Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = renewable energy vs. fossil fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1664 KB  
Article
Environmental and Social Impacts of Renewable Energy-Driven Centralized Heating/Cooling Systems: A Comparison with Conventional Fossil Fuel-Based Systems
by Javier Pérez Rodríguez, David Hidalgo-Carvajal, Juan Manuel de Andrés Almeida and Alberto Abánades Velasco
Energies 2025, 18(19), 5150; https://doi.org/10.3390/en18195150 - 27 Sep 2025
Viewed by 358
Abstract
Heating and cooling (H&C) account for nearly half of the EU’s energy consumption, with significant potential for decarbonization through renewable energy sources (RES) integrated in district heating and cooling (DHC) systems. This study evaluates the environmental and social impacts of RES-powered DHC solutions [...] Read more.
Heating and cooling (H&C) account for nearly half of the EU’s energy consumption, with significant potential for decarbonization through renewable energy sources (RES) integrated in district heating and cooling (DHC) systems. This study evaluates the environmental and social impacts of RES-powered DHC solutions implemented in three European small-scale demo sites (Bucharest, Luleå, Córdoba) under the Horizon 2020 WEDISTRICT project. Using the Life Cycle Assessment (LCA) and Social Life Cycle Assessment (S-LCA) methodologies, the research compares baseline fossil-based energy scenarios with post-implementation renewable scenarios. Results reveal substantial greenhouse gas emission reductions (up to 67%) and positive environmental trade-offs, though increased mineral and metal resource use and site-specific impacts on water and land use highlight important sustainability challenges. Social assessments demonstrate improvements in gender parity, local employment, and occupational safety, yet reveal persistent issues in wage equity, union representation, and inclusion of vulnerable populations. The findings emphasize that while renewable DHC systems offer significant climate benefits, social sustainability requires tailored local strategies and robust governance to avoid exacerbating inequalities. This integrated environmental-social perspective underscores the need for holistic policies that balance technical innovation with equitable social outcomes to ensure truly sustainable energy transitions. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

