across emissions reduction, liveability, and resilience. Technological Transformation offers adaptability and service quality but raises concerns over equity and cyber-dependence, while Climate Resilience maximises adaptation capacity yet risks under-delivering on mitigation. The study contributes a reproducible framework and transparent assumptions table to inform policy and industry road mapping, suggesting that a policy-led pathway coupling retrofits, electrification, and digital enablement provides the most balanced route towards a net zero and climate-resilient built environment by 2050. Full article
24 pages, 3906 KB  
Article
A Compartmental Mathematical Model to Assess the Impact of Vaccination, Isolation, and Key Epidemiological Parameters on Mpox Control
by Pedro Pesantes-Grados, Nahía Escalante-Ccoyllo, Olegario Marín-Machuca, Abel Walter Zambrano-Cabanillas, Homero Ango-Aguilar, Obert Marín-Sánchez and Ruy D. Chacón
Med. Sci. 2025, 13(4), 226; https://doi.org/10.3390/medsci13040226 - 10 Oct 2025
Viewed by 202
Abstract
Background: Monkeypox (Mpox) is a re-emerging zoonotic disease caused by the monkeypox virus (MPXV). Transmission occurs primarily through direct contact with lesions or contaminated materials, with sexual transmission playing a significant role in recent outbreaks. In 2022, Mpox triggered a major global outbreak [...] Read more.
Background: Monkeypox (Mpox) is a re-emerging zoonotic disease caused by the monkeypox virus (MPXV). Transmission occurs primarily through direct contact with lesions or contaminated materials, with sexual transmission playing a significant role in recent outbreaks. In 2022, Mpox triggered a major global outbreak and was declared a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO), prompting renewed interest in effective control strategies. Methods: This study developed a compartmental SEIR-based model to assess the epidemiological impact of key interventions, including vaccination and isolation, while incorporating critical epidemiological parameters. Sensitivity analyses were conducted to examine (1) disease dynamics in relation to the basic reproduction number, and (2) how different parameters influence the curve of symptomatic infections. Real-world continental-scale data were used to validate the model and identify the parameters that most significantly affect epidemic progression and potential control of Mpox. Results: Results showed that the basic reproduction number was most influenced by the recovery rate, vaccination rate, vaccine effectiveness, and transmission rates of symptomatic and asymptomatic individuals. In contrast, the progression of symptomatic cases was highly sensitive to the case fatality rate and incubation rate. Conclusions: These findings highlight the importance of integrated public health strategies combining vaccination, isolation, and early transmission control to mitigate future Mpox outbreaks. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
Show Figures

Figure 1

14 pages, 2052 KB  
Article
Biobased Composites from Starch and Mango Kernel Flour
by Hálisson Lucas Ribeiro, Matheus de Oliveira Barros, Adriano Lincoln Albuquerque Mattos, Morsyleide de Freitas Rosa, Men de Sá Moreira de Souza Filho and Henriette Monteiro Cordeiro de Azeredo
Biomass 2025, 5(4), 64; https://doi.org/10.3390/biomass5040064 - 10 Oct 2025
Viewed by 75
Abstract
Starch is a promising alternative to petroleum-based polymers due to its biodegradability and renewable nature. However, its widespread use in non-food applications raises ethical concerns. Mango kernels, a major byproduct of mango processing, represent an abundant yet underutilized starch source. However, conventional starch [...] Read more.
Starch is a promising alternative to petroleum-based polymers due to its biodegradability and renewable nature. However, its widespread use in non-food applications raises ethical concerns. Mango kernels, a major byproduct of mango processing, represent an abundant yet underutilized starch source. However, conventional starch extraction requires costly purification steps with significant environmental impact. This study explores the development of extruded biocomposites, using corn starch and mango kernel flour (MKF) as a more sustainable alternative. The influence of lignin, extractives, amylose, and amylopectin content on the material properties was assessed. MKF was obtained by removing both tegument and endocarp from the mango kernels, grinding them in a colloidal mill, and finally drying the ground kernels. The resulting flour was blended with corn starch, processed in an internal mixer, and injection-molded. The composites were characterized through mechanical testing, water absorption analysis, colorimetry, and UV absorption assays. Notably, the composite containing ~20% MKF exhibited mechanical properties comparable to commercial polyethylene (PE-PB 208), with a tensile strength of 9.53 MPa and a Young’s modulus of 241.41 MPa. Additionally, MKF enhanced UVA protection. These findings suggest that mango kernel flour can partially replace starch in the production of injection-molded biopolymers, offering a more sustainable approach to biodegradable plastic development. Full article
Show Figures

