Sustainable Hydrogels in Water Treatment—A Short Review
Abstract
1. Introduction
2. Design and Synthesis of Sustainable Hydrogels
- (i)
- Stability and reusability: Physically crosslinked hydrogels are reversible and less stable, making them suitable for applications like on-demand drug release. Chemically crosslinked hydrogels are irreversible and highly stable, making them ideal for long-term biomedical or industrial use [16,21,24,25].
- (ii)
- (iii)
- (iv)
2.1. Raw Materials
2.1.1. Natural Polymers: Renewable and Biocompatible Alternatives
2.1.2. Synthetic Polymers: Balancing Performance and Sustainability
2.2. Green Synthesis Routes
2.2.1. Solvent-Free Synthesis
2.2.2. Microwave-Assisted Synthesis
2.2.3. Bio-Derived Crosslinkers and Physical Crosslinking
2.2.4. Radiation-Induced Polymerization
2.3. Functionalization Strategies
2.4. Characterization Techniques
3. Applications in Water Treatment
3.1. Removal of Inorganic Pollutants
3.1.1. Heavy Metals
3.1.2. Nutrient Recovery
3.1.3. Radioactive Wastes
3.2. Organic Pollutant Remediation
3.3. Dyes
3.4. Pesticides
3.5. Pharmaceuticals
3.6. Microbial Disinfection
3.6.1. Chitosan-Based Hydrogels (Inherent Antimicrobial Activity)
3.6.2. NPs-Loaded Hydrogels
- Hydrogels with lysozyme immobilized demonstrated long-term antibacterial activity against E. coli and B. subtilis, offering a safer alternative to metallic NP systems [188].
- In situ-formed AgNPs in carbohydrate-based supramolecular hydrogels created efficient antimicrobial matrices without external reducing agents, utilizing glucosaminyl-barbiturate chemistry [189].
3.7. Desalination and Oil–Water Separation
3.7.1. Desalination
3.7.2. Oil–Water Separation
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Zahid, M.; Rehman, A.; Mansha, A.; Hussain, T. Chapter 14—Sustainable Hydrogels as an Emerging Material Platform for Water Purification. In Sustainable Hydrogels; Thomas, S., Sharma, B., Jain, P., Shekhar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 375–395. ISBN 978-0-323-91753-7. [Google Scholar]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Yati, I.; Kizil, S.; Bulbul Sonmez, H. Cellulose-Based Hydrogels for Water Treatment. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–24. ISBN 978-3-319-76573-0. [Google Scholar]
- Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Riazi, H.; Abousalman-Rezvani, O. Water Treatment Using Stimuli-Responsive Polymers. Polym. Chem. 2022, 13, 5940–5964. [Google Scholar] [CrossRef]
- Salehi, A.A.; Ghannadi-Maragheh, M.; Torab-Mostaedi, M.; Torkaman, R.; Asadollahzadeh, M. Hydrogel Materials as an Emerging Platform for Desalination and the Production of Purified Water. Sep. Purif. Rev. 2021, 50, 380–399. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, X.; Yang, L.; Chang, Z.; Luo, S. Progress toward Hydrogels in Removing Heavy Metals from Water: Problems and Solutions—A Review. ACS EST Water 2021, 1, 1098–1116. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- El-saied, H.A.; El-Fawal, E.M. Green Superabsorbent Nanocomposite Hydrogels for High-Efficiency Adsorption and Photo-Degradation/Reduction of Toxic Pollutants from Waste Water. Polym. Test. 2021, 97, 107134. [Google Scholar] [CrossRef]
- Baughman, G.; Lassiter, R. Prediction of Environmental Pollutant Concentration. In Estimating the Hazard of Chemical Substances to Aquatic Life; Cairns, J., Jr., Dickson, K., Maki, A., Eds.; ASTM International: West Conshohocken, PA, USA, 1978; Volume STP657-EB, pp. 35–54. ISBN 978-0-8031-0336-8. [Google Scholar]
- Sahu, K.; Chakma, S. Recent Trends on Hydrogel Development and Sustainable Applications: A Bibliometric Analysis and Concise Review. Polym. Bull. 2024, 81, 7687–7711. [Google Scholar] [CrossRef]
- Pattnaik, A.; Ghosh, P.; Poonia, A.K. An Overview on Advancements in Hydrogels for Effective Wastewater Treatment. J. Mol. Liq. 2025, 424, 127120. [Google Scholar] [CrossRef]
- Catoira, M.C.; González-Payo, J.; Fusaro, L.; Ramella, M.; Boccafoschi, F. Natural Hydrogels R&D Process: Technical and Regulatory Aspects for Industrial Implementation. J. Mater. Sci. Mater. Med. 2020, 31, 64. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Das, P.P.; Gupta, S.; Chaudhary, V.; Gupta, P. Chapter 18—Complementing the Circular Economy with a Life Cycle Assessment of Sustainable Hydrogels and Their Future Prospects. In Sustainable Hydrogels; Thomas, S., Sharma, B., Jain, P., Shekhar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 489–503. ISBN 978-0-323-91753-7. [Google Scholar]
- Zhang, Z.; Fu, H.; Li, Z.; Huang, J.; Xu, Z.; Lai, Y.; Qian, X.; Zhang, S. Hydrogel Materials for Sustainable Water Resources Harvesting & Treatment: Synthesis, Mechanism and Applications. Chem. Eng. J. 2022, 439, 135756. [Google Scholar] [CrossRef]
- Mishra, A.; Omoyeni, T.; Singh, P.K.; Anandakumar, S.; Tiwari, A. Trends in Sustainable Chitosan-Based Hydrogel Technology for Circular Biomedical Engineering: A Review. Int. J. Biol. Macromol. 2024, 276, 133823. [Google Scholar] [CrossRef] [PubMed]
- Draget, K.I.; Skjåk-Bræk, G.; Smidsrød, O. Alginate Based New Materials. Int. J. Biol. Macromol. 1997, 21, 47–55. [Google Scholar] [CrossRef]
- Nan, N.; Hu, W.; Wang, J. Lignin-Based Porous Biomaterials for Medical and Pharmaceutical Applications. Biomedicines 2022, 10, 747. [Google Scholar] [CrossRef]
- Bello, A.B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng. Part B Rev. 2020, 26, 164–180. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Z. Recent Advances in Polysaccharide-Based Hydrogels for Synthesis and Applications. Aggregate 2021, 2, e21. [Google Scholar] [CrossRef]
- Ajdary, R.; Tardy, B.L.; Mattos, B.D.; Bai, L.; Rojas, O.J. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Adv. Mater. 2021, 33, 2001085. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Ahearne, M. Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021, 13, 319. [Google Scholar] [CrossRef]
- Calderón Moreno, J.M.; Chelu, M.; Popa, M. Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics. Gels 2025, 11, 220. [Google Scholar] [CrossRef]
- Chelu, M.; Calderon Moreno, J.; Atkinson, I.; Pandele Cusu, J.; Rusu, A.; Bratan, V.; Aricov, L.; Anastasescu, M.; Seciu-Grama, A.-M.; Musuc, A.M. Green Synthesis of Bioinspired Chitosan-ZnO-Based Polysaccharide Gums Hydrogels with Propolis Extract as Novel Functional Natural Biomaterials. Int. J. Biol. Macromol. 2022, 211, 410–424. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120, 7642–7707. [Google Scholar] [CrossRef]
- Qin, C.; Wang, H.; Zhao, Y.; Qi, Y.; Wu, N.; Zhang, S.; Xu, W. Recent Advances of Hydrogel in Agriculture: Synthesis, Mechanism, Properties and Applications. Eur. Polym. J. 2024, 219, 113376. [Google Scholar] [CrossRef]
- Andreazza, R.; Morales, A.; Pieniz, S.; Labidi, J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers 2023, 15, 1026. [Google Scholar] [CrossRef] [PubMed]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J. Recent Advances in Cellulose- and Alginate-Based Hydrogels for Water and Wastewater Treatment: A Review. Carbohydr. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef] [PubMed]