37 pages, 964 KB  
Article
Linear Optimization Model with Nonlinear Constraints to Maximize Biogas Production from Organic Waste: A Practical Approach
by Juan Carlos Vesga Ferreira, Alexander Florez Martinez and Jhon Erickson Barbosa Jaimes
Appl. Sci. 2025, 15(19), 10453; https://doi.org/10.3390/app151910453 - 26 Sep 2025
Viewed by 294
Abstract
The excessive use of fossil fuels and the increasing generation of solid waste, driven by population growth, industrialization, and economic development, have led to serious environmental, energy, and public health issues. In light of this problem, it is crucial to adopt sustainable solutions [...] Read more.
The excessive use of fossil fuels and the increasing generation of solid waste, driven by population growth, industrialization, and economic development, have led to serious environmental, energy, and public health issues. In light of this problem, it is crucial to adopt sustainable solutions that promote the transition to renewable energy sources, such as biogas. Although progress has been made in optimizing biogas production, there is still no adaptable model for various environments that allows for the determination of optimal quantities of different organic wastes, simultaneously considering their composition, moisture content, and control of critical factors for biogas production, as well as the biodigester’s capacity and other relevant elements. In practice, the dosing of waste is conducted empirically, leading to inefficiencies that limit the potential for biogas production in real scenarios. The objective of this article is to propose a linear optimization model with nonlinear constraints that maximizes biogas production, considering fundamental parameters such as the moisture percentage, pH, carbon/nitrogen ratio (C/N), substrate volume, organic matter, volatile solids (VS), and biogas production potential from different wastes. The model estimates the optimal waste composition based on the biodigester capacity to ensure balanced substrates. The results for the proposed scenarios demonstrate its effectiveness: Scenario 1 achieved 3.42 m3 (3418.67 L) of biogas, while Scenario 2, with a greater diversity of waste, reached 8.06 m3 (8061.43 L). The model maintained pH (6.49–6.50), C/N ratio (20.00), and moisture (60.00%) within optimal ranges. Additionally, a Monte Carlo sensitivity analysis (1000 simulations) validated its robustness with a 95% confidence level. This model provides an efficient tool for optimizing biogas production and waste dosing in rural contexts, promoting clean and sustainable technologies for renewable energy generation. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 1724 KB  
Article
New Paste Electrode Based on Copper and Gallium Mixed Metal Oxides-Decorated CNT for Highly Electrocatalyzed Hydrogen Evolution Reaction
by Claudio Barrientos, Silvana Moris, Dana Arias, Gina Pecchi, José Ibarra, Galo Ramírez and Leyla Gidi
Int. J. Mol. Sci. 2025, 26(18), 9057; https://doi.org/10.3390/ijms26189057 - 17 Sep 2025
Viewed by 400
Abstract
H2 has become one of the most attractive alternatives to replace fossil fuels in clean energy production, but large-scale production remains a challenge. A key step toward this goal is to develop new efficient electrocatalysts for H2 production. This work presents [...] Read more.
H2 has become one of the most attractive alternatives to replace fossil fuels in clean energy production, but large-scale production remains a challenge. A key step toward this goal is to develop new efficient electrocatalysts for H2 production. This work presents a new mixed metal oxides-decorated CNT paste electrode (MMO@C), which is highly electrocatalytic, for use in the hydrogen evolution reaction (HER). MMO@C is synthesized by a solvothermal method and used as an easy-to-prepare paste electrode. XPS and X-ray analysis indicate that the electrocatalyst corresponds to a mixed surface of Ga2O3-CuO-Cu2O-Cu(OH)2@C. The MMO@C electrocatalyst shows a positive Eo of 0.12 V vs. RHE at −10 mA cm−2 towards the HER in a neutral medium. In neutral and alkaline media, the presence of Ga2O3 facilitates the reduction of CuO to Cu(I) species, which is followed by the formation of Cu(s) active sites. Therefore, the excellent electrocatalytic performance toward the HER in a neutral medium is attributed to the synergistic effect between gallium and copper oxides on the electrode surface. The prominent H2 production using MMO@C electrocatalyst is 1.31 × 10−2 mol cm−2, with a turnover number (TON) of 39,423, a turnover frequency (TOF) of 13,141 h−1, and a faradaic efficiency (FE) of 94.3%. Although the Tafel slope reveals slow reaction kinetics, the outstanding onset potential allows for the coupling of the electrocatalyst to renewable energy production systems, making it an attractive candidate for producing green H2 and for application in membrane water electrolyzers. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

17 pages, 1515 KB  
Article
Leveraging Potato Chip Industry Residues: Bioenergy Production and Greenhouse Gas Mitigation
by Patrícia V. Almeida, Luís M. Castro, Anna Klepacz-Smółka, Licínio M. Gando-Ferreira and Margarida J. Quina
Sustainability 2025, 17(11), 5023; https://doi.org/10.3390/su17115023 - 30 May 2025
Viewed by 964
Abstract
Anaerobic digestion (AD) offers a sustainable solution by treating biodegradable waste while recovering bioenergy, enhancing the share of renewable energy. Thus, this study aims to investigate the AD for managing and valorizing residues from the potato chip industry: potato peel (PP), potato offcuts [...] Read more.
Anaerobic digestion (AD) offers a sustainable solution by treating biodegradable waste while recovering bioenergy, enhancing the share of renewable energy. Thus, this study aims to investigate the AD for managing and valorizing residues from the potato chip industry: potato peel (PP), potato offcuts (OC), waste cooking oil (WCO), wastewater (WW), and sewage sludge (SS). In particular, the biochemical methane potential (BMP) of each residue, anaerobic co-digestion (AcoD), and greenhouse gas (GHG) emissions of an AD plant are assessed. WW, OC, and SS present a BMP of around 232–280 NmLCH4/kg of volatile solids (VS). PP and WCO reach a BMP slightly lower than the former substrates (174–202 NmLCH4/gVS). AcoD results in methane yields between 150 and 250 NmLCH4/gVS. An up-scaled anaerobic digester is designed to manage 1.60 Mg/d of PP. A residence time of 12 days and a digester with 165 m3 is estimated, yielding 14 Nm3CH4/MgVS/d. A simulated AD plant integrated with a combined heat and power unit results in a carbon footprint of 542 kg of CO2-eq/Mgdb PP, primarily from biogenic GHG emissions. These findings highlight the potential of AD to generate renewable energy from potato industry residues while reducing fossil fuel-related GHG emissions and promoting resource circularity. Full article
Show Figures