Figure 1

31 pages, 3193 KB  
Article
Environmental Life Cycle Assessment of Poly(3-hydroxybutyrate) (PHB): A Comparative Study with Petrochemical and Bio-Based Polymers
by Magdalena Wojnarowska, Marcin Rychwalski and Tomasz Witko
Resources 2025, 14(10), 162; https://doi.org/10.3390/resources14100162 - 10 Oct 2025
Viewed by 163
Abstract
In the context of the urgent global transition toward sustainable materials, this study presents a comparative environmental life cycle assessment (LCA) of poly(3-hydroxybutyrate) (PHB), a biodegradable, bio-based polymer, against conventional petrochemical plastics (polystyrene—PS; polypropylene—PP) and another popular biopolymer, namely polylactic acid (PLA). The [...] Read more.
In the context of the urgent global transition toward sustainable materials, this study presents a comparative environmental life cycle assessment (LCA) of poly(3-hydroxybutyrate) (PHB), a biodegradable, bio-based polymer, against conventional petrochemical plastics (polystyrene—PS; polypropylene—PP) and another popular biopolymer, namely polylactic acid (PLA). The LCA was conducted using primary production data from a laboratory-scale PHB manufacturing process, integrating real-time energy consumption measurements across all production stages. Environmental indicators such as carbon footprint and energy demand were analyzed under cradle-to-gate and end-of-life scenarios. The results indicate that PHB, while offering biodegradability and renewable sourcing, currently exhibits a significantly higher carbon footprint than PP, PS, and PLA, primarily due to its energy-intensive downstream processing. However, the environmental impact of PHB can be markedly reduced—by over 67%—through partial integration of renewable energy. PLA demonstrated the lowest production-phase emissions, while PP showed the most favorable end-of-life outcomes under municipal waste management assumptions. The study highlights the critical influence of energy sourcing, production scale, and waste treatment infrastructure on the sustainability performance of biopolymers. These findings provide practical insights for industry and policymakers aiming to reduce the environmental burden of plastics and support a shift toward circular material systems. Full article
Show Figures

Figure 1

27 pages, 2846 KB  
Article
Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications
by Célia Karina Maia Cardoso, Ícaro Thiago Andrade Moreira, Antônio Fernando de Souza Queiroz, Olívia Maria Cordeiro de Oliveira and Ana Katerine de Carvalho Lima Lobato
Resources 2025, 14(10), 159; https://doi.org/10.3390/resources14100159 - 9 Oct 2025
Viewed by 241
Abstract
This study provides the first comprehensive multiscale evaluation of raw coconut fibers as biosorbents for crude oil removal, encompassing laboratory adsorption tests, mesoscale hydrodynamic simulations, and field trials in marine environments. Fibers were characterized by SEM, FTIR, XRD, XPS, and chemical composition analysis [...] Read more.
This study provides the first comprehensive multiscale evaluation of raw coconut fibers as biosorbents for crude oil removal, encompassing laboratory adsorption tests, mesoscale hydrodynamic simulations, and field trials in marine environments. Fibers were characterized by SEM, FTIR, XRD, XPS, and chemical composition analysis (NREL method), confirming their lignocellulosic nature, high lignin content, and functional groups favorable for hydrocarbon adsorption. At the microscale, a 25−1 fractional factorial design evaluated the influence of dosage, concentration, contact time, temperature, and pH, followed by kinetic and equilibrium model fitting and regeneration tests. Dosage, concentration, and contact time were the most significant factors, while low sensitivity to salinity highlighted the material’s robustness under marine conditions. Adsorption followed pseudo-second-order kinetics, with an equilibrium adsorption capacity of 4.18 ± 0.19 g/g, and it was best described by the Langmuir isotherm, indicating chemisorption and monolayer formation. Mechanical regeneration by centrifugation allowed for reuse for up to five cycles without chemical reagents, aligning with circular economy principles. In mesoscale and field applications, fibers maintained structural integrity, buoyancy, and adsorption efficiency. These results provide strong technical support for the practical use of raw coconut fibers in oil spill response, offering a renewable, accessible, and cost-effective solution for scalable applications in coastal and marine environments. Full article
Show Figures