- Le, V.T.; Joo, S.-W.; Berkani, M.; Mashifana, T.; Kamyab, H.; Wang, C.; Vasseghian, Y. Sustainable Cellulose-Based Hydrogels for Water Treatment and Purification. Ind. Crops Prod. 2023, 205, 117525. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Cui, L.; Xu, C.; Wu, S. Current Developments in Chitosan-Based Hydrogels for Water and Wastewater Treatment: A Comprehensive Review. ChemistrySelect 2025, 10, e202404061. [Google Scholar] [CrossRef]
- Khoo, P.S.; Ilyas, R.A.; Uda, M.N.A.; Hassan, S.A.; Nordin, A.H.; Norfarhana, A.S.; Ab Hamid, N.H.; Rani, M.S.A.; Abral, H.; Norrrahim, M.N.F.; et al. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers 2023, 15, 3114. [Google Scholar] [CrossRef]
- Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V.K. Recent Approaches in Guar Gum Hydrogel Synthesis for Water Purification. Int. J. Polym. Anal. Charact. 2018, 23, 621–632. [Google Scholar] [CrossRef]
- Thakur, S.; Chaudhary, J.; Kumar, V.; Thakur, V.K. Progress in Pectin Based Hydrogels for Water Purification: Trends and Challenges. J. Environ. Manag. 2019, 238, 210–223. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Roy, P.; Bonilla-Petriciolet, A.; Badawi, M.; Ganachari, S.V.; Shetti, N.P.; Aminabhavi, T.M. Polymeric Hydrogels-Based Materials for Wastewater Treatment. Chemosphere 2023, 331, 138743. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; Amouzgar, P. Application of Chitosan and Its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review. Carbohydr. Polym. 2014, 113, 115–130. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Thakur, V.K.; Voicu, S.I. Recent Advances in Cellulose and Chitosan Based Membranes for Water Purification: A Concise Review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Habibi, Y. Key Advances in the Chemical Modification of Nanocelluloses. Chem. Soc. Rev. 2014, 43, 1519–1542. [Google Scholar] [CrossRef]
- Zhu, P.; Vo, A.; Sun, X.; Zhang, Y.; Mandegari, M.; Zargar, S.; Tu, Q.; Zhu, J.; Yu, Z.; Sun, H.; et al. Water-Induced Controllable Deswelling Strategy Enabled Rapid Fabrication of Transparent Cellulose Film for Plastics Replacement. Chem. Eng. J. 2024, 492, 152200. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites—A Review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef]
- Park, H.; Kang, S.-W.; Kim, B.-S.; Mooney, D.J.; Lee, K.Y. Shear-Reversibly Crosslinked Alginate Hydrogels for Tissue Engineering. Macromol. Biosci. 2009, 9, 895–901. [Google Scholar] [CrossRef]
- Draget, K.I.; Taylor, C. Chemical, Physical and Biological Properties of Alginates and Their Biomedical Implications. Food Hydrocoll. 2011, 25, 251–256. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y. Sodium Alginate-Based Functional Materials toward Sustainable Applications: Water Treatment and Energy Storage. Ind. Eng. Chem. Res. 2023, 62, 11279–11304. [Google Scholar] [CrossRef]
- Zhao, W.-B.; Du, M.-R.; Liu, K.-K.; Zhou, R.; Ma, R.-N.; Jiao, Z.; Zhao, Q.; Shan, C.-X. Hydrophilic ZnO Nanoparticles@Calcium Alginate Composite for Water Purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, Y.; Liu, R.; Mao, Y.; Morgan, D. Adsorption of Phosphorus with Calcium Alginate Beads Containing Drinking Water Treatment Residual. Water Sci. Technol. 2018, 78, 1980–1989. [Google Scholar] [CrossRef]
- Huang, R.Y.M.; Pal, R.; Moon, G.Y. Characteristics of Sodium Alginate Membranes for the Pervaporation Dehydration of Ethanol–Water and Isopropanol–Water Mixtures. J. Membr. Sci. 1999, 160, 101–113. [Google Scholar] [CrossRef]
- Vinceković, M.; Maslov Bandić, L.; Oštarić, F.; Kiš, M.; Zdolec, N.; Marić, I.; Šegota, S.; Zelić, H.; Mikulec, N. Simultaneous Encapsulation of Probiotic Bacteria (Lactococcus lactis, and Lactiplantibacillus plantarum) in Calcium Alginate Hydrogels. Gels 2025, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Dash, R.; Foston, M.; Ragauskas, A.J. Improving the Mechanical and Thermal Properties of Gelatin Hydrogels Cross-Linked by Cellulose Nanowhiskers. Carbohydr. Polym. 2013, 91, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Li, K.; Ma, Y.; Ma, N.; Ding, S.; Wang, L.; Zhao, D.; Yan, B.; Wan, W.; et al. Lignin Dissolution in Dialkylimidazolium-Based Ionic Liquid–Water Mixtures. Bioresour. Technol. 2014, 170, 499–505. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, X.; Gao, Y.; Li, Y.; Zhang, Q.; Liu, Y.; Rao, D.; Lin, Y.; Xia, S. Effects of Water Table on Cellulose and Lignin Degradation of Carex Cinerascens in a Large Seasonal Floodplain. J. Freshw. Ecol. 2018, 33, 311–325. [Google Scholar] [CrossRef]
- Beisl, S.; Friedl, A.; Miltner, A. Lignin from Micro- to Nanosize: Applications. Int. J. Mol. Sci. 2017, 18, 2367. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Wilson, L.D. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials 2021, 14, 1095. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, X.; Qi, R.; Yuan, H. Recent Advances of Natural-Polymer-Based Hydrogels for Wound Antibacterial Therapeutics. Polymers 2023, 15, 3305. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, 1900670. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.C.; Chen, H.; Chan, D.; Agmon, G.; Stapleton, L.M.; Sevit, A.M.; Tibbitt, M.W.; Acosta, J.D.; Zhang, T.; Franzia, P.W.; et al. Scalable Manufacturing of Biomimetic Moldable Hydrogels for Industrial Applications. Proc. Natl. Acad. Sci. USA 2016, 113, 14255–14260. [Google Scholar] [CrossRef]
- Uysal, B.; Madduma-Bandarage, U.S.K.; Jayasinghe, H.G.; Madihally, S. 3D-Printed Hydrogels from Natural Polymers for Biomedical Applications: Conventional Fabrication Methods, Current Developments, Advantages, and Challenges. Gels 2025, 11, 192. [Google Scholar] [CrossRef]
- Das, L.; Das, P.; Bhowal, A.; Bhattachariee, C. Synthesis of Hybrid Hydrogel Nano-Polymer Composite Using Graphene Oxide, Chitosan and PVA and Its Application in Waste Water Treatment. Environ. Technol. Innov. 2020, 18, 100664. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, B. Mechanism Study on the Effect of Peracetic Acid (PAA), UV/PAA and Ultrasonic/PAA Oxidation on Ultrafiltration Performance during Algae-Laden Water Treatment. Water Res. 2022, 220, 118705. [Google Scholar] [CrossRef]
- Yan, W.L.; Wang, Y.L.; Chen, Y.J. Effect of Conditioning by PAM Polymers with Different Charges on the Structural and Characteristic Evolutions of Water Treatment Residuals. Water Res. 2013, 47, 6445–6456. [Google Scholar] [CrossRef]
- Yu, W.; Xiong, L.; Teng, J.; Chen, C.; Li, B.; Zhao, L.; Lin, H.; Shen, L. Advances in Synthesis and Application of Amphoteric Polymer-Based Water Treatment Agents. Desalination 2024, 574, 117280. [Google Scholar] [CrossRef]
- Chen, Y.; He, F.; Ren, Y.; Peng, H.; Huang, K. Fabrication of Chitosan/PAA Multilayer onto Magnetic Microspheres by LbL Method for Removal of Dyes. Chem. Eng. J. 2014, 249, 79–92. [Google Scholar] [CrossRef]