Figure 1

21 pages, 1712 KB  
Article
Economic Analysis of Renewable Energy Generation from a Multi-Energy Installation in a Single-Family House
by Jakub Stolarski, Ewelina Olba-Zięty and Mariusz Jerzy Stolarski
Energies 2024, 17(24), 6213; https://doi.org/10.3390/en17246213 - 10 Dec 2024
Cited by 1 | Viewed by 1324
Abstract
The promotion of Renewable Energy Sources RES installations in single-family houses is an element of the broadly understood decarbonisation strategy. Investments in photovoltaic installations and pellet boilers have a direct effect on decreasing CO2 emissions, thereby contributing to the improvement in air [...] Read more.
The promotion of Renewable Energy Sources RES installations in single-family houses is an element of the broadly understood decarbonisation strategy. Investments in photovoltaic installations and pellet boilers have a direct effect on decreasing CO2 emissions, thereby contributing to the improvement in air quality and mitigation of climate change, but the question remains of whether they are economically viable. High energy consumption by households results in a significant burden on their budgets. The purpose of this study was to conduct an economic analysis of the renewable electricity (photovoltaic microinstallation—PV) and heat (a pellet boiler) produced in three consecutive years by a single family situated in North-Eastern Poland. The economic analysis was based on the determination of the electricity and heat production costs for renewable energy sources and selected fossil fuels. Profitability metrics such as net present value, internal rate of return and discounted payback period were used for the assessment. For the comparison of electricity costs, the costs of electricity from the power grid were confronted with the costs of electricity generation from a PV microinstallation. For the comparison of heat production costs, the following scenarios were analysed: (i) eco-pea coal vs. pellet, (ii) natural gas vs. pellet and (iii) heating oil vs. pellet. Next, comparisons were made and analysed for multi-energy systems. When comparing the PV microinstallation investment with the variant of using electricity from the power grid, a positive NPV equal to EUR 5959 was obtained for the former, which proved it was profitable. Among the heat generation variants, the lowest total costs were related to eco-pea coal (EUR 29,527), followed by pellet (EUR 33,151) and then natural gas (EUR 39,802), while the highest costs of heat generation were attributed to burning heating oil (EUR 63,445), being nearly twice as high as the cost of burning pellets. This analysis of multi-energy systems showed that the RES system composed of a PV microinstallation for electricity production and a pellet-fired boiler for heat generation was most advantageous because it yielded the lowest total costs (EUR 41,265) among all the analysed variants. A properly selected PV microinstallation and an automatic pellet-fired boiler can make a single-family house economical and provide it with sufficient amounts of renewable electric and heat power throughout the year. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

