Biobased Composites from Starch and Mango Kernel Flour
Abstract
1. Introduction
2. Materials and Methods
2.1. Schematic View
2.2. Materials
2.3. Production of Mango Kernel Flour (MKF)
2.4. Extraction of Mango Kernel Starch (MKS)
2.5. Chemical Characterization
2.6. Amylose Content
2.7. Thermogravimetric Analysis (TGA)
2.8. Fourier Transform Infrared Spectroscopy Analysis (FTIR)
2.9. Obtaining the Composites
2.10. Injection-Molding
2.11. Tensile Tests
2.12. Water Absorption Tests
2.13. Color Parameter and Visual Appearance
2.14. Ultraviolet (UV) Absorption Tests
2.15. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations General Assembly Resolution A/RES/79/1 (The Pact for the Future). Adopted 22 September 2024. Available online: https://docs.un.org/en/A/RES/79/1 (accessed on 14 September 2025).
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Brussels: European Commission Energy, Climate Change, Environment. Available online: https://commission.europa.eu/energy-climate-change-environment_en (accessed on 14 September 2025).
- Wang, B.; Yan, S.; Gao, W.; Kang, X.; Yu, B.; Liu, P.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Antibacterial Activity, Optical, and Functional Properties of Corn Starch-Based Films Impregnated with Bamboo Leaf Volatile Oil. Food Chem. 2021, 357, 129743. [Google Scholar] [CrossRef]
- Combrzyński, M.; Wójtowicz, A.; Oniszczuk, A.; Karcz, D.; Szponar, J.; Matwijczuk, A.P. Selected Physical and Spectroscopic Properties of TPS Moldings Enriched with Durum Wheat Bran. Materials 2022, 15, 5061. [Google Scholar] [CrossRef] [PubMed]
- Alonso-González, M.; Felix, M.; Romero, A. Influence of the Plasticizer on Rice Bran-Based Eco-Friendly Bioplastics Obtained by Injection Moulding. Ind. Crops Prod. 2022, 180, 114767. [Google Scholar] [CrossRef]
- Waterschoot, J.; Gomand, S.V.; Delcour, J.A. Impact of Swelling Power and Granule Size on Pasting of Blends of Potato, Waxy Rice and Maize Starches. Food Hydrocoll. 2016, 52, 69–77. [Google Scholar] [CrossRef]
- Abegunde, O.K.; Mu, T.H.; Chen, J.W.; Deng, F.M. Physicochemical Characterization of Sweet Potato Starches Popularly Used in Chinese Starch Industry. Food Hydrocoll. 2013, 33, 169–177. [Google Scholar] [CrossRef]
- Kasemwong, K.; Ruktanonchai, U.R.; Srinuanchai, W.; Itthisoponkul, T.; Sriroth, K. Effect of High-Pressure Microfluidization on the Structure of Cassava Starch Granule. Starch/Staerke 2011, 63, 160–170. [Google Scholar] [CrossRef]
- Gamage, A.; Liyanapathiranage, A.; Manamperi, A.; Gunathilake, C.; Mani, S.; Merah, O.; Madhujith, T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability 2022, 14, 6085. [Google Scholar] [CrossRef]
- Choudhary, P.; Devi, T.B.; Tushir, S.; Kasana, R.C.; Popatrao, D.S.; Narsaiah, K. Mango Seed Kernel: A Bountiful Source of Nutritional and Bioactive Compounds. Food Bioproc. Technol. 2023, 16, 289–312. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Jaiprayat, C.; Sroysuwan, T.; Suksermsakul, S.; Suwapanich, R.; Maleenont, K.K.; Koombhongse, P.; Young, B.M. Active Thermoplastic Starch Film with Watermelon Rind Extract for Future Biodegradable Food Packaging. Polymers 2022, 14, 3232. [Google Scholar] [CrossRef]