- Sarkhel, R.; Ganguly, P.; Das, P.; Bhowal, A.; Sengupta, S. Synthesis of Biodegradable PVA/Cellulose Polymer Composites and Their Application in Dye Removal. Environ. Qual. Manag. 2023, 32, 313–323. [Google Scholar] [CrossRef]
- Cruz, H.; Laycock, B.; Strounina, E.; Seviour, T.; Oehmen, A.; Pikaar, I. Modified Poly(Acrylic Acid)-Based Hydrogels for Enhanced Mainstream Removal of Ammonium from Domestic Wastewater. Environ. Sci. Technol. 2020, 54, 9573–9583. [Google Scholar] [CrossRef]
- Batukbhai Godiya, C.; Ruotolo, L.A.M.; Cai, W. Functional Biobased Hydrogels for the Removal of Aqueous Hazardous Pollutants: Current Status, Challenges, and Future Perspectives. J. Mater. Chem. A 2020, 8, 21585–21612. [Google Scholar] [CrossRef]
- Haque, S.N.; Bhuyan, M.M.; Jeong, J.-H. Radiation-Induced Hydrogel for Water Treatment. Gels 2024, 10, 375. [Google Scholar] [CrossRef]
- Raghunandhan, R.; Chen, L.H.; Long, H.Y.; Leam, L.L.; So, P.L.; Ning, X.; Chan, C.C. Chitosan/PAA Based Fiber-Optic Interferometric Sensor for Heavy Metal Ions Detection. Sens. Actuators B Chem. 2016, 233, 31–38. [Google Scholar] [CrossRef]
- Krasnopeeva, E.L.; Panova, G.G.; Yakimansky, A.V. Agricultural Applications of Superabsorbent Polymer Hydrogels. Int. J. Mol. Sci. 2022, 23, 15134. [Google Scholar] [CrossRef]
- Duis, K.; Junker, T.; Coors, A. Environmental Fate and Effects of Water-Soluble Synthetic Organic Polymers Used in Cosmetic Products. Environ. Sci. Eur. 2021, 33, 21. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Y.; Deng, Q.; Liu, X. Water-Soluble Synthetic Polymers: Their Environmental Emission Relevant Usage, Transport and Transformation, Persistence, and Toxicity. Environ. Sci. Technol. 2023, 57, 6387–6402. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.F.; Salleh, W.N.W.; Yusof, N. Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-818486-8. [Google Scholar]
- Bajdur, W.M.; Włodarczyk-Makuła, M.; Idzikowski, A. A New Synthetic Polymers Used in Removal of Pollutants from Industrial Effluents. Desalination Water Treat. 2016, 57, 1038–1049. [Google Scholar] [CrossRef]
- Molyneux, P. Water-Soluble Synthetic Polymers: Volume II: Properties and Behavior; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-07762-0. [Google Scholar]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of Lignin Adsorbent in Wastewater Treatment: A Review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Kou, S.; Yang, Z.; Luo, J.; Sun, F. Entirely Recombinant Protein-Based Hydrogels for Selective Heavy Metal Sequestration. Polym. Chem. 2017, 8, 6158–6164. [Google Scholar] [CrossRef]
- Nematidil, N.; Nezami, S.; Mirzaie, F.; Ebrahimi, E.; Sadeghi, M.; Farmani, N.; Sadeghi, H. Fabrication and Characterization of a Novel Nanoporous Nanoaerogel Based on Gelatin as a Biosorbent for Removing Heavy Metal Ions. J. Sol-Gel Sci. Technol. 2021, 97, 721–733. [Google Scholar] [CrossRef]
- Demey, H.; Vincent, T.; Guibal, E. A Novel Algal-Based Sorbent for Heavy Metal Removal. Chem. Eng. J. 2018, 332, 582–595. [Google Scholar] [CrossRef]
- Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V.K. Recent Progress in Sodium Alginate Based Sustainable Hydrogels for Environmental Applications. J. Clean. Prod. 2018, 198, 143–159. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy Metal Adsorbents Prepared from the Modification of Cellulose: A Review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Hussain, N.; Ullah, A.; Sarwar, M.N.; Saito, Y.; Kim, S.H.; Kim, I.S. Stabilized Nanofibers of Polyvinyl Alcohol (PVA) Crosslinked by Unique Method for Efficient Removal of Heavy Metal Ions. J. Water Process Eng. 2020, 33, 101111. [Google Scholar] [CrossRef]
- Ibáñez, J.P.; Umetsu, Y. Potential of Protonated Alginate Beads for Heavy Metals Uptake. Hydrometallurgy 2002, 64, 89–99. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, P.; Yang, K.; Wang, Q.; Feng, W.; Tang, Y. PAA/TiO2@C Composite Hydrogels with Hierarchical Pore Structures as High Efficiency Adsorbents for Heavy Metal Ions and Organic Dyes Removal. Desalination 2023, 558, 116620. [Google Scholar] [CrossRef]
- Haq, F.; Mehmood, S.; Haroon, M.; Kiran, M.; Waseem, K.; Aziz, T.; Farid, A. Role of Starch Based Materials as a Bio-Sorbents for the Removal of Dyes and Heavy Metals from Wastewater. J. Polym. Environ. 2022, 30, 1730–1748. [Google Scholar] [CrossRef]
- Naseer, A.; Jamshaid, A.; Hamid, A.; Muhammad, N.; Ghauri, M.; Iqbal, J.; Rafiq, S.; Khuram, S.; Shah, N.S. Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview. Int. J. Res. Phys. Chem. Chem. Phys. 2019, 233, 315–345. [Google Scholar] [CrossRef]
- Liu, D.; Li, Z.; Li, W.; Zhong, Z.; Xu, J.; Ren, J.; Ma, Z. Adsorption Behavior of Heavy Metal Ions from Aqueous Solution by Soy Protein Hollow Microspheres. Ind. Eng. Chem. Res. 2013, 52, 11036–11044. [Google Scholar] [CrossRef]
- Jia, L.; Li, Y.; Ren, A.; Xiang, T.; Zhou, S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS Appl. Mater. Interfaces 2024, 16, 32887–32905. [Google Scholar] [CrossRef]
- Maiti, S.; Maji, B.; Yadav, H. Progress on Green Crosslinking of Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering Applications. Carbohydr. Polym. 2024, 326, 121584. [Google Scholar] [CrossRef]
- Trombino, S.; Sole, R.; Di Gioia, M.L.; Procopio, D.; Curcio, F.; Cassano, R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023, 28, 2107. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, H.; Yu, Y.; Liu, J.; Li, C.; Guan, F.; Yao, M. Green Synthesis-Inspired Antibacterial, Antioxidant and Adhesive Hydrogels with Ultra-Fast Gelation and Hemostasis for Promoting Infected Skin Wound Healing. Acta Biomater. 2024, 184, 156–170. [Google Scholar] [CrossRef]
- Yin, P.; Dong, X.; Zhou, W.; Zha, D.; Xu, J.; Guo, B.; Li, P. A Novel Method to Produce Sustainable Biocomposites Based on Thermoplastic Corn-Starch Reinforced by Polyvinyl Alcohol Fibers. RSC Adv. 2020, 10, 23632–23643. [Google Scholar] [CrossRef]
- Bogdal, D.; Bednarz, S.; Matras-Postolek, K. Microwave-Assisted Synthesis of Hybrid Polymer Materials and Composites. In Microwave-Assisted Polymer Synthesis; Hoogenboom, R., Schubert, U.S., Wiesbrock, F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 241–294. ISBN 978-3-319-42241-1. [Google Scholar]
- Singaravelu, S.; Abrahamse, H.; Kumar, S.S.D. Three-Dimensional Bio-Derived Materials for Biomedical Applications: Challenges and Opportunities. RSC Adv. 2025, 15, 9375–9397. [Google Scholar] [CrossRef]
- Ishihara, R.; Asai, S.; Saito, K. Recent Progress in Charged Polymer Chains Grafted by Radiation-Induced Graft Polymerization; Adsorption of Proteins and Immobilization of Inorganic Precipitates. Quantum Beam Sci. 2020, 4, 20. [Google Scholar] [CrossRef]