15 pages, 661 KB  
Article
Microbial Biotechnologies to Produce Biodiesel and Biolubricants from Dairy Effluents
by Grazia Federica Bencresciuto, Claudio Mandalà, Carmela Anna Migliori, Lucia Giansante, Luciana Di Giacinto and Laura Bardi
Fermentation 2024, 10(6), 278; https://doi.org/10.3390/fermentation10060278 - 24 May 2024
Cited by 6 | Viewed by 2580
Abstract
The shift from fossil fuels to renewable energy sources is crucial in addressing environmental challenges. Vegetable oils have been focused on as the main potential source for biodiesel and biolubricant production. However, due to their fatty acid (FA) composition they are characterized by [...] Read more.
The shift from fossil fuels to renewable energy sources is crucial in addressing environmental challenges. Vegetable oils have been focused on as the main potential source for biodiesel and biolubricant production. However, due to their fatty acid (FA) composition they are characterized by low stability to oxidation and variable viscosity. Single-cell oils (SCOs) from oleaginous microorganisms are a possible alternative to vegetable oils: their composition is more suitable, and it can further be improved by controlling the fermentation’s physiological conditions. In the present study, the production of SCOs with targeted technological properties from Lipomyces starkeyi in fermentation under controlled temperatures was assessed. A dairy effluent (scotta) was used as the fermentation substrate to improve the economic sustainability of the process. Batch aerobic fermentations were carried out in a fermenter at two different temperatures (25 °C and 30 °C). The fermentation yields and SCO FA profiles were analyzed. The highest yields of biomass (9.76 g L−1) and microbial oil (1.83 g L−1) were obtained from fermentations carried out at 30 °C. Furthermore, a significantly lower content (46% vs. 55%) of unsaturated FAs and higher content (11% vs. 1.5%) of shorter-chain saturated FAs, with myristic acid almost matching stearic acid, were detected at 30 °C in comparison to 25 °C. Very low peroxide values were also found (0.14 meq O2 kg−1 at 30 °C and 0 meq O2 kg−1 at 25 °C). These results indicate that these SCOs were highly oxidation-resistant, and that a higher fermentation temperature improves their oxidative stability and tribophysical features. The biodiesels’ technological properties, calculated from the FA composition, were within the limits of both U.S. standards and E.U. regulations. Then, SCOs produced from L. starkeyi by fermentation of dairy effluents carried out under controlled temperature can be considered a suitable alternative to vegetable oils to produce biodiesel and biolubricants. Full article
Show Figures

Figure 1

20 pages, 3214 KB  
Article
Cogeneration of Fresh Water and Electricity with High-Temperature Power Cycles: Comparative Assessment of Multi-Effect Distillation and Reverse Osmosis
by Patricia Palenzuela, Diego-César Alarcón-Padilla, Bartolomé Ortega-Delgado and Guillermo Zaragoza
Processes 2023, 11(4), 1181; https://doi.org/10.3390/pr11041181 - 11 Apr 2023
Cited by 7 | Viewed by 2766
Abstract
The pressing problems of water scarcity in many parts of the planet make water desalination one of the technological solutions for guaranteeing the fresh water supply. However, desalination processes require high energy consumption, mainly provided by fossil fuels. The integration of renewable energy [...] Read more.
The pressing problems of water scarcity in many parts of the planet make water desalination one of the technological solutions for guaranteeing the fresh water supply. However, desalination processes require high energy consumption, mainly provided by fossil fuels. The integration of renewable energy sources into desalination processes is a promising option for decarbonizing the desalination sector. As most water-scarce regions with access to seawater frequently have high solar irradiation levels, it seems appropriate to exploit the sun to power the desalination process. This work presents the assessment of two integrated solar power and desalination systems regarding efficiency and water production. Two desalination processes (multi-effect distillation and reverse osmosis) are studied for potential coupling with the combined cycle of a central receiver solar plant to produce electricity and freshwater. In the case of the multi-effect distillation plant, it is integrated by replacing the Rankine cycle condenser of the combined cycle. In the case of the reverse osmosis plant, it is powered by the electricity generated from the combined cycle. For this comparison, the 21st of March has been considered as the design point and Almería (in the Southeast of Spain) as the plant location. The results show that the thermal cogeneration option renders a worse outcome (thermal efficiency of 50.2% for LT-MED case) than the decoupled generation of electricity and water (thermal efficiency of 53.3% for RO case), producing 18% less fresh water than the RO configuration (3831 m3/d vs. 4640 m3/d), due to the 6% penalty in the efficiency of the Rankine power cycle in the MED configuration as a result of increasing the condensation temperature from 42.6 °C to 70 °C. Full article
(This article belongs to the Special Issue Latest Innovations in Seawater Desalination Processes)
Show Figures