- Melo, P.E.F.; Silva, A.P.M.; Marques, F.P.; Ribeiro, P.R.V.; Souza Filho, M.d.s.M.; Brito, E.S.; Lima, J.R.; Azeredo, H.M.C. Antioxidant Films from Mango Kernel Components. Food Hydrocoll. 2019, 95, 487–495. [Google Scholar] [CrossRef]
- Silva, A.P.M.; Oliveira, A.V.; Pontes, S.M.A.; Pereira, A.L.S.; Souza Filho, M.d.s.M.; Rosa, M.F.; Azeredo, H.M.C. Mango Kernel Starch Films as Affected by Starch Nanocrystals and Cellulose Nanocrystals. Carbohydr. Polym. 2019, 211, 209–216. [Google Scholar] [CrossRef]
- Gomez-Caturla, J.; Ivorra-Martinez, J.; Quiles-Carrillo, L.; Balart, R.; Garcia-Garcia, D.; Dominici, F.; Puglia, D.; Torre, L. Improvement of the Barrier and Mechanical Properties of Environmentally Friendly Mango Kernel Flour/Glycerol Films by Varying the Particle Size of Mango Kernel Flour. Ind. Crops Prod. 2022, 188, 115668. [Google Scholar] [CrossRef]
- Gomez-Caturla, J.; Ivorra-Martinez, J.; Lascano, D.; Balart, R.; García-García, D.; Dominici, F.; Puglia, D.; Torre, L. Development and Evaluation of Novel Nanofibers Based on Mango Kernel Starch Obtained by Electrospinning. Polym. Test. 2022, 106, 107462. [Google Scholar] [CrossRef]
- Barros, M.d.O.; Mattos, A.L.A.; Almeida, J.S.d.; Rosa, M.d.F.; Brito, E.S.d. Effect of Ball-Milling on Starch Crystalline Structure, Gelatinization Temperature, and Rheological Properties: Towards Enhanced Utilization in Thermosensitive Systems. Foods 2023, 12, 2924. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM D570-98; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Lyu, Y.; Gu, X.; Mao, Y. Green Composite of Instant Coffee and Poly(Vinyl Alcohol): An Excellent Transparent UV-Shielding Material with Superior Thermal-Oxidative Stability. Ind. Eng. Chem. Res. 2020, 59, 8640–8648. [Google Scholar] [CrossRef]
- Mahadi, F.M.; Mustafa, S.E.; Saad, O.M.; Hamdi, O.A. Evaluation of Nutritional Value and Bioactive Ingredients of Oil. Acta Sci. Med. Sci. 2020, 4, 190–196. [Google Scholar] [CrossRef]
- Yang, N.; Gao, W.; Zou, F.; Tao, H.; Guo, L.; Cui, B.; Lu, L.; Fang, Y.; Liu, P.; Wu, Z. The Relationship between Molecular Structure and Film-Forming Properties of Thermoplastic Starches from Different Botanical Sources. Int. J. Biol. Macromol. 2023, 230, 123114. [Google Scholar] [CrossRef]
- Gomez-Caturla, J.; Ivorra-Martinez, J.; Fenollar, O.; Balart, R.; Garcia-Garcia, D.; Dominici, F.; Puglia, D.; Torre, L. Development of Starch-Rich Thermoplastic Polymers Based on Mango Kernel Flour and Different Plasticizers. Int. J. Biol. Macromol. 2024, 264, 130773. [Google Scholar] [CrossRef] [PubMed]
- Mansaray, K.G.; Ghaly, A.E. Determination of Kinetic Parameters of Rice Husks in Oxygen Using Thermogravimetric Analysis. Biomass Bioenergy 1999, 17, 19–31. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Effects of Starches from Different Botanical Sources and Modification Methods on Physicochemical Properties of Starch-Based Edible Films. Int. J. Biol. Macromol. 2019, 132, 897–905. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Fontes, R.L.S.; Fontes-Sant’Ana, G.C.; Calado, V.; López, E.O.; Rocha-Leão, M.H.M. Extraction, Modification, and Chemical, Thermal and Morphological Characterization of Starch From the Agro-Industrial Residue of Mango (Mangifera indica L) Var. Ubá. Starch/Staerke 2019, 71, 1800023. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Liu, W.; Wang, Z.; Liu, J.; Dai, B.; Hu, S.; Hong, R.; Xie, H.; Li, Z.; Chen, Y.; Zeng, G. Preparation, Reinforcement and Properties of Thermoplastic Starch Film by Film Blowing. Food Hydrocoll. 2020, 108, 106006. [Google Scholar] [CrossRef]
- Mansour, G.; Zoumaki, M.; Marinopoulou, A.; Tzetzis, D.; Prevezanos, M.; Raphaelides, S.N. Characterization and Properties of Non-Granular Thermoplastic Starch—Clay Biocomposite Films. Carbohydr. Polym. 2020, 245, 116629. [Google Scholar] [CrossRef]
- Zullo, R.; Iannace, S. The Effects of Different Starch Sources and Plasticizers on Film Blowing of Thermoplastic Starch: Correlation among Process, Elongational Properties and Macromolecular Structure. Carbohydr. Polym. 2009, 77, 376–383. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, P.; Wang, M. Effects of Konjac Glucomannan on Pasting and Rheological Properties of Corn Starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M.; Liang, Y.; Zheng, X.; Sun, L.; Dang, W.; Li, J.; Li, L.; Liu, C. Research Progress on Properties of Pre-Gelatinized Starch and Its Application in Wheat Flour Products. Grain Oil Sci. Technol. 2022, 5, 87–97. [Google Scholar] [CrossRef]
- Manoel, A.F.; Claro, P.I.C.; Mattoso, L.H.C.; Marconcini, J.M.; Mantovani, G.L. Thermoplastic Waxy Starch Films Processed by Extrusion and Pressing: Effect of Glycerol and Water Concentration. Mater. Res. 2017, 20, 353–357. [Google Scholar] [CrossRef]
- Guzman-Puyol, S.; Hierrezuelo, J.; Benítez, J.J.; Tedeschi, G.; Porras-Vázquez, J.M.; Heredia, A.; Athanassiou, A.; Romero, D.; Heredia-Guerrero, J.A. Transparent, UV-Blocking, and High Barrier Cellulose-Based Bioplastics with Naringin as Active Food Packaging Materials. Int. J. Biol. Macromol. 2022, 209, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Sá, N.M.S.M.; Mattos, A.L.A.; Silva, L.M.A.; Brito, E.S.; Rosa, M.F.; Azeredo, H.M.C. From Cashew Byproducts to Biodegradable Active Materials: Bacterial Cellulose-Lignin-Cellulose Nanocrystal Nanocomposite Films. Int. J. Biol. Macromol. 2020, 161, 1337–1345. [Google Scholar] [CrossRef]
Treatment | Glycerol (%) | Temperature (°C) | MKF (%) | Glycerol (%) | Temperature (°C) | MKF (%) |
---|---|---|---|---|---|---|
Coded | Uncoded | |||||
1 | −1 | −1 | −1 | 35.12 | 104.05 | 20.24 |
2 | 1 | −1 | −1 | 64.88 | 104.05 | 20.24 |
3 | −1 | 1 | −1 | 35.12 | 115.95 | 20.24 |
4 | 1 | 1 | −1 | 64.88 | 115.95 | 20.24 |
5 | −1 | −1 | 1 | 35.12 | 104.05 | 79.76 |
6 | 1 | −1 | 1 | 64.88 | 104.05 | 79.76 |
7 | −1 | 1 | 1 | 35.12 | 115.95 | 79.76 |
8 | 1 | 1 | 1 | 64.88 | 115.95 | 79.76 |
9 | −1.68 | 0 | 0 | 25 | 110 | 50 |
10 | 1.68 | 0 | 0 | 75 | 110 | 50 |
11 | 0 | −1.68 | 0 | 50 | 100 | 50 |
12 | 0 | 1.68 | 0 | 50 | 120 | 50 |
13 | 0 | 0 | −1.68 | 50 | 110 | 0 |
14 | 0 | 0 | 1.68 | 50 | 110 | 100 |
15 | 0 | 0 | 0 | 50 | 110 | 50 |