- Tanaka, K.; Toda, F. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100, 1025–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Luo, Y.; Lv, Z.; Sun, X.; Tian, Y.; Zhang, X. Melt-Processed Poly (Vinyl Alcohol)/Corn Starch/Nanocellulose Composites with Improved Mechanical Properties. Int. J. Biol. Macromol. 2021, 183, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-H.; Zhang, F.-R.; Li, H.-S. Anti-Ultraviolet and Physical Properties of Woolen Fabrics Cured with Citric Acid and TiO2/Chitosan. J. Appl. Polym. Sci. 2006, 100, 4311–4319. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K. 14—Solvent-Less Reactions: Green and Sustainable Approaches in Medicinal Chemistry. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Banik, B.K., Ed.; Advances in Green and Sustainable Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 523–548. ISBN 978-0-12-817592-7. [Google Scholar]
- Manjunatha, C.; Ashoka, S.; Hari Krishna, R. Chapter 1—Microwave-Assisted Green Synthesis of Inorganic Nanomaterials. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, Boddula, R., Ahamed, M.I., Asiri, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–39. ISBN 978-0-12-821887-7. [Google Scholar]
- Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave Assisted Synthesis—A Critical Technology Overview. Green Chem. 2004, 6, 128–141. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, H.; Pan, Y.; Zhang, M.; Ni, S.; Hou, X.; Hu, E. Study on Cellulose Microfilaments Based Composite Spheres: Microwave-Assisted Synthesis, Characterization, and Application in Pollutant Removal. J. Environ. Manag. 2018, 228, 85–92. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogdał, D.; Matysek, D.; Čablik, V. Microwave-Assisted Synthesis and Characterization of Antibacterial O-Crosslinked Chitosan Hydrogels Doped with TiO2 Nanoparticles for Skin Regeneration. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 881–890. [Google Scholar] [CrossRef]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Advances in Microwave Synthesis of Nanoporous Materials. Adv. Mater. 2021, 33, 2103477. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Kar, K.K. Microwave as a Tool for Synthesis of Carbon-Based Electrodes for Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 20306–20325. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Genipin-Crosslinked Chitosan Hydrogels as Biomedical and Pharmaceutical Aids. Carbohydr. Polym. 2009, 77, 1–9. [Google Scholar] [CrossRef]
- Sung, H.-W.; Huang, R.-N.; Huang, L.L.H.; Tsai, C.-C. In Vitro Evaluation of Cytotoxicity of a Naturally Occurring Cross-Linking Reagent for Biological Tissue Fixation. J. Biomater. Sci. Polym. Ed. 1999, 10, 63–78. [Google Scholar] [CrossRef]
- Demitri, C.; Del Sole, R.; Scalera, F.; Sannino, A.; Vasapollo, G.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L. Novel Superabsorbent Cellulose-Based Hydrogels Crosslinked with Citric Acid. J. Appl. Polym. Sci. 2008, 110, 2453–2460. [Google Scholar] [CrossRef]
- Chen, W.; Li, N.; Ma, Y.; Minus, M.L.; Benson, K.; Lu, X.; Wang, X.; Ling, X.; Zhu, H. Superstrong and Tough Hydrogel through Physical Cross-Linking and Molecular Alignment. Biomacromolecules 2019, 20, 4476–4484. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yan, C.; Guo, Y.; Zhang, X.; Cai, M.; Jia, X.; Wang, X.; Zhou, F. Direct Ink Writing with High-Strength and Swelling-Resistant Biocompatible Physically Crosslinked Hydrogels. Biomater. Sci. 2019, 7, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sui, Y.; Liu, C.; Liu, C.; Wu, M.; Li, B.; Li, Y. A Physically Crosslinked Polydopamine/Nanocellulose Hydrogel as Potential Versatile Vehicles for Drug Delivery and Wound Healing. Carbohydr. Polym. 2018, 188, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in Crosslinking Strategies of Biomedical Hydrogels. Biomater. Sci. 2019, 7, 843–855. [Google Scholar] [CrossRef]
- Coqueret, X.X. Radiation-Induced Polymerization. In Applications of Ionizing Radiation In Materials Processing; Sun, Y., Ed.; Institute of Nuclear Chemistry and Technology: Warsaw, Poland, 2017; Volume 1, Chapter 6; ISBN 978-83-933935-9-6. [Google Scholar]
- Ju, H.; McCloskey, B.D.; Sagle, A.C.; Kusuma, V.A.; Freeman, B.D. Preparation and Characterization of Crosslinked Poly(Ethylene Glycol) Diacrylate Hydrogels as Fouling-Resistant Membrane Coating Materials. J. Membr. Sci. 2009, 330, 180–188. [Google Scholar] [CrossRef]
- Yumakgil, K.; Gökçeören, A.T.; Erbil, C. Effects of TEMED and EDTA on the Structural and Mechanical Properties of NIPAAm/Na+MMT Composite Hydrogels. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1256–1264. [Google Scholar] [CrossRef]
- Morales, A.; Labidi, J.; Gullón, P. Assessment of Green Approaches for the Synthesis of Physically Crosslinked Lignin Hydrogels. J. Ind. Eng. Chem. 2020, 81, 475–487. [Google Scholar] [CrossRef]
- Lin, J.; Jiao, G.; Scott, A.J.; Xu, C.C.; Gagnon, G.; Kermanshahi-pour, A. Green Synthesis of Self-Assembly, Self-Healing, and Injectable Polyelectrolyte Complex Hydrogels Using Chitosan, Sulphated Polysaccharides, Hydrolyzed Collagen and Nanocellulose. Int. J. Biol. Macromol. 2025, 288, 138566. [Google Scholar] [CrossRef]
- Chowdhury, N.; Solaiman; Roy, C.K.; Firoz, S.H.; Foyez, T.; Imran, A.B. Role of Ionic Moieties in Hydrogel Networks to Remove Heavy Metal Ions from Water. ACS Omega 2021, 6, 836–844. [Google Scholar] [CrossRef]
- ALSamman, M.T.; Sánchez, J. Recent Advances on Hydrogels Based on Chitosan and Alginate for the Adsorption of Dyes and Metal Ions from Water. Arab. J. Chem. 2021, 14, 103455. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Sonawane, S.H.; Pawade, V.B.; Pandit, A.B. Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 978-0-12-821499-2. [Google Scholar]
- Krishnan, T.; Mansor, W.S.W. Photocatalytic Degradation of Dyes by TiO2 Process in Batch Photoreactor. Lett. Appl. NanoBioSci. 2020, 9, 1502–1512. [Google Scholar] [CrossRef]
- Li, X.-M.; Xu, G.; Liu, Y.; He, T. Magnetic Fe3O4 Nanoparticles: Synthesis and Application in Water Treatment. Nanosci. Nanotechnol. Asia 2011, 1, 14–24. [Google Scholar] [CrossRef]
- Batista, R.A.; Espitia, P.J.P.; Vergne, D.M.C.; Vicente, A.A.; Pereira, P.A.C.; Cerqueira, M.A.; Teixeira, J.A.; Jovanovic, J.; Severino, P.; Souto, E.B.; et al. Development and Evaluation of Superabsorbent Hydrogels Based on Natural Polymers. Polymers 2020, 12, 2173. [Google Scholar] [CrossRef] [PubMed]
- Vernerey, F.J.; Lalitha Sridhar, S.; Muralidharan, A.; Bryant, S.J. Mechanics of 3D Cell–Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem. Rev. 2021, 121, 11085–11148. [Google Scholar] [CrossRef] [PubMed]
- Patroklou, G.; Triantafyllopoulou, E.; Goula, P.-E.; Karali, V.; Chountoulesi, M.; Valsami, G.; Pispas, S.; Pippa, N. pH-Responsive Hydrogels: Recent Advances in Pharmaceutical Applications. Polymers 2025, 17, 1451. [Google Scholar] [CrossRef]
- Hawthorne, B.; Simmons, J.K.; Stuart, B.; Tung, R.; Zamierowski, D.S.; Mellott, A.J. Enhancing Wound Healing Dressing Development through Interdisciplinary Collaboration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1967–1985. [Google Scholar] [CrossRef]