Figure 1

23 pages, 3504 KB  
Review
Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery
by Dheeraj Rathore, Surajbhan Sevda, Shiv Prasad, Veluswamy Venkatramanan, Anuj Kumar Chandel, Rupam Kataki, Sudipa Bhadra, Veeranna Channashettar, Neelam Bora and Anoop Singh
Bioengineering 2022, 9(11), 618; https://doi.org/10.3390/bioengineering9110618 - 27 Oct 2022
Cited by 16 | Viewed by 8774
Abstract
Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle [...] Read more.
Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle growing energy problems. Biodiesel has a similar composition and combustion properties to fossil diesel and thus can be directly used in internal combustion engines as an energy source at the commercial level. Since biodiesel produced using edible/non-edible crops raises concerns about food vs. fuel, high production cost, monocropping crisis, and unintended environmental effects, such as land utilization patterns, it is essential to explore new approaches, feedstock and technologies to advance the production of biodiesel and maintain its sustainability. Adopting bioengineering methods to produce biodiesel from various sources such as crop plants, yeast, algae, and plant-based waste is one of the recent technologies, which could act as a promising alternative for creating genuinely sustainable, technically feasible, and cost-competitive biodiesel. Advancements in genetic engineering have enhanced lipid production in cellulosic crops and it can be used for biodiesel generation. Bioengineering intervention to produce lipids/fat/oil (TGA) and further their chemical or enzymatic transesterification to accelerate biodiesel production has a great future. Additionally, the valorization of waste and adoption of the biorefinery concept for biodiesel production would make it eco-friendly, cost-effective, energy positive, sustainable and fit for commercialization. A life cycle assessment will not only provide a better understanding of the various approaches for biodiesel production and waste valorization in the biorefinery model to identify the best technique for the production of sustainable biodiesel, but also show a path to draw a new policy for the adoption and commercialization of biodiesel. Full article
(This article belongs to the Special Issue Acceleration of Biodiesel Production)
Show Figures

Figure 1

15 pages, 1440 KB  
Article
Helianthus salicifolius as a New Biomass Source for Biogas Production
by Dumitru Peni, Marcin Dębowski and Mariusz J. Stolarski
Energies 2022, 15(8), 2921; https://doi.org/10.3390/en15082921 - 15 Apr 2022
Cited by 5 | Viewed by 2064
Abstract
Renewable energy is becoming a widely discussed topic in the European Union (EU), due to a desire to reduce the negative effects of fossil fuels on climate change and biodiversity. About 60% of the total renewable energy produced in the EU is derived [...] Read more.
Renewable energy is becoming a widely discussed topic in the European Union (EU), due to a desire to reduce the negative effects of fossil fuels on climate change and biodiversity. About 60% of the total renewable energy produced in the EU is derived from biomass. Anaerobic digestion (AD) is an important pathway to convert biomass into biogas and then into bioenergy. Helianthus salicifolius is a perennial plant, whose biomass can serve as a co-substrate in biogas plants. Biomass composition, in addition to the biomethane and biogas potential, were investigated in raw green biomass and silage obtained from Helianthus salicifolius plants grown under different types (mineral and organic) and doses (0, 85, 170 kg N ha−1) of nitrogen fertilization. The biomethane production efficiency from Helianthus salicifolius was recorded for 25 days and found to range on average between 169.4 NL kg−1 VS for raw biomass and 193.2 NL kg−1 VS for silage. It follows from the current study that ensiling increases substrate digestibility and has a positive impact on methane concentration, but the biomethane and biogas production outputs from those substrates did not differ significantly at the end of the process. Full article
(This article belongs to the Special Issue Research of Biomass Feedstock and Biomass Energy Conversion)
Show Figures