Figure 1

17 pages, 1033 KB  
Review
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
by Ayann Tiam, Marshall Watson and Talal Gamadi
Processes 2025, 13(10), 3195; https://doi.org/10.3390/pr13103195 - 8 Oct 2025
Viewed by 224
Abstract
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in [...] Read more.
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides base-load preheating and isothermal holding, while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heat-integration targets and duty splits; (ii) assessing scalability through high-pressure reactor design, thermal management, and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX, incorporates carbon pricing and credits, and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically, linking molten media demonstrations, catalyst development, and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed, recycle, and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation, thereby mitigating coking, sintering, and broad particle size distributions. High-pressure operation improves the hydrogen yield and equipment compactness, but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power, and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price, geothermal capacity factor, and overall conversion and selectivity. Overall, geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen, if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment. Full article
Show Figures

Figure 1

18 pages, 2806 KB  
Article
Polylactide (PLA) Composites Reinforced with Natural Fibrous Filler Recovered from the Biomass of Sorghum Leaves or Stems
by Ryszard Gąsiorowski, Danuta Matykiewicz and Dominika Janiszewska-Latterini
Materials 2025, 18(19), 4634; https://doi.org/10.3390/ma18194634 - 8 Oct 2025
Viewed by 298
Abstract
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim [...] Read more.
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim was to assess the effect of filler type and content (5, 10, and 15 wt.%) on the physicochemical properties of the composites. Sorghum was manually harvested in Greater Poland, separated, dried, milled, and fractionated to particles <0.25 mm. Composites were produced via extrusion and injection molding, followed by characterization using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile and impact testing, density measurements, optical microscopy, and scanning electron microscopy (SEM). Results showed that stem-based fillers provided a better balance between stiffness and ductility, along with improved dispersion and interfacial adhesion. In contrast, leaf-based fillers led to higher stiffness but greater brittleness and agglomeration. All composites exhibited decreased impact strength and thermal stability compared to neat PLA, with the extent of these decreases depending on the filler type and loading. The study highlights the potential of sorghum stems as a viable, renewable reinforcement in biopolymer composites, aligning with circular economy and bioeconomy strategies. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

23 pages, 4283 KB  
Article
Synergistic Regulation of δ-MnO2 Cathode via Crystal Engineering and pH Buffering for Long-Cycle Aqueous Zinc-Ion Batteries
by Fan Zhang, Haotian Yu, Qiongyue Zhang, Yahao Wang, Haodong Ren, Huirong Liang, Jinrui Li, Yuanyuan Feng, Bin Zhao and Xiaogang Han
Materials 2025, 18(19), 4632; https://doi.org/10.3390/ma18194632 - 8 Oct 2025
Viewed by 373
Abstract
Aqueous zinc-ion batteries (ZIBs) have emerged as a promising candidate for large-scale energy storage due to their inherent safety, low cost, and environmental friendliness. However, manganese dioxide (MnO2)-based cathodes, which are widely studied for ZIBs owing to their high theoretical capacity [...] Read more.
Aqueous zinc-ion batteries (ZIBs) have emerged as a promising candidate for large-scale energy storage due to their inherent safety, low cost, and environmental friendliness. However, manganese dioxide (MnO2)-based cathodes, which are widely studied for ZIBs owing to their high theoretical capacity and low cost, face severe capacity fading issues that hinder the commercialization of ZIBs. This performance degradation mainly stems from the weak van der Waals forces between MnO2 layers leading to structural collapse during repeated Zn2+ insertion and extraction; it is also exacerbated by irreversible Mn dissolution via Mn3+ disproportionation that depletes active materials, and further aggravated by dynamic electrolyte pH fluctuations promoting insulating zinc hydroxide sulfate (ZHS) formation to block ion diffusion channels. To address these interconnected challenges, in this study, a synergistic strategy was developed combining crystal engineering and pH buffer regulation. We synthesized three MnO2 polymorphs (α-, δ-, γ-MnO2), identified δ-MnO2 with flower-like microspheres as optimal, and introduced sodium dihydrogen phosphate (NaH2PO4) as a pH buffer (stabilizing pH at 2.8 ± 0.2). The modified electrolyte improved δ-MnO2 wettability (contact angle of 17.8° in NaH2PO4-modified electrolyte vs. 26.1° in base electrolyte) and reduced charge transfer resistance (Rct = 78.17 Ω), enabling the optimized cathode to retain 117.25 mAh g−1 (82.16% retention) after 2500 cycles at 1 A g−1. This work provides an effective strategy for stable MnO2-based ZIBs, promoting their application in renewable energy storage. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

Back to TopTop