- Alcalde-Garcia, F.; Prasher, S.; Kaliaguine, S.; Tavares, J.R.; Dumont, M.-J. Desorption Strategies and Reusability of Biopolymeric Adsorbents and Semisynthetic Derivatives in Hydrogel and Hydrogel Composites Used in Adsorption Processes. ACS Eng. Au 2023, 3, 443–460. [Google Scholar] [CrossRef]
- Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Das, N.C. Chapter 16—Characterization Tools and Techniques of Hydrogels. In Hydrogels Based on Natural Polymers; Chen, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–517. ISBN 978-0-12-816421-1. [Google Scholar]
- Nafar Dastgerdi, J.; Koivisto, J.T.; Orell, O.; Rava, P.; Jokinen, J.; Kanerva, M.; Kellomäki, M. Comprehensive Characterisation of the Compressive Behaviour of Hydrogels Using a New Modelling Procedure and Redefining Compression Testing. Mater. Today Commun. 2021, 28, 102518. [Google Scholar] [CrossRef]
- Alraddadi, H.M.; Fagieh, T.M.; Bakhsh, E.M.; Akhtar, K.; Khan, S.B.; Khan, S.A.; Bahaidarah, E.A.; Homdi, T.A. Adsorptive Removal of Heavy Metals and Organic Dyes by Sodium Alginate/Coffee Waste Composite Hydrogel. Int. J. Biol. Macromol. 2023, 247, 125708. [Google Scholar] [CrossRef]
- Farag, A.M.; Sokker, H.H.; Zayed, E.M.; Nour Eldien, F.A.; Abd Alrahman, N.M. Removal of Hazardous Pollutants Using Bifunctional Hydrogel Obtained from Modified Starch by Grafting Copolymerization. Int. J. Biol. Macromol. 2018, 120, 2188–2199. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S.; El-Sakhawy, M.; Strachota, B.; Strachota, A.; Pavlova, E.; Mares Barbosa, S.; Kamel, S. Temperature- and pH-Responsive Super-Absorbent Hydrogel Based on Grafted Cellulose and Capable of Heavy Metal Removal from Aqueous Solutions. Gels 2023, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel Applications for Adsorption of Contaminants in Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef] [PubMed]
- Darban, Z.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Sridewi, N. Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels 2022, 8, 263. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, E.L.; Mustatea, G.; Ungureanu, E.L.; Mustatea, G. Toxicity of Heavy Metals. In Environmental Impact and Remediation of Heavy Metals; Saleh, H.M., Hassan, A.I., Eds.; IntechOpen: London, UK, 2022; ISBN 978-1-80355-526-3. [Google Scholar]
- Ghiorghita, C.-A.; Dinu, M.V.; Lazar, M.M.; Dragan, E.S. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. Molecules 2022, 27, 8574. [Google Scholar] [CrossRef]
- Prabakaran, E.; Pillay, K. Electrochemical Detection of 4-Nitrophenol by Using Graphene Based Nanocomposite Modified Glassy Carbon Electrodes: A Mini Review. Nanoarchitectonics 2021, 2, 61–87. [Google Scholar] [CrossRef]
- Aljar, M.A.A.; Rashdan, S.; Almutawah, A.; El-Fattah, A.A. Synthesis and Characterization of Biodegradable Poly(Vinyl Alcohol)-Chitosan/Cellulose Hydrogel Beads for Efficient Removal of Pb(II), Cd(II), Zn(II), and Co(II) from Water. Gels 2023, 9, 328. [Google Scholar] [CrossRef]
- Ahmad, S.; Tanweer, M.S.; Mir, T.A.; Alam, M.; Ikram, S.; Sheikh, J.N. Antimicrobial Gum Based Hydrogels as Adsorbents for the Removal of Organic and Inorganic Pollutants. J. Water Process Eng. 2023, 51, 103377. [Google Scholar] [CrossRef]
- Nishida, M.; Matsuo, S.; Yamanari, K.; Iwahara, M.; Kusakabe, K. Removal of Nitrate Nitrogen by Rhodotorula Graminis Immobilized in Alginate Gel for Groundwater Treatment. Processes 2021, 9, 1657. [Google Scholar] [CrossRef]
- Firmansyah, M.L.; Alwan, Y.; Ullah, N. A Comprehensive Review on the Adsorptive Removal of Pharmaceutical Pollutants: Occurrence, Toxicology, Molecular Simulation and Mechanistic Insights. Talanta Open 2025, 12, 100491. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, M.; Wang, R.; Li, N.; Zhang, L.; Liu, S.; Jiao, T. Fabrication of CS/GA/RGO/Pd Composite Hydrogels for Highly Efficient Catalytic Reduction of Organic Pollutants. RSC Adv. 2020, 10, 15091–15097. [Google Scholar] [CrossRef]
- Sutradhar, S.C.; Banik, N.; Islam, M.; Rahman Khan, M.M.; Jeong, J.-H. Gamma Radiation-Induced Synthesis of Carboxymethyl Cellulose-Acrylic Acid Hydrogels for Methylene Blue Dye Removal. Gels 2024, 10, 785. [Google Scholar] [CrossRef]
- Pereira, A.G.B.; Rodrigues, F.H.A.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R. Recent Advances on Composite Hydrogels Designed for the Remediation of Dye-Contaminated Water and Wastewater: A Review. J. Clean. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Mittal, H.; Alili, A.A.; Alhassan, S.M. Latest Progress in Utilizing Gum Hydrogels and Their Composites as High-Efficiency Adsorbents for Removing Pollutants from Wastewater. J. Mol. Liq. 2023, 391, 123392. [Google Scholar] [CrossRef]
- Grigoraș, C.-G.; Simion, A.-I.; Favier, L.; Drob, C.; Gavrilă, L. Performance of Dye Removal from Single and Binary Component Systems by Adsorption on Composite Hydrogel Beads Derived from Fruits Wastes Entrapped in Natural Polymeric Matrix. Gels 2022, 8, 795. [Google Scholar] [CrossRef]
- Kuckhoff, T.; Landfester, K.; Zhang, K.A.I.; Ferguson, C.T.J. Photocatalytic Hydrogels with a High Transmission Polymer Network for Pollutant Remediation. Chem. Mater. 2021, 33, 9131–9138. [Google Scholar] [CrossRef]
- Zhang, J.; White, J.C.; Lowry, G.V.; He, J.; Yu, X.; Yan, C.; Dong, L.; Tao, S.; Wang, X. Advanced Enzyme-Assembled Hydrogels for the Remediation of Contaminated Water. Nat. Commun. 2025, 16, 3050. [Google Scholar] [CrossRef]
- Samaddar, P.; Kumar, S.; Kim, K.-H. Polymer Hydrogels and Their Applications Toward Sorptive Removal of Potential Aqueous Pollutants. Polym. Rev. 2019, 59, 418–464. [Google Scholar] [CrossRef]
- Kurczewska, J.; Stachowiak, M.; Cegłowski, M. Chitosan-Based Hydrogel Beads with Molecularly Imprinted Receptors on Halloysite Nanotubes for Tetracycline Separation in Water and Soil. Environ. Res. 2024, 262, 119924. [Google Scholar] [CrossRef] [PubMed]
- Minale, M.; Gu, Z.; Guadie, A.; Li, Y.; Wang, Y.; Meng, Y.; Wang, X. Hydrous Manganese Dioxide Modified Poly(Sodium Acrylate) Hydrogel Composite as a Novel Adsorbent for Enhanced Removal of Tetracycline and Lead from Water. Chemosphere 2021, 272, 129902. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.; Kim, N.; Yea, Y.; Han, J.; Yoon, Y.; Kim, S.; Park, C.M. Comprehensive Evaluation of Antibiotic Tetracycline and Oxytetracycline Removal by Fe-Metal Organic Framework/Biopolymer-Clay Hydrogel. Ceram. Int. 2023, 49, 12201–12213. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Sun, Y.; Li, H.; Wang, Z.; Zhu, S.; Mao, Z.; Nan, G.; Wang, Z.; Huang, Y.; et al. Construction and Characterization of Sodium Alginate/Polyvinyl Alcohol Double-Network Hydrogel Beads with Surfactant-Tailored Adsorption Capabilities for Efficient Tetracycline Hydrochloride Removal. Int. J. Biol. Macromol. 2024, 280, 135879. [Google Scholar] [CrossRef] [PubMed]