Figure 1

16 pages, 935 KB  
Article
Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems
by Rajeev Ravindran, Kwame Donkor, Lalitha Gottumukkala, Abhay Menon, Amita Jacob Guneratnam, Helena McMahon, Sybrandus Koopmans, Johan P. M. Sanders and James Gaffey
Clean Technol. 2022, 4(1), 35-50; https://doi.org/10.3390/cleantechnol4010003 - 17 Jan 2022
Cited by 12 | Viewed by 6650
Abstract
Global warming and climate change are imminent threats to the future of humankind. A shift from the current reliance on fossil fuels to renewable energy is key to mitigating the impacts of climate change. Biological raw materials and residues can play a key [...] Read more.
Global warming and climate change are imminent threats to the future of humankind. A shift from the current reliance on fossil fuels to renewable energy is key to mitigating the impacts of climate change. Biological raw materials and residues can play a key role in this transition through technologies such as anaerobic digestion. However, biological raw materials must also meet other existing food, feed and material needs. Green biorefinery is an innovative concept in which green biomass, such as grass, is processed to obtain a variety of protein products, value-added co-products and renewable energy, helping to meet many needs from a single source. In this study, an analysis has been conducted to understand the renewable energy potential of green biorefinery by-products and residues, including grass whey, de-FOS whey and press cake. Using anaerobic digestion, the biogas and biomethane potential of these samples have been analyzed. An analysis of the fertiliser potential of the resulting digestate by-products has also been undertaken. All the feedstocks tested were found to be suitable for biogas production with grass whey, the most suitable candidate with a biogas and biomethane production yield of 895.8 and 544.6 L/kg VS, respectively, followed by de-FOS whey and press cake (597.4/520.3 L/kg VS and 510.7/300.3 L/kg VS, respectively). The results show considerable potential for utilizing biorefinery by-products as a source for renewable energy production, even after several value-added products have been co-produced. Full article
(This article belongs to the Special Issue Feature Papers for Clean Technologies 2021)
Show Figures

Figure 1

29 pages, 2190 KB  
Review
A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward
by Rozzeta Dolah, Rohit Karnik and Halimaton Hamdan
Sustainability 2021, 13(18), 10210; https://doi.org/10.3390/su131810210 - 13 Sep 2021
Cited by 41 | Viewed by 15327
Abstract
Biomass is an important renewable energy resource which primarily contributes to heating and cooling end use sectors. It is also a promising alternative source of biofuels to replace the depleting supply of fossil fuels. Surprisingly, few writers have been able to draw on [...] Read more.
Biomass is an important renewable energy resource which primarily contributes to heating and cooling end use sectors. It is also a promising alternative source of biofuels to replace the depleting supply of fossil fuels. Surprisingly, few writers have been able to draw on the feedstock significance for oil palm empty fruit bunch (EFB) as the biomass resource for biofuels compared to the other types of biomass waste. Therefore, this paper presents a comprehensive review of EFB as a biomass resource presented in four major parts. First, the introduction covers the demand for bio-oil and describes the different kinds of feedstock, the relevance and potential of EFB biomass. Second, the characteristics of biomass are explained before it is upgraded as biofuel, drawing similarities and contrasts between EFB and other sources of biomass. Pyrolysis processes and reactors used for EFB conversion are described, and the factors affecting the bio-oil yield and quality are discussed. Major reactor parameters are summarized and reactor optimization is discussed. Third, comparison on the properties of the bio-oil vs. petroleum in transportation, power generation, and heating are compared followed by prioritizing the bio-oil properties from the most to least critical, revealing the most promising methods for upgrading. Fourth, the environmental impact, including CO2 emission, of the use of EFB as a promising renewable energy resource and a cleaner alternative fuel is recommended. This paper has comprehensively reviewed the conversion of oil palm empty fruit bunches into biofuels, including the similarities and differences between biomasses, the best reactors, its comparison with fossil fuels, and bio-oil upgrading methods. The upgrading mapping matrix is created to present the best upgrading strategies for the optimum quality of biofuels. This paper serves as a one-stop center for EFB conversion into biofuels. Full article
(This article belongs to the Special Issue Feature Papers in Energy Sustainability)
Show Figures