16 | 0 | 0 | 0 | 50 | 110 | 50 |
17 | 0 | 0 | 0 | 50 | 110 | 50 |
CS | MKF | MKS | |
---|---|---|---|
Moisture (%) | 4.13 ± 0.15 a | 5.95 ± 0.08 b | 12.27 ± 0.27 c |
Ash (%) | 0.08 ± 0.01 a | 1.39 ± 0.27 b | 0.11 ± 0.02 b |
Extractives (%) | 0.65 ± 0.17 a | 22.24 ± 0.50 b | 6.29 ± 0.89 c |
Insoluble lignin (%) | 0.94 ± 0.21 a | 12.05 ± 5.69 a | 9.12 ± 0.02 a |
Protein (%) | 0.44 ± 0.05 a | 6.05 ± 0.57 b | 0.36 ± 0.01 a |
Starch | 81.53 ± 0.48 | 46.12 ± 7.48 | 71.61 ± 1.23 |
Amylose (%) | 23.51 ± 0.49 a | 3.82 ± 0.14 b | 12.45 ± 0.42 c |
Terms | Tensile Strength (MPa) | Elongation at Break (%) | Modulus of Elasticity (MPa) | Increase in Weight (%) | Soluble Matter Lost (%) | Water Absorption (%) | L* | a* | b* | UVA Shielding (%) | UVB Shielding (%) | UVC Shielding (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Constant | 2.13 | 83.07 | 17.90 | 76.57 | 15.58 | 92.10 | 34.89 | 8.78 | 10.85 | 97.4 | 99.39 | 99.74 |
X1 | −3.21 | 12.80 | −102.20 | −2.66 | 5.39 | 3.02 | −1.44 | 0.28 | −0.33 | −7.53 | 2.04 | 2.99 |
X2 | −0.76 | 35.43 | −14.50 | 5.26 | −2.20 | 5.49 | −0.66 | 1.10 | 0.21 | −4.29 | −2.68 | −4,5 |
X3 | −2.10 | 23.15 | −50.80 | −6.70 | −3.99 | −12.01 | 1.28 | 3.75 | 4.30 | 28.84 | 6.11 | −3.81 |
X12 | 2.54 | −47.90 | 101.90 | 8.20 | −1.95 | 7.20 | 0.56 | 0.04 | 0.92 | −16.68 | −6.1 | −17 |
X22 | 0.11 | 17.50 | 9.90 | −7.00 | −3.13 | −9.40 | 2.57 | 0.43 | 1.90 | −0.56 | 5.4 | 1.3 |
X32 | 0.16 | −13.30 | 21.20 | 0.70 | 7.25 | 9.20 | 0.96 | −4.38 | −5.27 | −35.54 | −15.4 | 0.4 |
X1*X2 | 0.77 | −5.50 | 25.30 | 0.30 | −5.17 | −4.00 | −1.90 | −0.05 | −0.40 | −5.8 | −7.7 | −12.8 |
X1*X3 | 2.89 | −37.10 | 96.40 | −11.80 | 4.85 | −6.10 | 0.22 | 0.38 | 1.06 | 1.7 | −7.6 | −12.7 |
X2*X3 | 1.06 | 37.00 | 24.00 | −12.80 | −4.81 | −21.80 | −1.69 | −0.28 | 1.19 | −6.5 | −7.6 | −12.8 |
Freg | 9.09 | 8.79 | 19.61 | 0.45 | 13.90 | 0.58 | 1.59 | 17,81 | 8.73 | 7.21 | 0.52 | 0.84 |
p | <0.01 | <0.01 | <0.01 | 0.87 | <0.01 | 0.78 | 0.28 | <0.01 | <0.01 | <0.01 | 0.82 | 0.606 |
R2 (%) | 92.12 | 91.87 | 96.18 | 36.43 | 94.70 | 42.73 | 67.11 | 95.81 | 91.82 | 90.26 | 40.21 | 51.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, H.L.; Barros, M.d.O.; Mattos, A.L.A.; Rosa, M.d.F.; Filho, M.d.S.M.d.S.; Azeredo, H.M.C.d. Biobased Composites from Starch and Mango Kernel Flour. Biomass 2025, 5, 64. https://doi.org/10.3390/biomass5040064
Ribeiro HL, Barros MdO, Mattos ALA, Rosa MdF, Filho MdSMdS, Azeredo HMCd. Biobased Composites from Starch and Mango Kernel Flour. Biomass. 2025; 5(4):64. https://doi.org/10.3390/biomass5040064
Chicago/Turabian StyleRibeiro, Hálisson Lucas, Matheus de Oliveira Barros, Adriano Lincoln Albuquerque Mattos, Morsyleide de Freitas Rosa, Men de Sá Moreira de Souza Filho, and Henriette Monteiro Cordeiro de Azeredo. 2025. "Biobased Composites from Starch and Mango Kernel Flour" Biomass 5, no. 4: 64. https://doi.org/10.3390/biomass5040064
APA StyleRibeiro, H. L., Barros, M. d. O., Mattos, A. L. A., Rosa, M. d. F., Filho, M. d. S. M. d. S., & Azeredo, H. M. C. d. (2025). Biobased Composites from Starch and Mango Kernel Flour. Biomass, 5(4), 64. https://doi.org/10.3390/biomass5040064