- Chelu, M.; Popa, M.; Calderon Moreno, J.; Leonties, A.R.; Ozon, E.A.; Pandele Cusu, J.; Surdu, V.A.; Aricov, L.; Musuc, A.M. Green Synthesis of Hydrogel-Based Adsorbent Material for the Effective Removal of Diclofenac Sodium from Wastewater. Gels 2023, 9, 454. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Liu, K.; Jiang, Y.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; Liu, M.; et al. Rapid Elimination of Trace Bisphenol Pollutants with Porous β-Cyclodextrin Modified Cellulose Nanofibrous Membrane in Water: Adsorption Behavior and Mechanism. J. Hazard. Mater. 2021, 403, 123666. [Google Scholar] [CrossRef]
- Konwar, A.; Gogoi, A.; Chowdhury, D. Magnetic Alginate–Fe3O4 Hydrogel Fiber Capable of Ciprofloxacin Hydrochloride Adsorption/Separation in Aqueous Solution. RSC Adv. 2015, 5, 81573–81582. [Google Scholar] [CrossRef]
- Rasoulzadeh, H.; Mohseni-Bandpei, A.; Hosseini, M.; Safari, M. Mechanistic Investigation of Ciprofloxacin Recovery by Magnetite–Imprinted Chitosan Nanocomposite: Isotherm, Kinetic, Thermodynamic and Reusability Studies. Int. J. Biol. Macromol. 2019, 133, 712–721. [Google Scholar] [CrossRef]
- Priyadarshi, G.V.; Raval, N.P.; Barcelo, D.; Trivedi, M.H. Chitosan Supported Hetero-Metallic Bio-Nanocomposites for Paracetamol Removal from Homogeneous Solutions and Heterogeneous Mixtures with Focused Antibacterial Studies. Int. J. Biol. Macromol. 2024, 281, 136279. [Google Scholar] [CrossRef]
- Lee, J.W.; Han, J.; Choi, Y.-K.; Park, S.; Lee, S.H. Reswellable Alginate/Activated Carbon/Carboxymethyl Cellulose Hydrogel Beads for Ibuprofen Adsorption from Aqueous Solutions. Int. J. Biol. Macromol. 2023, 249, 126053. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Barakat, M.A. Flexible Multifunctional Chitosan/Graphene Oxide/Polyaniline Hydrogel Thin Films for Adsorption of Ibuprofen from Aqueous Solution. Cellulose 2024, 31, 4347–4366. [Google Scholar] [CrossRef]
- Chang, P.-H.; Mukhopadhyay, R.; Sarkar, B.; Mei, Y.-C.; Hsu, C.-H.; Tzou, Y.-M. Insight and Mechanisms of Tetracycline Adsorption on Sodium Alginate/Montmorillonite Composite Beads. Appl. Clay Sci. 2023, 245, 107127. [Google Scholar] [CrossRef]
- Mirizadeh, S.; Solisio, C.; Converti, A.; Casazza, A.A. Efficient Removal of Tetracycline, Ciprofloxacin, and Amoxicillin by Novel Magnetic Chitosan/Microalgae Biocomposites. Sep. Purif. Technol. 2024, 329, 125115. [Google Scholar] [CrossRef]
- Margas, M.; Piotrowicz-Cieślak, A.I.; Michalczyk, D.J.; Głowacka, K. A Strong Impact of Soil Tetracycline on Physiology and Biochemistry of Pea Seedlings. Scientifica 2019, 2019, 3164706. [Google Scholar] [CrossRef]
- Bonnefille, B.; Gomez, E.; Courant, F.; Escande, A.; Fenet, H. Diclofenac in the Marine Environment: A Review of Its Occurrence and Effects. Mar. Pollut. Bull. 2018, 131, 496–506. [Google Scholar] [CrossRef]
- Fahimi, A.; Zanoletti, A.; Federici, S.; Assi, A.; Bilo, F.; Depero, L.E.; Bontempi, E. New Eco-Materials Derived from Waste for Emerging Pollutants Adsorption: The Case of Diclofenac. Materials 2020, 13, 3964. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, J.; Yin, J.; Shao, B.; Zhang, J. Molecularly Imprinted Solid-Phase Extraction for Selective Extraction of Bisphenol Analogues in Beverages and Canned Food. J. Agric. Food Chem. 2014, 62, 11130–11137. [Google Scholar] [CrossRef]
- Gezahegn, T.; Tegegne, B.; Zewge, F.; Chandravanshi, B.S. Salting-out Assisted Liquid–Liquid Extraction for the Determination of Ciprofloxacin Residues in Water Samples by High Performance Liquid Chromatography–Diode Array Detector. BMC Chem. 2019, 13, 28. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Ibuprofen as an Emerging Organic Contaminant in Environment, Distribution and Remediation. Heliyon 2020, 6, e04087. [Google Scholar] [CrossRef]
- Cuéllar-Gaona, C.G.; González-López, J.A.; Martínez-Ruiz, E.O.; Acuña-Vazquez, P.; Dávila-Medina, M.D.; Cedillo-Portillo, J.J.; Narro-Céspedes, R.I.; Soria-Arguello, G.; Puca-Pacheco, M.; Ibarra-Alonso, M.C.; et al. Chitosan Hydrogels with Antibacterial and Antifungal Properties: Enhanced Properties by Incorporating of Plasma Activated Water. Plasma Chem. Plasma Process. 2024, 44, 2303–2322. [Google Scholar] [CrossRef]
- Akinsemolu, A.A.; Onyeaka, H. Advances in Hydrogel Polymers for Microbial Control in Water Systems. Polymers 2024, 16, 2205. [Google Scholar] [CrossRef] [PubMed]
- Denisova, V.; Mezule, L.; Juhna, T. The Effect of Chitosan Nanoparticles on Escherichia Coli Viability in Drinking Water Disinfection. Water Pract. Technol. 2022, 17, 537–543. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M.; Popa, M.; Calderon Moreno, J.M. Chitosan Hydrogels for Water Purification Applications. Gels 2023, 9, 664. [Google Scholar] [CrossRef]
- Andreica, B.-I.; Mititelu-Tartau, L.; Rosca, I.; Pelin, I.M.; Nicol, E.; Marin, L. Biocompatible Hydrogels Based on Quaternary Ammonium Salts of Chitosan with High Antimicrobial Activity as Biocidal Agents for Disinfection. Carbohydr. Polym. 2024, 342, 122389. [Google Scholar] [CrossRef]
- Ahmadi, S.; Pourebrahimi, S.; Malloum, A.; Pirooz, M.; Osagie, C.; Ghosh, S.; Zafar, M.N.; Dehghani, M.H. Hydrogel-Based Materials as Antibacterial Agents and Super Adsorbents for the Remediation of Emerging Pollutants: A Comprehensive Review. Emerg. Contam. 2024, 10, 100336. [Google Scholar] [CrossRef]
- Albao, M.J.F.; Calsis, J.R.F.; Dancel, J.O.; De Juan-Corpuz, L.M.; Corpuz, R.D. Silver Nanoparticle-Infused Hydrogels for Biomedical Applications: A Comprehensive Review. J. Chin. Chem. Soc. 2025, 72, 124–162. [Google Scholar] [CrossRef]
- Moreno Ruiz, Y.P.; de Almeida Campos, L.A.; Alves Agreles, M.A.; Galembeck, A.; Macário Ferro Cavalcanti, I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics 2023, 12, 104. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Khalaf, M.M.; Alsaeed, M.A.; Abou Taleb, M.F.; Gouda, M. Facile Fabrication and Characterization of Carboxymethyl Cellulose Hydrogel Loaded with TiO2NPs as a Promising Disinfectant for Eliminating the Dissemination of Waterborne Pathogens through Wastewater Decontamination. Int. J. Biol. Macromol. 2024, 282, 137410. [Google Scholar] [CrossRef]
- Guidetti, G.; Giuri, D.; Zanna, N.; Calvaresi, M.; Montalti, M.; Tomasini, C. Biocompatible and Light-Penetrating Hydrogels for Water Decontamination. ACS Omega 2018, 3, 8122–8128. [Google Scholar] [CrossRef]
- Pereira, V.; Goh, Z.X.D.; Raja Mogan, T.; Ng, L.S.; Das, S.; Li, H.; Lee, H.K. Magnetic Hydrogel Microbots for Efficient Pollutant Decontamination and Self-Catalyzed Regeneration in Continuous Flow Systems. Small 2024, 20, 2405699. [Google Scholar] [CrossRef] [PubMed]
- Biswal, M.; Bhardwaj, K.; Singh, P.K.; Singh, P.; Yadav, P.; Prabhune, A.; Rode, C.; Ogale, S. Nanoparticle-Loaded Multifunctional Natural Seed Gel-Bits for Efficient Water Purification. RSC Adv. 2013, 3, 2288–2295. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, G.; Liu, Y.; Zhang, X. Graphene-Based Antimicrobial Nanomaterials: Rational Design and Applications for Water Disinfection and Microbial Control. Environ. Sci. Nano 2017, 4, 2248–2266. [Google Scholar] [CrossRef]