Graphical abstract

18 pages, 5047 KB  
Review
Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries
by Xiaowen Zhan, Minyuan M. Li, J. Mark Weller, Vincent L. Sprenkle and Guosheng Li
Materials 2021, 14(12), 3260; https://doi.org/10.3390/ma14123260 - 12 Jun 2021
Cited by 22 | Viewed by 6639
Abstract
Transitioning from fossil fuels to renewable energy sources is a critical goal to address greenhouse gas emissions and climate change. Major improvements have made wind and solar power increasingly cost-competitive with fossil fuels. However, the inherent intermittency of renewable power sources motivates pairing [...] Read more.
Transitioning from fossil fuels to renewable energy sources is a critical goal to address greenhouse gas emissions and climate change. Major improvements have made wind and solar power increasingly cost-competitive with fossil fuels. However, the inherent intermittency of renewable power sources motivates pairing these resources with energy storage. Electrochemical energy storage in batteries is widely used in many fields and increasingly for grid-level storage, but current battery technologies still fall short of performance, safety, and cost. This review focuses on sodium metal halide (Na-MH) batteries, such as the well-known Na-NiCl2 battery, as a promising solution to safe and economical grid-level energy storage. Important features of conventional Na-MH batteries are discussed, and recent literature on the development of intermediate-temperature, low-cost cathodes for Na-MH batteries is highlighted. By employing lower cost metal halides (e.g., FeCl2, and ZnCl2, etc.) in the cathode and operating at lower temperatures (e.g., 190 °C vs. 280 °C), new Na-MH batteries have the potential to offer comparable performance at much lower overall costs, providing an exciting alternative technology to enable widespread adoption of renewables-plus-storage for the grid. Full article
(This article belongs to the Special Issue Battery Technology and Materials Development for Grid Energy Storage)
Show Figures

Figure 1

21 pages, 3986 KB  
Review
Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries
by Shahina Riaz, Kyong Yop Rhee and Soo Jin Park
Polymers 2021, 13(2), 253; https://doi.org/10.3390/polym13020253 - 13 Jan 2021
Cited by 69 | Viewed by 10119
Abstract
Fossil fuels are energy recourses that fulfill most of the world’s energy requirements. However, their production and use cause severe health and environmental problems including global warming and pollution. Consequently, plant and animal-based fuels (also termed as biofuels), such as biogas, biodiesel, and [...] Read more.
Fossil fuels are energy recourses that fulfill most of the world’s energy requirements. However, their production and use cause severe health and environmental problems including global warming and pollution. Consequently, plant and animal-based fuels (also termed as biofuels), such as biogas, biodiesel, and many others, have been introduced as alternatives to fossil fuels. Despite the advantages of biofuels, such as being renewable, environmentally friendly, easy to source, and reducing the dependency on foreign oil, there are several drawbacks of using biofuels including high cost, and other factors discussed in the fuel vs. food debate. Therefore, it is imperative to produce novel biofuels while also developing suitable manufacturing processes that ease the aforementioned problems. Polyhydroxyalkanoates (PHAs) are structurally diverse microbial polyesters synthesized by numerous bacteria. Moreover, this structural diversity allows PHAs to readily undergo methyl esterification and to be used as biofuels, which further extends the application value of PHAs. PHA-based biofuels are similar to biodiesel except for having a high oxygen content and no nitrogen or sulfur. In this article, we review the microbial production of PHAs, biofuel production from PHAs, parameters affecting the production of fuel from PHAs, and PHAs biorefineries. In addition, future work on the production of biofuels from PHAs is also discussed. Full article
(This article belongs to the Special Issue Biopolymer for Biofuel and Biorefineries)
Show Figures