- Gouda, M.; Khalaf, M.M.; Abou Taleb, M.F.; Abd El-Lateef, H.M. Fabrication of Silver Nanoparticles Loaded Acacia Gum/Chitosan Nanogel to Coat the Pipe Surface for Sustainable Inhibiting Microbial Adhesion and Biofilm Growth in Water Distribution Systems. Int. J. Biol. Macromol. 2024, 262, 130085. [Google Scholar] [CrossRef]
- Ye, Y.; Klimchuk, S.; Shang, M.; Niu, J. Improved Antibacterial Performance Using Hydrogel-Immobilized Lysozyme as a Catalyst in Water. RSC Adv. 2019, 9, 20169–20173. [Google Scholar] [CrossRef]
- Chen, B.; Fragal, E.H.; Faudry, E.; Halila, S. In Situ Growth of Silver Nanoparticles into Reducing-End Carbohydrate-Based Supramolecular Hydrogels for Antimicrobial Applications. ACS Appl. Mater. Interfaces 2024, 16, 70818–70827. [Google Scholar] [CrossRef]
- Li, S.-H.; Li, B.-B.; Zhao, X.-L.; Wu, H.; Chai, R.-L.; Li, G.-Y.; Zhu, D.; He, G.; Zhang, H.-F.; Xie, K.-K.; et al. Macrocycle Self-Assembly Hydrogel for High-Efficient Oil–Water Separation. Small 2023, 19, 2301934. [Google Scholar] [CrossRef]
- Yan, L.; Yang, X.; Li, Y.; Song, R.; Lin, Y.; Huang, Q.; Shao, L. Acid-Resistant Supramolecular Nanofibrous Hydrogel Membrane with Core-Shell Structure for Highly Efficient Oil/Water Separation. J. Membr. Sci. 2023, 679, 121705. [Google Scholar] [CrossRef]
- Thakur, K.; Rajhans, A.; Kandasubramanian, B. Starch/PVA Hydrogels for Oil/Water Separation. Environ. Sci. Pollut. Res. 2019, 26, 32013–32028. [Google Scholar] [CrossRef]
- Luo, W.; Zuo, Y.; Zheng, Y.; Long, X.; Jiao, F. Double Network Cross-Linked Hydrogel Coating Membrane with Photocatalytic Self-Cleaning Performance for Efficient Oil-Water Separation. Prog. Org. Coat. 2023, 185, 107882. [Google Scholar] [CrossRef]
- Xie, X.; Liu, L.; Zhang, L.; Lu, A. Strong Cellulose Hydrogel as Underwater Superoleophobic Coating for Efficient Oil/Water Separation. Carbohydr. Polym. 2020, 229, 115467. [Google Scholar] [CrossRef]
- Li, F.; Miao, G.; Gao, Z.; Xu, T.; Zhu, X.; Miao, X.; Song, Y.; Ren, G.; Li, X. A Versatile Hydrogel Platform for Oil/Water Separation, Dye Adsorption, and Wastewater Purification. Cellulose 2022, 29, 4427–4438. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. A Hydrogel-Based Antifouling Solar Evaporator for Highly Efficient Water Desalination. Energy Environ. Sci. 2018, 11, 1985–1992. [Google Scholar] [CrossRef]
- Guo, S.; Wang, W.; Wang, R.; Chen, Y.; Wang, N.; Jensen, M.; Li, X. Dual-Crosslinked and Dual-Networked Hydrogels with High Mechanical Properties for Cost-Effective Solar Water Desalination and Purification. Front. Mater. Sci. 2024, 18, 240701. [Google Scholar] [CrossRef]
- Liu, H.; Gu, J.; Liu, Y.; Yang, L.; Li, A.; Yu, J.; Wang, L.; Qin, X. Gradient-Charged Hydrogels for Highly Efficient Solar Steam Generation and Desalination. Langmuir 2023, 39, 13641–13648. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Du, S.; Zhu, B.; Zhu, L.; Yang, J. All-Natural Photothermal Hydrogel for Efficient Desalination and Heavy Metal Enrichment. Langmuir 2025, 41, 5664–5675. [Google Scholar] [CrossRef]
- Luketich, M.; Nasrabadi, H. Solar Desalination of Oilfield Brines Using Nanogel Materials. Geoenergy Sci. Eng. 2023, 228, 211965. [Google Scholar] [CrossRef]
- Vernerey, F.; Shen, T. The Mechanics of Hydrogel Crawlers in Confined Environment. J. R. Soc. Interface 2017, 14, 20170242. [Google Scholar] [CrossRef]
- Lee, P.I. Kinetics of Drug Release from Hydrogel Matrices. J. Control. Release 1985, 2, 277–288. [Google Scholar] [CrossRef]
- Sandu, T.; Chiriac, A.-L.; Zaharia, A.; Iordache, T.-V.; Sarbu, A. New Trends in Preparation and Use of Hydrogels for Water Treatment. Gels 2025, 11, 238. [Google Scholar] [CrossRef]
- Negut, I.; Bita, B. Exploring the Potential of Artificial Intelligence for Hydrogel Development—A Short Review. Gels 2023, 9, 845. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025, 11, 72. [Google Scholar] [CrossRef]
Material | Source | Key Functional Groups | Target Pollutants | Sustainability Pros (✓)/Cons (✗) | References |
---|---|---|---|---|---|
Chitosan | Crustacean shells, fungi | –NH2, –OH | Heavy metals (Cu2+, Cr6+), anionic dyes, microbes | ✓ Biodegradable, renewable; ✗ Limited mechanical strength, Batch variability | [84] |
Cellulose | Plants, bacteria (e.g., cotton, wood) | –OH | Dyes, heavy metals (Cd2+, Ni2+), organics | ✓ Abundant, renewable, biodegradable; ✗ Often requires modification for specific binding | [85] |
PVA | Synthetic | –OH | Broad-spectrum (e.g., heavy metals Ni2+, Cu2+, Co2+, Cr6+), dyes, radionuclides | ✓ High durability, tunable properties; ✗ Slow biodegradation, petroleum-derived | [86] |
Alginate | Brown seaweed | –COO− | Divalent metals (Pb2+, Cd2+, Cu2+), dyes | ✓ Mild processing, Biodegradable, Renewable; ✗ Lower mechanical strength than synthetics | [87] |
PAA | Synthetic | –COOH | Cationic dyes, various metal ions (Cd2+, Fe3+) | ✓ High swelling, precise functionality; ✗ Non-biodegradable (unless modified), toxic monomer (acrylamide) | [88] |
Starch | Plants (e.g., corn, potato) | –OH | Dyes (e.g., methylene blue), heavy metals (Pb2+), organics | ✓ Low-cost, abundant, biodegradable; ✗ Low mechanical strength, limited selectivity | [89] |
Lignin | Pulp and paper industry byproduct | Phenolic –OH, –COOH | Heavy metals, dyes | ✓ Waste-derived, renewable, biodegradable; ✗ Complex structure, requires modification | [90] |
Soy protein | Soybeans | –NH2, –COOH, –SH | Heavy metals (Cd2+, Pb2+), specific organics | ✓ Waste-derived, biodegradable; ✗ Mechanical weakness, batch variability | [91] |
Guar gum | Guar beans | Numerous hydroxyl (-OH) groups | Heavy metals, dyes, and specific pollutants like boron. Its hydroxyl groups facilitate adsorption through hydrogen bonding and complexation | ✓ It is a low-cost, food-grade natural product that is biodegradable and non-toxic. Its production is relatively simple and requires less energy compared to synthetic polymers. ✗ Guar gum-based hydrogels may have lower mechanical stability in certain conditions and can be susceptible to microbial degradation, which could limit their long-term use in some applications. | [33] |
Pectin | Citrus peels, apple pomace, and sugar beet pulp (by-products of the food industry) | Abundant carboxyl (-COOH) groups and hydroxyl (-OH) groups. | Highly effective for removing heavy metal ions and radioactive ions (e.g., Sr2+ and Cs+) via ion exchange and chelation with its carboxyl groups. | ✓ It is a cost-effective, non-toxic, and biodegradable material derived from food waste, which promotes a circular economy. ✗ Pectin-based hydrogels can have low mechanical strength and stability, which may require modification or combination with other materials for practical applications | [34] |
Method | Reaction Time | Energy Use | Scalability | Best for |
---|---|---|---|---|
Solvent-free | Moderate (1–4 h) | Low | High | Thermoplastic polymers (PVA, starch), bulk production [96] |
Microwave-assisted | Fast (minutes) | Very low | Moderate | Grafting, nanocomposite formation, rapid prototyping [97] |
Bio-derived crosslinkers | Moderate (2–6 h) | Low | High | Natural polymers (chitosan, alginate), biocompatible applications [98] |
Radiation-induced | Fast (seconds–minutes) | Moderate | Low to moderate | High-precision networks, sterile products, unique grafting [99] |
Category | Technique | Purpose | Advantages | Limitations | Typical Applications | References |
---|---|---|---|---|---|---|
Physicochemical | Fourier transform infrared spectroscopy (FTIR) | Identify chemical bonds and functional groups | Confirms crosslinking/functionalization | Overlapping peaks, limited quantification | Chemical structure verification | [132,133,134] |
Scanning Electron Microscopy (SEM) | Visualize surface morphology and pore distribution | High-resolution imaging | Requires dehydration, may alter hydrogel | Morphology–performance correlation | ||
Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC) | Assess thermal stability and transitions | Provides decomposition profiles | Requires dry samples, not in situ | Predicting durability under heat | ||
Analytical (drug detection/quantification) | UV-Vis | Drug quantification (small molecules) | Cheap, fast | Low sensitivity, poor selectivity | Routine release assays | |
Fluorescence | Detect drugs/proteins (often tagged) | High sensitivity, imaging capability | Requires labeling, possible artifacts | Protein/nucleic acid tracking | ||
Enzyme-Linked Immunosorbent Assay (ELISA) | Protein quantification | Highly selective and sensitive | Interference issues, costly kits | Growth factor release studies | ||
High-Performance Liquid Chromatography MS (HPLC) | Separate and quantify drugs | High precision and sensitivity | Time-consuming, expensive | Small molecule drugs, pharmacokinetics | ||
Mass Spectrometry (MS) | Detect and quantify diverse molecules | Ultra-sensitive and specific | Costly, expertise needed | Proteins, peptides, metabolites | ||
Polymerase Chain Reaction/Reverse Transcription quantitative (PCR/RT-qPCR) | Nucleic acid quantification | Sensitive, gold standard for DNA/RNA | Expensive, complex | Gene/drug delivery efficacy | ||
Drug diffusion | Franz Cell Assay | Diffusion measurement | Physiologically relevant | Limited to membrane studies | Transdermal delivery | |
Fluorescence Recovery After Photobleaching/Fluorescence Correlation Spectroscopy (FRAP/FCS) | Fluorescent mobility studies | Real-time, microscale | Requires labeling | Drug/protein dynamics in hydrogels | ||
Microfluidics | High-throughput diffusion studies | Real-time, small sample sizes | Specialized setup | Advanced screening of hydrogel systems | ||
Biological evaluation | In vitro models | Biocompatibility and efficacy | Controlled conditions | Simplified environment | Initial screening of formulations | |
In vivo models | Pharmacokinetics, toxicity | Physiological relevance | Ethical, costly, complex | Preclinical validation |
Pollutant Type | Hydrogel System and Functionalization | Adsorption Capacity (mg/g) | Removal Efficiency (%) | Reference |
---|---|---|---|---|
Pb(II) | Alginate/coffee waste composite | Up to 199.2 mg/g | 98.4% removal, reusable | [135] |
Co(II) | Modified starch hydrogel from a copolymer of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and N,N-dimethylaminoethyl methacrylate (DMAEMA) | 350 mg/g | Up to 98.76% removal | [136] |
Phosphate (PO43−) | Modified starch hydrogel (AMPS) | 650 mg/g | Exceeding 90% | [136] |
Cr(VI) | Grafted cellulose hydrogel from a copolymer of acrylamide (AM) and sodium polyacrylate (SPA) | Up to 139.40 mg/g | 90–96% removal | [137] |
Multiple heavy metals | Chitosan/cellulose/alginate-based composites | 38–440+ mg/g | Up to 93% removal | [123] |
Radioactive ions | Magnetic nanoparticle/hexacyanoferrate hydrogels | For ex, for Strontium (Sr2+) is 421.94 | High selectivity, easy recovery | [138] |
Pollutant | Hydrogel System | Key Properties | Reference |
---|---|---|---|
Tetracycline | Chitosan-halloysite molecularly imprinted hydrogel | Selective, high thermal stability, max adsorption ~178 mg/g | [155] |
Hydrous manganese dioxide-poly(sodium acrylate) | High adsorption (~476 mg/g), fits Langmuir model, pH 4 optimal | [156] | |
Fe-MOF/biopolymer-clay hydrogel | Adsorption ~24.6 mg/g, pseudo-second-order kinetics | [157] | |
Sodium alginate/PVA hydrogel | High removal (121.6 mg/g), good reusability | [158] | |
Diclofenac | Chitosan-PEG-Xanthan hydrogel | Green synthesis, biodegradable, 172.41 mg/g capacity | [159] |
Bisphenol A | β-cyclodextrin modified cellulose nano-fiber membrane | Maximum adsorption capacities were 50.37, 48.52 and 47.25 mg g− | [160] |
Ciprofloxacin | Magnetic alginate–Fe3O4 hydrogel | Magnetic, recyclable, high efficiency | [161] |
Magnetite imprinted chitosan polymer nanocomposites | Maximum adsorption capacity was obtained 68% and 142 mg/g, | [162] | |
Paracetamol | Cross-linked chitosan supported bimetallic-oxide nanoparticles, specifically ZnO and Fe3O4 | Removal efficiency of ~99% (qm = 4.98 mg g−1), with a Zn:Fe mole ratio of 1:1. | [163] |
Ibuprofen | Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads | The reswelled beads exhibited only 18% (qe = 8.6) of the initial adsorption capacity (qe = 48.1) | [164] |
GO and PANI nanoparticles rationally immobilized in chitosan matrix-based hydrogel | The adsorption of ibuprofen reduces as the quantity of GO in the thin films increases | [165] |
Application Area | Hydrogel System and Key Feature | Performance/Outcome | Citations |
---|---|---|---|
Oil–water separation | Lantern [33]arene supramolecular hydrogel | >99% efficiency, >60,000 L m−2 h−1 | [190] |
Acid-resistant nanofibrous hydrogel membrane | >17,000 L m−2 h−1 bar−1, acid stable | [191] | |
Starch/PVA superabsorbent hydrogel | Oleophobic, 90% biodegradability | [192] | |
Gelatin-based double network hydrogel | >99% efficiency, self-cleaning | [193] | |
Cellulose hydrogel coating | >98.9% efficiency, saline stable | [194] | |
Desalination/solar distillation | Chitosan/PVA/carbon black hydrogel platform | Solar-driven water purification | [195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visan, A.I.; Negut, I. Sustainable Hydrogels in Water Treatment—A Short Review. Gels 2025, 11, 812. https://doi.org/10.3390/gels11100812
Visan AI, Negut I. Sustainable Hydrogels in Water Treatment—A Short Review. Gels. 2025; 11(10):812. https://doi.org/10.3390/gels11100812
Chicago/Turabian StyleVisan, Anita Ioana, and Irina Negut. 2025. "Sustainable Hydrogels in Water Treatment—A Short Review" Gels 11, no. 10: 812. https://doi.org/10.3390/gels11100812
APA StyleVisan, A. I., & Negut, I. (2025). Sustainable Hydrogels in Water Treatment—A Short Review. Gels, 11(10), 812. https://doi.org/10.3390/gels11100812