Graphical abstract

16 pages, 2091 KB  
Proceeding Paper
New Insights from Econometric Data: An Extended Exergy Analysis (EEA) of the Italian System, 2013–2017
by Alfonso Biondi and Enrico Sciubba
Proceedings 2020, 58(1), 3; https://doi.org/10.3390/WEF-06933 - 12 Sep 2020
Cited by 2 | Viewed by 1472
Abstract
In the recent past, several examples of the application of Exergy Analysis (ExA) to Very Large Complex Systems, including entire countries, have been published, and it can be fairly said that—while the goals of the individual authors were completely consistent—the results, the conclusions [...] Read more.
In the recent past, several examples of the application of Exergy Analysis (ExA) to Very Large Complex Systems, including entire countries, have been published, and it can be fairly said that—while the goals of the individual authors were completely consistent—the results, the conclusions and the recommendations diverge. There are several contingent reasons for this, but the underlying problem is that a purely thermodynamic analysis cannot reproduce the complex influence that monetary, social, political and technological factors have on the purely “material” or “energetic” streams. Clearly, ExA represents a substantial improvement with respect to the “Material and Energy Balance Reports” published annually by most industrialized countries, because the exergy flow diagram unequivocally demonstrates how and at what penalty the primary exergy inflow (fossil fuels, renewables, ores, harvested food and other primary goods) is transformed into final energy, such as diesel fuel, electricity or other commodities. The issue here is, though, that the so-called Externalities (Capital, Labor and Environmental Effects) are, in spite of some opinion to the contrary, completely left out of the picture. It turns out though that ExA can be extended by including the exergy equivalents of the externalities. The theory is called Extended Exergy Accounting (EEA) as a reminder of the inclusion of monetary, labor and environmental “exergy costs” in the global budget. The scope of the study presented in this paper is twofold: First, the introduction of a novel approach based on the exploitation of a very disaggregated dataset, in order to perform the EEA of a whole country; second, the analysis of the results of the application of the method to the Italian society, over a five-year (2013–2017) window of observation, to extract new insights that could be useful to critically assess the trend of the exergy destruction of Italy vs. that of the GDP. Full article
(This article belongs to the Proceedings of The First World Energies Forum—Current and Future Energy Issues)
Show Figures

Figure 1

23 pages, 3876 KB  
Article
Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case
by Yuridiana Rocio Galindo-Luna, Efraín Gómez-Arias, Rosenberg J. Romero, Eduardo Venegas-Reyes, Moisés Montiel-González, Helene Emmi Karin Unland-Weiss, Pedro Pacheco-Hernández, Antonio González-Fernández and Jorge Díaz-Salgado
Energies 2018, 11(5), 1268; https://doi.org/10.3390/en11051268 - 16 May 2018
Cited by 13 | Viewed by 6313
Abstract
Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as [...] Read more.
Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as a thermal source. In this study, an Absorption Air-Conditioning System (AACS) used sodium hydroxide-water (NaOH-H2O) instead of lithium bromide-water to reduce the cost. Low enthalpy geothermal heat was derived from two shallow wells, 50 and 55 m deep. These wells are of interest due to the thermal recovery (temperature vs. time) of 56.2 °C that was possible at the maximum depth, which can be used for the first stage of the process. These wells were coupled with solar energy as a geothermal energy application for direct uses such as air-conditioning systems. We studied the performance of an absorption cooling system operating with a NaOH-H2O mixture and using a parabolic trough plant coupled with a low enthalpy geothermal heat system as a hybrid heat source, as an alternative process that can help reduce operating costs and carbon dioxide emissions. The numerical heat transfer results showed the maximum convective heat transfer coefficient, as function of fluid velocity, and maximum temperature for a depth higher than 40 m. The results showed that the highest temperatures occur at low fluid velocities of less than or equal to 5.0 m/s. Under these conditions, reaching temperatures between 51.0 and 56.2 °C in the well was possible, which is required of the geothermal energy for the solar energy process. A water stream was used as the working fluid in the parabolic trough collector field. During the evaluation stage, the average experimental storage tank temperature achieved by the parabolic trough plant was 93.8 °C on October 23 and 92.9 °C on October 25, 2017. The numerical simulation used to evaluate the performance of the absorption cycle used a generator temperature of 90 °C, a condenser and absorber temperature at 35 °C, and an evaporator temperature of 10 °C. The Coefficient of Performance was calculated as 0.71 under design conditions. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

Back to TopTop